This application claims the priority of German patent document 103 58 106.5, filed Dec. 12, 2003, the disclosure of which is expressly incorporated by reference herein.
The invention relates to a sensor element for vehicle busy system, as well as to a bus system and a method of operating the same.
Sensors and sensor elements in motor vehicles are generally known in a plurality of different embodiments and applications. Particularly in modern motor vehicles, these sensors are used, for example, for active or passive restraint systems in order to be able to offer a maximum amount of safety to the motor vehicle occupants. In restraint systems for active safety, acceleration sensors for the early recognition of a crash are situated at different positions in the motor vehicle.
In such systems, sensor elements with partially redundant effects are set up at several different positions in a motor vehicle. However, it is important that the exact position of the respective sensor elements in the motor vehicle be known also after their installation in the motor vehicle, so that a desired sensor element can be controlled in a targeted manner by the corresponding control unit. In particular, it is important to avoid a mix-up of the sensor elements provided for certain positions in the motor vehicle. This can be implemented, for example, by a different construction of the plugs of the sensor element or different housing constructions. The plugs or housings of the sensor elements have, for example, noses, rails, beads, etc., so that the plug or the corresponding sensor element fits only into the matching counterpart. Different colored markings are also conceivable so that a clear assignment of the respective sensor element to its predefined position in the motor vehicle becomes possible. However, the provision of differently designed sensor elements leads to higher manufacturing costs, higher storage costs and, because of the greater variety of parts, also to higher mounting costs.
Particularly for mounting-related reasons, but also for manufacturing-related reasons, it is advantageous for these sensor elements having the same effect to have a construction that is not only similar but, if possible, identical. These sensor elements can therefore be manufactured in very large piece numbers, which is more cost-effective in comparison to the manufacturing of a correspondingly smaller number of different sensor elements and is therefore preferable. Also for mounting-related reasons, this is advantageous since, during the mounting, it is no longer necessary to differentiate as to which sensor elements have to be installed at which position in the motor vehicle. As a result the mounting of the sensor elements can be implemented more rapidly, which is more cost-effective.
If similar sensor elements having the same effect are installed in the motor vehicle, their precise position must be known, so that the control element can correspondingly control these sensor elements. In addition, it is important that the control unit can assign the signals supplied by this particular sensor element also to a corresponding position of the sensor element in the motor vehicle.
When a plurality of identical sensor elements are used, they are coupled for this purpose to the bus lines of a peripheral bus system with external sensors, typically in a so-called daisy-chain configuration. The construction and the method of operation of such a daisy chain bus system is generally known, for example, from the paperback with the title Mikroprozessortechnik (Microprocessor Technology), edited by Thomas Beierlein, Olaf Hagenbruch, Fachbuchverlag (Technical Book Publishers) Leipzig, 1999, particularly on Page 211, and on. In contrast to the so-called party line configuration, in a daisy chain bus configuration the users (microprocessors, apparatuses, assemblies, sensors, etc.) connected to a bus are series-connected in a linked manner. The bus system has one or more masters which control the data communication; data transmitted by way of the bus line are virtually “passed through”. Thus, each user connected to the bus can transmit messages to any other user in this manner.
However, the use of a daisy chain bus system is cost-intensive and, in addition, the data transmission rate is significantly reduced because of the successively arranged bus users which in each case forward the data to be transmitted. Also, the daisy chain bus configuration is not suitable for special bus systems, such as a LIN bus system (LIN—Local Interconnect Network).
The use of separately labeled (and different) sensor elements, as well as the use of identical sensor elements (having the same effect) in the so-called daisy chain operation is therefore only conditionally suitable.
In German Patent Document DE 101 21 786 A1, a sensor system for a motor vehicle is described in which structurally identical sensor elements having the same effect are provided on at least two different installation sites in a motor vehicle. A respective sensor element here has several different fastening points fastening the sensor element to the motor vehicle. Each of sensor elements at the various positions in the motor vehicle is fastened to a different fastening point of the sensor element. Thus, at various fastening points of the sensor elements, different potential conditions occur which are typical of a respective sensor element. A sensor element can be identified on the basis of these typical potential conditions.
One object of the present invention is to provide an improved technique for clearly identifying the position of several identical sensor elements in a motor vehicle. In particular, a simpler arrangement, which is as cost-effective as possible, is to be provided for using a plurality of sensor elements having the same effect in a motor vehicle.
This and other objects and advantages are achieved by the sensor element and bus system according to the invention in which binary information is obtained by providing the sensor with a larger number of output connections than would normally be required for contacting with the bus lines. As a result of the larger number of output connections, virtually redundant output connections can be implemented, which can be utilized for providing additional information. Binary information can then be obtained particularly from the manner in which the output connections are connected with the bus lines. The number of sensor elements to be installed in the motor vehicle determines whether more or less redundancy needs be derived. The redundancy therefore has to be selected such that a binary address coding is provided by which an address specific to a respective sensor element can be assigned. Depending on the type of the binary address coding, more or fewer pins need be provided.
By means of this binary information, each of the sensor elements can be clearly identified. Once a sensor element has been clearly identified, a conclusion can be drawn at which point or in which position within the motor vehicle this sensor element is installed. Thus, if sensor signals with the corresponding coding are sent from this sensor element to a central control unit, the control unit first decodes the address coding and clearly assigns these sensor signals to a special sensor element and thus to its position in the motor vehicle. Subsequently, the control unit can initiate the corresponding measures.
The invention is therefore particularly suitable for sensor elements which have an identical construction, and thus the same design and the same effect. This is particularly advantageous for manufacturing-related reasons and also for mounting-related reasons.
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
In the following, the invention will be explained in detail by means of the embodiments indicated in the schematic figures of the drawing.
In all figures of the drawing, the same or functionally identical elements and signals—unless indicated otherwise—were provided with the same reference symbols.
The two bus lines 3, 4 of the bus 2 are connected with a control unit 5 typically operating as the master. In the present embodiment, this is an air bag control system.
The bus system 1 also has a plurality (in the present embodiment, four) sensor elements 6 to 9. It is assumed here that all sensor elements 6 to 9 have an identical construction; that is, that they are structurally the same, and of an identical method of operation. Each of the sensor elements 6 to 9 is connected by way of two connection lines 3′, 4′ respectively with the two bus lines 3, 4, so that bidirectional data communication can take place between the air bag control unit 5 and the sensor elements 6 to 9.
For coupling to a two-wire bus 2, each sensor element 6 to 9 must have two pins. In contrast, however, the sensor elements 6 to 9 according to the invention have more than two pins 10—in the present embodiment, four pins. That is, two pins more than would be required for coupling a sensor element 6 to 9 to the two bus lines 3, 4. In a way, a redundancy in the number of pins 10 is provided for each sensor element 6 to 9, by way of which information can be obtained for the identification of the respective sensor element 6 to 9 as to at which point in the vehicle a respective sensor element 6 to 9 is installed or fastened. This information is contained in the different assignment of these pins 10.
As illustrated in
On the other hand, the two other pins 11 of each respective sensor element 6 to 9 are not fixedly defined and, in the following, will therefore be called variably assignable pins 11. In all of the sensor elements 6 to 9, these variably assignable pins 11 are wired differently relative to the coupling to the bus lines 3, 4. In the present embodiment, the variably assignable pins 11 in the case of sensor element 6 are connected only with the bus line 3, and in the case of sensor element 8 they are connected only with the bus line 4. In the case of sensor element 7, one of the variably assignable pins 11 (second pin) is connected with the bus line 4, and the second of the variably assignable pins 11 (third pin) is connected with the bus line 3. In sensor element 9, these variably assignable pins 11 are connected in an inverse manner in comparison to sensor element 7.
Thus, to an extent, this results in a coding for these variably assignable pins 11 which—as will be described in detail in the following—can also be measured and decoded. Therefore, let it be assumed that, for example, a logic “1” is assigned to the variably assignable pins 11 that are connected with the bus line 3 having a high logic level, and that a logic “0” is assigned to the variably assignable pins 11 that are connected with the bus line 4 having a low logic level. Thus, an address coding, which is different in the case of all sensor elements 6 to 9, is assigned to each sensor element 6 to 9 by way of the variably assignable pins 11, which address coding is as follows in
Each sensor element 6 to 9 therefore has a different access code. The information contained in the variably assignable pins 11 concerning their coupling to the bus lines 3,4 can therefore be used for the addressing of the different sensor elements 6 to 9.
For decoding the address information coupled in by way of the variably assignable pins 11, the sensor element 7 has a measuring circuit 23, an evaluating circuit 13 as well as a decoding circuit 21. By means of the measuring circuit 23, the potentials are measured which are applied to the variably assignable pins 11. For this purpose, each of the variably assignable pins 11 is equipped with a low-pass arrangement consisting of one resistor 15, 16 and one capacitor 17, 18 respectively, to which a Zener diode 19, 20 is connected on the output side for limiting the voltage of the measures potentials. The potentials measured by the measuring circuit 23 are fed to an evaluating circuit 13 connected to the output side of the measuring circuit 23, which evaluating circuit 13 assigns a logic level to a respectively measured potential. A decoder 21 connected on the output side of the evaluating circuit 13 determines the respective address code of the sensor element 7 from the logic level determined in the evaluating circuit 13.
In this manner, an address which is specific to each sensor element 6 to 9 can correspondingly also be assigned. In the case of a data communication of a sensor element 6 to 9 with the control unit 5, for example, this address is then transmitted together with the corresponding sensor signals sensed by the sensor element 6 to 9. The control unit 5 can then assign the sensor signals to the respective sensor element 6 to 9 and thus to its precise position in the motor vehicle.
Sensor element 7 also has a sensor circuit 22 which has the actual sensor as well as the corresponding bus interface. In the case of a sensor element for an air bag system, the sensor element 7 is designed as an acceleration sensor or speed sensor and is used for sensing an acceleration or speed in the event of an accident. In this example, the signals generated by the sensor 22 are derived from the sensed acceleration or speed and are transmitted by way of fixedly defined pins 12 and the bus lines 3, 4 to the control unit.
In the present embodiment, the evaluating circuit 13 and the decoder 21 are components of the sensor circuit 22 constructed as a user-specific integrated circuit (ASIC).
As in
The pins 10 are divided here into first pins 32, which are connected only with bus line 3, and second pins 33, which are connected only with bus line 4. First and second pins 32, 33 consist of two pins respectively. In each case, a logic “1” is assigned to one of the pins 32, 33, and a logic “0” is assigned to the other pin (see jack 31). In this manner, a binary address coding of the respective sensor element 6 to 9 can be achieved by the assignment of the first and second pins 32, 33 to the bus lines 3, 4, the first pins 32 and the second pins 33 each indicating different bits of the resulting 2-bit address coding. In the event that the pins 33 indicate the LSB bit (LSB=least significant bit), the following address coding is obtained for the sensor elements 6 to 9:
Here also, each sensor element 6 to 9 therefore has an address code which is specific to this sensor element 6 to 9.
By way of a rectifying element 34, 35, such as a diode, each pin 10 is connected 10 with a terminal 36, which is acted upon by a reference potential U1 (for example, by a supply potential). The rectifying elements 34, 35 are arranged parallel to one another, with the diodes 34 being coupled with the first pins 32 antiparallel to the diodes 35 coupled with the second pins 32, and are connected by way of a coupling capacitor 37.
Similar to the sensor element in
Further, a control unit 41 is provided which generates a control signal 42, by which the control connections of the controllable switches 39, 40 can be controlled in a defined manner. A respective pin 10 can thereby be connected in a targeted fashion with the measuring device 23.
In
Determination of the address coding of the sensor element 9 takes place in a manner equivalent to the method described by means of
Since the vehicle body typically has a ground potential, a fastening point 50 occupied by a fastening device 51 can be electrically determined in a very simple manner. In the present embodiment (three sensor elements 6 to 8), it is sufficient to provide only two fastening points 50. In the case of a larger number of sensor elements 6 to 8, a correspondingly larger number of fastening points 50 must be provided, with the conceivable screwed-connections variants of the fastening devices 51 increasing very rapidly according to the number of fastening points 50.
For detecting which of the fastening points 50 is screwed to a fastening device 51, in principle, a circuit arrangement can be used which corresponds to the one illustrated in
The invention is therefore particularly suitable in the case of identically constructed sensor elements. Here, a conclusion can be drawn from the signal alone supplied by the sensor, with respect to its position in the motor vehicle. This will be briefly described by means of an example.
Particularly in the case of restraint devices, a plurality of identical sensor elements are installed at various positions in the motor vehicle. For example, there are sensor elements for detecting a lateral impact in a vehicle, so that the corresponding side air bags are triggered. The corresponding sensor elements for the left and right side sections of a motor vehicle in this case have the same effect, and a construction which is as identical as possible. If a sensor signal is transmitted from these sensor elements to the control unit, the control unit can at first not assign the sensor signals to the respective sensor element. In the case of the sensor element according to the invention, an address coding is transmitted simultaneously with the sensor signals, so that the control unit can clearly assign the sensor signals to a respective sensor element. From the address coding, a conclusion can be drawn regarding the side of the motor vehicle at which the crash is taking place; and, as a result, the corresponding air bags situated on this side of the motor vehicle are triggered. The air bags situated on the other side of the motor vehicle do not necessarily have to be triggered and do not have to be triggered at the same speed.
Although the present invention was described above by means of preferred embodiments, it is not limited thereto but can be modified in multiple fashions.
Thus, the invention is not necessarily limited to a bus system constructed as a CAN bus or LIN bus, but can be used in arbitrary bus systems, particularly arbitrary parallel bus systems. The invention is also not necessarily limited to a restraint system in a motor vehicle but can naturally be expanded to arbitrary applications, for example, a comfort system, a pre-crash system, etc.
Although it is assumed in the embodiments that all sensor systems have the same constructions and an identical method of operation, the invention is naturally also suitable in the case of those sensor elements which do not have this characteristic.
Although, in the above-mentioned embodiments, only three or four sensor elements are connected to the bus, the invention is not limited to this number. It is understood that more or fewer sensor elements can be connected to the bus. For this purpose, only a different address coding has to be provided for the respective sensor elements, which can be very easily implemented by providing a higher number of fastening points or output connections.
In addition, the above figures should be understood only in the manner of examples, and should not limit the protective scope of the present invention in this respect.
Also, only an advantageous alignment of the pins was described, which pins naturally may also have different assignments and nevertheless supply a clear address coding.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
103 58 106.5 | Dec 2003 | DE | national |