Vehicles typically include sensors. The sensors can provide data about operation of the vehicle, for example, wheel speed, wheel orientation, and engine and transmission data (e.g., temperature, fuel consumption, etc.). The sensors can detect the location and/or orientation of the vehicle. The sensors can be global positioning system (GPS) sensors; accelerometers such as piezo-electric or microelectromechanical systems (MEMS); gyroscopes such as rate, ring laser, or fiber-optic gyroscopes; inertial measurements units (IMU); and/or magnetometers. The sensors can detect the external world, e.g., objects and/or characteristics of surroundings of the vehicle, such as other vehicles, road lane markings, traffic lights and/or signs, pedestrians, etc. The sensors can be radar sensors, scanning laser range finders, light detection and ranging (LIDAR) devices, and/or image processing sensors such as cameras.
An apparatus includes a sensor lens defining an axis, a first nozzle and a second nozzle positioned a same perpendicular direction from the axis and spaced along a direction parallel to the axis, and an air source fluidly connected to the nozzles. The nozzles are oriented to emit respective airstreams intersecting the axis and directed apart at an acute angle.
The first nozzle may be positioned to emit the airstream at the sensor lens.
The second nozzle may be positioned to emit the airstream substantially perpendicular to the axis.
The second nozzle may be farther from the sensor lens than the first nozzle, and a cross-sectional area of the second nozzle may be greater than a cross-sectional area of the first nozzle.
The nozzles may be elongated and substantially parallel. A length of the first nozzle and a length of the second nozzle may be substantially equal. A width of the second nozzle may be greater than a width of the first nozzle.
The nozzles may be oriented substantially vertically.
The apparatus may further include a liquid nozzle directed at the sensor lens. The apparatus may further include a liquid source fluidly connected to the liquid nozzle, and a controller communicatively coupled to the air source and the liquid source and programmed to increase a pressure from the air source upon ceasing to activate the liquid source. The controller may be further programmed to decrease the pressure from the air source at a preset time after increasing the pressure from the air source.
The apparatus may further include a controller communicatively coupled to the air source and programmed to activate the air source in response to a vehicle being in a key-on state.
The apparatus may further include an exterior panel including an aperture in which the sensor lens is positioned. The apparatus may further include a nozzle shell on the exterior panel, the nozzle shell including the nozzles. The nozzle shell may include a nozzle panel facing the aperture, and the nozzle panel may include the nozzles. The nozzle shell may include a rounded shell panel bordering the nozzle panel and the exterior panel. The shell panel may include a first edge extending along the nozzle panel from the exterior panel to the exterior panel, and a second edge extending along the exterior panel from the nozzle panel to the nozzle panel.
The exterior panel may include an outside surface, and the nozzle shell may be disposed on the outside surface.
The nozzles may be elongated and substantially parallel to the exterior panel.
The second nozzle may be positioned to emit the airstream substantially parallel to the exterior panel.
With reference to the Figures, an apparatus 30 for a vehicle 32 includes a sensor lens 34 defining an axis A, a first nozzle 36 and a second nozzle 38 positioned a same perpendicular direction from the axis A and spaced along a direction parallel to the axis A, and an air source 80 fluidly connected to the first and second nozzles 36, 38. The first and second nozzles 36, 38 are oriented to emit respective airstreams intersecting the axis A and directed apart at an acute angle.
The apparatus 30 provides a cleaning airstream from the first nozzle 36 at the sensor lens 34 and an air curtain from the second nozzle 38. The cleaning airstream can dislodge debris from the sensor lens 34 through high shear force. The cleaning airstream can also dry the sensor lens 34 after cleaning the sensor lens 34 with washer fluid. The air curtain can prevent debris from contacting the sensor lens 34. The acute angle between the airstreams from the first and second nozzles 36, 38 defines a gap, and the gap can allow debris blown off of the sensor lens 34 to settle before being blown clear, rather than the airstream from the second nozzle 38 ricocheting the debris back at the sensor lens 34. The apparatus 30 provides a compact package. The apparatus 30 can provide a simple design without a need for check valves or other types of valves. The apparatus 30 can provide an energy-efficient design by allowing use of a blower rather than a compressor.
With reference to
The vehicle 32 may be an autonomous vehicle. A vehicle computer can be programmed to operate the vehicle 32 independently of the intervention of a human driver, completely or to a lesser degree. The vehicle computer may be programmed to operate the propulsion, brake system, steering, and/or other vehicle systems based on data received from sensors 40. For the purposes of this disclosure, autonomous operation means the vehicle computer controls the propulsion, brake system, and steering without input from a human driver; semi-autonomous operation means the vehicle computer controls one or two of the propulsion, brake system, and steering and a human driver controls the remainder; and nonautonomous operation means a human driver controls the propulsion, brake system, and steering.
The vehicle 32 includes a body 42. The vehicle 32 may be of a unibody construction, in which a frame and the body 42 of the vehicle 32 are a single component. The vehicle 32 may, alternatively, be of a body-on-frame construction, in which the frame supports the body 42 that is a separate component from the frame. The frame and the body 42 may be formed of any suitable material, for example, steel, aluminum, etc. The body 42 includes body panels 44, 46 partially defining an exterior of the vehicle 32. The body panels 44, 46 may present a class-A surface, e.g., a finished surface exposed to view by a customer and free of unaesthetic blemishes and defects. The body panels 44, 46 include, e.g., a roof 46, etc.
A housing 48 for the sensors 40 is attachable to the vehicle 32, e.g., to one of the body panels 44, 46 of the vehicle 32, e.g., the roof 46. For example, the housing 48 may be shaped to be attachable to the roof 46, e.g., may have a shape matching or following a contour of the roof 46. The housing 48 may be attached to the roof 46, which can provide the sensors 40 with an unobstructed field of view of an area around the vehicle 32. The housing 48 may be formed of, e.g., plastic or metal.
With reference to
The housing 48 includes apertures 54 in which the sensor lenses 34 are positioned. The apertures 54 are holes in the housing 48 leading from inside the housing 48 to the ambient environment. The exterior panel 50, i.e., the outside surface 52, includes the apertures 54. The apertures 54 are through the exterior panel 50 and outside surface 52. The apertures 54 are circular in shape. The housing 48 includes a plurality of apertures 54, i.e., one aperture 54 for each of the respective sensors 40. Each sensor 40 has a field of view received through the respective aperture 54. The sensors 40 may extend into the respective apertures 54. For example, the aperture 54 may be concentric about a portion of the sensor 40.
The sensors 40 may detect the location and/or orientation of the vehicle 32. For example, the sensors 40 may include global positioning system (GPS) sensors; accelerometers such as piezo-electric or microelectromechanical systems (MEMS); gyroscopes such as rate, ring laser, or fiber-optic gyroscopes; inertial measurements units (IMU); and magnetometers. The sensors 40 may detect the external world, e.g., objects and/or characteristics of surroundings of the vehicle 32, such as other vehicles, road lane markings, traffic lights and/or signs, pedestrians, etc. For example, the sensors 40 may include radar sensors, scanning laser range finders, light detection and ranging (LIDAR) devices, and image processing sensors such as cameras.
In particular, the sensors 40 disposed in the housing 48 may be one or more cameras arranged to collectively cover a 360° field of view with respect to a horizontal plane. The sensors 40 are fixedly attached directly or indirectly to the housing 48. The sensors 40 are fixed inside the housing 48. The sensors 40 are disposed on an opposite side of the exterior panel 50 from the outside surface 52. Each sensor 40 defines a field of view oriented through the respective aperture 54, and the field of view of one of the sensors 40 may overlap the fields of view of the sensors 40 that are circumferentially adjacent to one another, i.e., that are immediately next to each other. Each sensor 40 includes the sensor lens 34, and each sensor lens 34 defines the axis A. The axis A is oriented in the direction that the sensor lens 34 is facing, i.e., the axis A is substantially centered in the field of view of the sensor 40.
Nozzle shells 56 are disposed on the outside surface 52 of the exterior panel 50. The housing 48 includes one nozzle shell 56 for each aperture 54, i.e., for each sensor 40. Each nozzle shell 56 is disposed near the respective aperture 54 and is positioned horizontally from the respective aperture 54. Each nozzle shell 56 is disposed in a vehicle-forward direction from the respective aperture 54, i.e., upstream from the respective aperture 54 relative to forward motion of the vehicle 32.
With reference to
The nozzle panel 60 has a flat shape. The nozzle panel 60 borders the exterior panel 50, specifically the outside surface 52, and the respective shell panel 58. The nozzle panel 60 includes the first edge 62 extending along the shell panel 58 from the exterior panel 50 to the exterior panel 50, and a third edge 66 extending along the exterior panel 50 from the shell panel 58 to the shell panel 58. The first edge 62 and the third edge 66 together define the boundary of the nozzle panel 60. Each nozzle shell 56 is oriented so that the respective nozzle panel 60 is facing the respective aperture 54.
With reference to
The reservoir 70 may be a tank fillable with liquid, e.g., washer fluid for window cleaning. The reservoir 70 may be disposed in a front of the vehicle 32, specifically, in an engine compartment forward of a passenger cabin. The reservoir 70 may store the washer fluid only for supplying the sensors 40 or also for other purposes, such as supply to a windshield.
The liquid source 72 may force the washer fluid through the liquid supply lines 74 to the liquid nozzles 76 with sufficient pressure that the washer fluid sprays from the liquid nozzles 76. For example, the liquid source 72 can be a pump. The liquid source 72 is fluidly connected to the reservoir 70. The liquid source 72 may be attached to or disposed in the reservoir 70.
The liquid supply lines 74 extend from the pump to the liquid nozzles 76. The liquid supply lines 74 may be, e.g., flexible tubes.
Returning to
With reference to
The air source 80 increases the pressure of a gas by reducing a volume of the gas or by forcing additional gas into a constant volume. The air source 80 may be any suitable type of blower. The first and second nozzles 36, 38 can be shaped as described below, which means that a blower can produce sufficient pressure, and the air source 80 does not need to be a compressor.
The filter 82 removes solid particulates such as dust, pollen, mold, dust, and bacteria from air flowing through the filter 82. The filter 82 may be any suitable type of filter, e.g., paper, foam, cotton, stainless steel, oil bath, etc.
The air supply lines 84 extend from the air source 80 to the filter 82 and from the filter 82 to the first and second nozzles 36, 38. The air supply lines 84 may be, e.g., flexible tubes.
Returning to
The first and second nozzles 36, 38 are elongated, i.e., slot-shaped, and each first and second nozzle 38 has a length equal to greater than twice its width. A length of the first nozzle 36 and a length of the second nozzle 38 are substantially equal. The first and second nozzles 36, 38 are oriented vertically relative to the vehicle 32. Each respective pair of first and second nozzles 36, 38 are substantially parallel to each other. Each first nozzle 36 or second nozzle 38 is oriented substantially parallel to the exterior panel 50. The first and second nozzles 36, 38 are vertically centered with respect to the respective nozzle panel 60. A cross-sectional area of the second nozzle 38 is greater than a cross-sectional area of the first nozzle 36, and a width of the second nozzle 38 is greater than a width of the first nozzle 36.
With reference to
With reference to
The controller 86 may transmit and receive data through a communications network 88 such as a controller area network (CAN) bus, Ethernet, WiFi, Local Interconnect Network (LIN), onboard diagnostics connector (OBD-II), and/or by any other wired or wireless communications network. The controller 86 may be communicatively coupled to the sensors 40, the air source 80, the liquid source 72, and other components via the communications network 88.
The process 700 begins in a block 705, in which the controller 86 determines whether the vehicle 32 is in a key-on state, i.e., is running. The controller 86 may receive data from other computers through the communications network 88 indicating that the vehicle 32 is in the key-on state. If the vehicle 32 is in a key-off state, the process 700 proceeds to a block 710. If the vehicle 32 is in a key-on state, the process 700 proceeds to a block 715.
In the block 710, the controller 86 deactivates the air source 80. If the air source 80 is already inactive, the controller 86 maintains the air source 80 as inactive.
In the block 715, the controller 86 activates the air source 80 at a default pressure. The default air pressure for an apparatus 30 can be determined via simulation modeling and/or empirical testing, and is chosen to be sufficiently high for the airstreams from the second nozzles 38 to act as air curtains blocking debris from contacting the sensor lenses 34. The air source 80 remains active unless deactivated in the block 710.
Next, in a decision block 720, the controller 86 determines whether a cleaning stimulus has occurred. A “cleaning stimulus” is any trigger that indicates that the sensor lens 34 should be cleaned. For example, the controller 86 may receive a user command to perform cleaning of the sensor 40 or of another component of the vehicle 32 such as a windshield. For another example, the controller 86 may determine whether debris is on the sensor lens 34 based on data received from the sensor 40. For example, the controller 86 may determine, e.g., according to known image-analysis techniques, that a set of pixels in image data received from the sensor 40 is unchanging over time compared to the other of the pixels in the image data, suggesting that a portion of the field of view of the sensor 40 has been covered. In response to the lack of a cleaning stimulus, the process returns to the decision block 705 to restart the process 700. In response to a cleaning stimulus, the process 700 proceeds to a block 725.
In the block 725, the controller 86 activates the liquid source 72 for a first preset time. The first preset time may be chosen by experimenting with how long the liquid source 72 must be active to remove a variety of types of debris from the sensor lens 34.
Upon ceasing to activate the liquid source 72, in a block 730, the controller 86 increases the pressure from the air source 80 to a nondefault pressure for a second preset time. The nondefault pressure is higher than the default pressure. The nondefault pressure and the second preset time may be chosen by experimenting with different pressures and measuring how long the air source 80 must be active at those pressures to dry the sensor lens 34.
After expiration of the second preset time, in a block 735, the controller 86 decreases the pressure from the air source 80 back down to the default air pressure. After the block 735, the process 700 returns to the decision block 705 to restart the process 700.
The disclosure has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present disclosure are possible in light of the above teachings, and the disclosure may be practiced otherwise than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
3453049 | Wager, Jr. | Jul 1969 | A |
5657929 | DeWitt | Aug 1997 | A |
6199773 | Holt | Mar 2001 | B1 |
9663073 | Tanaka | May 2017 | B2 |
9863866 | Bugher et al. | Jan 2018 | B2 |
10328906 | Hester | Jun 2019 | B2 |
10807568 | Mizuno | Oct 2020 | B2 |
20020005440 | Holt | Jan 2002 | A1 |
20060068696 | Ashford | Mar 2006 | A1 |
20090250533 | Akiyama | Oct 2009 | A1 |
20110073142 | Hattori | Mar 2011 | A1 |
20110266375 | Ono | Nov 2011 | A1 |
20110292212 | Tanabe | Dec 2011 | A1 |
20120117745 | Hattori | May 2012 | A1 |
20130092758 | Tanaka | Apr 2013 | A1 |
20140060582 | Hartranft | Mar 2014 | A1 |
20150040953 | Kikuta | Feb 2015 | A1 |
20150151722 | Gokan | Jun 2015 | A1 |
20150183406 | Tanaka | Jul 2015 | A1 |
20150185592 | Eineren | Jul 2015 | A1 |
20150296108 | Hayakawa | Oct 2015 | A1 |
20160103316 | Rousseau | Apr 2016 | A1 |
20160272165 | Hsiao et al. | Sep 2016 | A1 |
20160311405 | Richardson | Oct 2016 | A1 |
20160339875 | Ina | Nov 2016 | A1 |
20160368029 | Augustyn | Dec 2016 | A1 |
20170225660 | Trebouet | Aug 2017 | A1 |
20170297536 | Giraud | Oct 2017 | A1 |
20170313286 | Galera | Nov 2017 | A1 |
20180015907 | Rice | Jan 2018 | A1 |
20180015908 | Rice | Jan 2018 | A1 |
20180186341 | Kimura | Jul 2018 | A1 |
20180312141 | Ghannam | Nov 2018 | A1 |
20180361997 | Schmidt | Dec 2018 | A1 |
20190068845 | Krishnan | Feb 2019 | A1 |
20190077376 | Baldovino | Mar 2019 | A1 |
20190077377 | Schmidt | Mar 2019 | A1 |
20190100168 | Krishnan | Apr 2019 | A1 |
20190111895 | Onuma | Apr 2019 | A1 |
20190162951 | Leonelli, Jr. | May 2019 | A1 |
20190184942 | Vaishnav | Jun 2019 | A1 |
20190202410 | Zhao | Jul 2019 | A1 |
20190277949 | Krishnan | Sep 2019 | A1 |
20190278078 | Krishnan | Sep 2019 | A1 |
20190314865 | Sevak | Oct 2019 | A1 |
20190337489 | Baldovino | Nov 2019 | A1 |
20190337490 | Kawamura | Nov 2019 | A1 |
20200189531 | Baldovino | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
106740708 | May 2017 | CN |
2605043 | Jul 2014 | EP |
Number | Date | Country | |
---|---|---|---|
20200398795 A1 | Dec 2020 | US |