This application is a U.S. national stage application of International Patent Application No. PCT/EP2020/077464, filed Oct. 1, 2020, which claims priority to U.K. Provisional Application No. 1914443. 5 filed on Oct. 7, 2019, the disclosure of which is hereby incorporated by reference in its entirety.
Embodiments of the present disclosure relate to sensor integrated substrates, which can be incorporated into wound dressings and systems, and in particular to design rules for such substrates.
Nearly all areas of medicine may benefit from improved information regarding the state of the tissue, organ, or system to be treated, particularly if such information is gathered in real-time during treatment. Many types of treatments are still routinely performed without the use of sensor data collection; instead, such treatments rely upon visual inspection by a caregiver or other limited means rather than quantitative sensor data. For example, in the case of wound treatment via dressings and/or negative pressure wound therapy, data collection is generally limited to visual inspection by a caregiver and often the underlying wounded tissue may be obscured by bandages or other visual impediments. Even intact, unwounded skin may have underlying damage that is not visible to the naked eye, such as a compromised vascular or deeper tissue damage that may lead to an ulcer. Similar to wound treatment, during orthopedic treatments requiring the immobilization of a limb with a cast or other encasement, only limited information is gathered on the underlying tissue. In instances of internal tissue repair, such as a bone plate, continued direct sensor-driven data collection is not performed. Further, braces and/or sleeves used to support musculoskeletal function do not monitor the functions of the underlying muscles or the movement of the limbs. Outside of direct treatments, common hospital room items such as beds and blankets could be improved by adding capability to monitor patient parameters.
Such wound monitoring and/or treatment systems present unique problems due to being in contact with tissue. In addition, a wound should be allowed to heal without impediment. At the same time, care must be taken to ensure that such systems are reliable and safe for use on human or animal tissue.
Therefore, there is a need for improved wound monitoring and/or treatment systems.
In some cases, a sensor sheet of a wound monitoring and/or therapy apparatus (such as a wound dressing) includes a plurality of electronic components. The plurality of electronic components can include at least a first electronic component. The first electronic component can include a first electrical connector configured to electrically connect the first electronic component. The wound monitoring and/or therapy apparatus can include a substantially flexible substrate. The substantially flexible substrate can include a first, wound-facing side supporting the plurality of electronic components and a second side opposite the first side. The wound monitoring and/or therapy apparatus can include a track of first conductive ink with a first impedance. The first conductive ink can reside on the substantially flexible substrate. The track of the first conductive ink can be electrically coupled to the first electrical connector of the first electronic component. The wound monitoring and/or therapy apparatus can include a track of second conductive ink with a second impedance different from the first impedance. The second conductive ink can reside on the substantially flexible substrate. The track of the second conductive ink can be electrically coupled to the track of first conductive ink.
The sensor sheet of the preceding paragraph may also include any combination of the following features described in this paragraph, among other features described herein. A soldering paste can be electrically coupled between the first electrical connector and the first electronic component. The soldering paste electrically can couples the first electrical connector and the first electronic component. The first conductive ink can bond better (e.g., form a superior electrical connection) with the soldering paste than the second conductive ink. The track of second conductive ink can be electrically coupled to the first electronic component via the track of first conductive ink. The track of the first conductive ink can be a first track of the first conductive ink. The sensor sheet can include a second track of the first conductive ink coupled to the track of the second conductive ink. The second track of the first conductive ink can be electrically coupled to the first track of the first conductive ink via the track of the second conductive ink. The track of the first conductive ink can be a first track of the first conductive ink. The plurality of electronic components can include a second electronic component that includes a second electrical connector. The sensor sheet can include a second track of the first conductive ink coupled to the second electrical connector of the second electronic component.
The sensor sheet of any of the preceding two paragraphs may also include any combination of the following features described in this paragraph, among other features described herein. The track of the second conductive ink can be coupled to the second track of the first conductive ink. The first electronic component can be electrically coupled to the second electronic component via the first track of the first conductive ink, the track of the second conductive ink, and the second track of the first conductive ink. The track of the second conductive ink can be a first track of the second conductive ink. The sensor sheet can include a second track of the second conductive ink coupled to the second track of the first conductive ink. The first electronic component can include at least one of a sensor, an amplifier, a capacitor, a resistor, an inductor, a controller, a processor, a diode, or a connector. At least one of the first conductive ink or the second conductive ink can include silver ink.
The sensor sheet of any of the preceding three paragraphs may also include any combination of the following features described in this paragraph, among other features described herein. An impedance variance due to stretching of the second conductive ink can be smaller than an impedance variance due to stretching of the first conductive ink. The first conductive ink can have a first width, and the second conductive ink can have a second width that is larger than the first width. A thermal conductivity of the first conductive ink can be higher than a thermal conductivity of the second conductive ink. At least one of the first conductive ink or the second conductive ink can include an electrical textile. The electrical textile can be cotton.
The sensor sheet of any of the preceding four paragraphs may also include any combination of the following features described in this paragraph, among other features described herein. The first conductive ink can include a fiber. The fiber can reduce an impedance variance due to stretching of the first conductive ink. The first impedance can be greater than the second impedance. The first conductive ink can be more conductive than the second conductive ink. At least a portion of the track of the second conductive ink can overlap with at least a portion of the track of first conductive ink. The track of the second conductive ink can be electrically coupled to the track of first conductive ink using conductive glue. The track of the second conductive ink can be electrically coupled to the track of first conductive ink using conductive tape. The first conductive ink can include a first amount of silver. The second conductive ink can include a second amount of silver that is different from the first amount.
Any of the features of any of the methods described herein can be used with any of the features of any of the other methods described herein.
Embodiments of the present disclosure will now be described hereinafter, by way of example only, with reference to the accompanying drawings in which:
Embodiments disclosed herein relate to apparatuses and methods of at least one of monitoring or treating biological tissue with sensor-enabled substrates. The systems and methods disclosed herein are not limited to treatment or monitoring of a particular type of tissue or injury, instead the sensor-enabled technologies disclosed herein are broadly applicable to any type of therapy that may benefit from sensor-enabled substrates. Some implementations utilize sensors and data collection relied upon by health care providers to make both diagnostic and patient management decisions.
Some systems and methods disclosed herein relate to the use of sensors mounted on or embedded within substrates configured to be used in the treatment of both intact and damaged human or animal tissue. Such sensors may collect information about the surrounding tissue and transmit such information to a computing device or a caregiver to be utilized in further treatment. In certain cases, such sensors may be attached to the skin anywhere on the body, including areas for monitoring arthritis, temperature, or other areas that may be prone to problems and require monitoring. Sensors disclosed herein may also incorporate markers, such as radiopaque markers, to indicate the presence of the device, for example prior to performing an MRI or other technique.
The sensor systems and methods disclosed herein may be used in combination with clothing. Non-limiting examples of clothing for use with the sensor systems and methods disclosed herein include shirts, pants, trousers, dresses, undergarments, outer-garments, gloves, shoes, hats, and other suitable garments. In certain cases, the sensor systems and methods disclosed herein may be welded into or laminated into/onto the particular garments. The sensor systems and methods may be printed directly onto the garment and/or embedded into the fabric. Breathable and printable materials such as microporous membranes may also be suitable.
Sensor systems and methods disclosed herein may be incorporated into cushioning or bed padding, such as within a hospital bed, to monitor patient characteristics, such as any characteristic disclosed herein. In certain cases, a disposable film containing such sensors could be placed over the hospital bedding and removed/replaced as needed.
In some implementations, the sensor systems and methods disclosed herein may incorporate energy harvesting, such that the sensor systems and methods are self-sustaining. For example, energy may be harvested from thermal energy sources, kinetic energy sources, chemical gradients, or any suitable energy source.
The sensor systems and methods disclosed herein may be utilized in rehabilitation devices and treatments, including sports medicine. For example, the sensor systems and methods disclosed herein may be used in braces, sleeves, wraps, supports, and other suitable items. Similarly, the sensor systems and methods disclosed herein may be incorporated into sporting equipment, such as helmets, sleeves, and/or pads. For example, such sensor systems and methods may be incorporated into a protective helmet to monitor characteristics such as acceleration, which may be useful in concussion diagnosis.
The sensor systems and methods disclosed herein may be used in coordination with surgical devices, for example, the NAVIO surgical system by Smith & Nephew Inc. In some implementations, the sensor systems and methods disclosed herein may be in communication with such surgical devices to guide placement of the surgical devices. In some implementations, the sensor systems and methods disclosed herein may monitor blood flow to or away from the potential surgical site or ensure that there is no blood flow to a surgical site. Further surgical data may be collected to aid in the prevention of scarring and monitor areas away from the impacted area.
To further aid in surgical techniques, the sensors disclosed herein may be incorporated into a surgical drape to provide information regarding tissue under the drape that may not be immediately visible to the naked eye. For example, a sensor embedded flexible drape may have sensors positioned advantageously to provide improved area-focused data collection. In certain implementations, the sensor systems and methods disclosed herein may be incorporated into the border or interior of a drape to create fencing to limit/control the surgical theater.
Sensor systems and methods disclosed herein may also be utilized for pre-surgical assessment. For example, such sensor systems and methods may be used to collect information about a potential surgical site, such as by monitoring skin and the underlying tissues for a possible incision site. For example, perfusion levels or other suitable characteristics may be monitored at the surface of the skin and deeper in the tissue to assess whether an individual patient may be at risk for surgical complications. Sensor systems and methods such as those disclosed herein may be used to evaluate the presence of microbial infection and provide an indication for the use of antimicrobials. Further, sensor systems and methods disclosed herein may collect further information in deeper tissue, such as identifying pressure ulcer damage and/or the fatty tissue levels.
The sensor systems and methods disclosed herein may be utilized in cardiovascular monitoring. For example, such sensor systems and methods may be incorporated into a flexible cardiovascular monitor that may be placed against the skin to monitor characteristics of the cardiovascular system and communicate such information to another device and/or a caregiver. For example, such a device may monitor pulse rate, oxygenation of the blood, and/or electrical activity of the heart. Similarly, the sensor systems and methods disclosed herein may be utilized for neurophysiological applications, such as monitoring electrical activity of neurons.
The sensor systems and methods disclosed herein may be incorporated into implantable devices, such as implantable orthopedic implants, including flexible implants. Such sensor systems and methods may be configured to collect information regarding the implant site and transmit this information to an external source. In some cases, an internal source may also provide power for such an implant.
The sensor systems and methods disclosed herein may also be utilized for monitoring biochemical activity on the surface of the skin or below the surface of the skin, such as lactose buildup in muscle or sweat production on the surface of the skin. In some cases, other characteristics may be monitored, such as glucose concentration, urine concentration, tissue pressure, skin temperature, skin surface conductivity, skin surface resistivity, skin hydration, skin maceration, and/or skin ripping.
Sensor systems and methods disclosed herein may be incorporated into Ear, Nose, and Throat (ENT) applications. For example, such sensor systems and methods may be utilized to monitor recovery from ENT-related surgery, such as wound monitoring within the sinus passage.
Sensor systems and methods disclosed herein may encompass sensor printing technology with encapsulation, such as encapsulation with a polymer film. Such a film may be constructed using any polymer described herein, such as polyurethane. Encapsulation may provide waterproofing of the electronics and protection from local tissue, local fluids, and other sources of potential damage.
In certain cases, the sensors disclosed herein may be incorporated into an organ protection layer. Such a sensor-embedded organ protection layer may both protect the organ of interest and confirm that the organ protection layer is in position and providing protection. Further, a sensor-embedded organ protection layer may be utilized to monitor the underlying organ, such as by monitoring blood flow, oxygenation, and other suitable markers of organ health. In some cases, a sensor-enabled organ protection layer may be used to monitor a transplanted organ, such as by monitoring the fat and muscle content of the organ. Further, sensor-enabled organ protection layers may be used to monitor an organ during and after transplant, such as during rehabilitation of the organ.
The sensor systems and methods disclosed herein may be incorporated into treatments for wounds (disclosed in greater detail below) or in a variety of other applications. Non-limiting examples of additional applications for the sensor systems and methods disclosed herein include: monitoring and treatment of intact skin, cardiovascular applications such as monitoring blood flow, orthopedic applications such as monitoring limb movement and bone repair, neurophysiological applications such as monitoring electrical impulses, and any other tissue, organ, system, or condition that may benefit from improved sensor-enabled monitoring.
Wound Therapy
Some systems and methods disclosed herein relate to wound therapy for a human or animal body. Therefore, any reference to a wound herein can refer to a wound on a human or animal body, and any reference to a body herein can refer to a human or animal body. The disclosed systems and methods may relate to preventing or minimizing damage to physiological tissue or living tissue, or to the treatment of damaged tissue (for example, a wound as described herein) wound with or without reduced pressure, including for example a source of negative pressure and wound dressing components and apparatuses. The apparatuses and components comprising the wound overlay and packing materials or internal layers, if any, are sometimes collectively referred to herein as dressings. In some cases, the wound dressing can be provided to be utilized without reduced pressure.
As used herein the expression “wound” may include an injury to living tissue may be caused by a cut, blow, or other impact, typically one in which the skin is cut or broken. A wound may be a chronic or acute injury. Acute wounds occur as a result of surgery or trauma. They move through the stages of healing within a predicted timeframe. Chronic wounds typically begin as acute wounds. The acute wound can become a chronic wound when it does not follow the healing stages resulting in a lengthened recovery. It is believed that the transition from acute to chronic wound can be due to a patient being immuno-compromised.
Chronic wounds may include for example: venous ulcers (such as those that occur in the legs), which account for the majority of chronic wounds and mostly affect the elderly, diabetic ulcers (for example, foot or ankle ulcers), peripheral arterial disease, pressure ulcers, or epidermolysis bullosa (EB).
Examples of other wounds include, but are not limited to, abdominal wounds or other large or incisional wounds, either as a result of surgery, trauma, sterniotomies, fasciotomies, or other conditions, dehisced wounds, acute wounds, chronic wounds, subacute and dehisced wounds, traumatic wounds, flaps and skin grafts, lacerations, abrasions, contusions, burns, diabetic ulcers, pressure ulcers, stoma, surgical wounds, trauma and venous ulcers or the like.
Wounds may also include a deep tissue injury. Deep tissue injury is a term proposed by the National Pressure Ulcer Advisory Panel (NPUAP) to describe a unique form of pressure ulcers. These ulcers have been described by clinicians for many years with terms such as purple pressure ulcers, ulcers that are likely to deteriorate and bruises on bony prominences.
Wound may also include tissue at risk of becoming a wound as discussed herein. For example, tissue at risk may include tissue over a bony protuberance (at risk of deep tissue injury/insult) or pre-surgical tissue (for example, knee tissue) that may has the potential to be cut (for example, for joint replacement/surgical alteration/reconstruction).
Some disclosure relates to methods of treating a wound with the technology disclosed herein in conjunction with one or more of the following: advanced footwear, turning a patient, offloading (such as, offloading diabetic foot ulcers), treatment of infection, systemix, antimicrobial, antibiotics, surgery, removal of tissue, affecting blood flow, physiotherapy, exercise, bathing, nutrition, hydration, nerve stimulation, ultrasound, electrostimulation, oxygen therapy, microwave therapy, active agents ozone, antibiotics, antimicrobials, or the like.
Alternatively or additionally, a wound may be treated using topical negative pressure (TNP) and/or traditional advanced wound care, which is not aided by the using of applied negative pressure (may also be referred to as non-negative pressure therapy).
Advanced wound care may include use of an absorbent dressing, an occlusive dressing, use of an antimicrobial and/or debriding agents in a wound dressing or adjunct, a pad (for example, a cushioning or compressive therapy, such as stockings or bandages), or the like.
In some cases, a wound dressing comprises one or more absorbent layer(s). The absorbent layer may be a foam or a superabsorbent.
In some cases, the disclosed technology may be used in conjunction with a non-negative pressure dressing. A non-negative pressure wound dressing suitable for providing protection at a wound site may comprise an absorbent layer for absorbing wound exudate and an obscuring element for at least partially obscuring a view of wound exudate absorbed by the absorbent layer in use. The obscuring element may be partially translucent. The obscuring element may be a masking layer.
In some cases, the non-negative pressure wound dressing as disclosed herein comprises the wound contact layer and the absorbent layer overlies the wound contact layer. The wound contact layer can carry an adhesive portion for forming a substantially fluid tight seal over the wound.
In some cases, the wound dressing as disclosed herein further comprises layer of a superabsorbent fiber, or a viscose fiber or a polyester fiber.
In some cases, the wound dressing as disclosed herein further comprises a backing layer. The backing layer may be a transparent or opaque film. Typically the backing layer comprises a polyurethane film (typically a transparent polyurethane film).
In some cases, the foam may be an open cell foam, or closed cell foam, typically an open cell foam. The foam can be hydrophilic.
The wound dressing may comprise a transmission layer and the layer can be foam. The transmission layer may be a polyurethane foam laminated to a polyurethane film.
The non-negative pressure wound dressing may be a compression bandage. Compression bandages are known for use in the treatment of oedema and other venous and lymphatic disorders, e.g., of the lower limbs. The compression bandage may comprise a bandage system comprising an inner skin facing layer and an elastic outer layer, the inner layer comprising a first ply of foam and a second ply of an absorbent nonwoven web, the inner layer and outer layer being sufficiently elongated so as to be capable of being wound about a patient's limb.
Negative Pressure Wound Therapy
In some cases, treatment of wounds can be performed using negative pressure wound therapy. It will be understood that systems and methods of the present disclosure can be generally applicable for use in TNP systems. Briefly, negative pressure wound therapy assists in the closure and healing of many forms of “hard to heal” wounds by reducing tissue oedema; encouraging blood flow and granular tissue formation; removing excess exudate and may reduce bacterial load (and thus infection risk). In addition, the therapy allows for less disturbance of a wound leading to more rapid healing. TNP therapy systems may also assist on the healing of surgically closed wounds by removing fluid and by helping to stabilize the tissue in the apposed position of closure. A further beneficial use of TNP therapy can be found in grafts and flaps where removal of excess fluid is important and close proximity of the graft to tissue is required in order to ensure tissue viability.
Negative pressure therapy can be used for the treatment of open or chronic wounds that are too large to spontaneously close or otherwise fail to heal by means of applying negative pressure to the site of the wound. Topical negative pressure (TNP) therapy or negative pressure wound therapy (NPWT) involves placing a cover that is impermeable or semi-permeable to fluids over the wound, using various means to seal the cover to the tissue of the patient surrounding the wound, and connecting a source of negative pressure (such as a vacuum pump) to the cover in a manner so that negative pressure is created and maintained under the cover. It is believed that such negative pressures promote wound healing by facilitating the formation of granulation tissue at the wound site and assisting the body's normal inflammatory process while simultaneously removing excess fluid, which may contain adverse cytokines or bacteria.
Some of the dressings used in NPWT can include many different types of materials and layers, for example, gauze, pads, foam pads or multi-layer wound dressings. One example of a multi-layer wound dressing is the PICO dressing, available from Smith & Nephew, includes a wound contact layer and a superabsorbent layer beneath a backing layer to provide a canister-less system for treating a wound with NPWT. The wound dressing may be sealed to a suction port providing connection to a length of tubing, which may be used to pump fluid out of the dressing or to transmit negative pressure from a pump to the wound dressing. Additionally, RENASYS-F, RENASYS-G, RENASYS-AB, and RENASYS-F/AB, available from Smith & Nephew, are additional examples of NPWT wound dressings and systems. Another example of a multi-layer wound dressing is the ALLEVYN Life dressing, available from Smith & Nephew, which includes a moist wound environment dressing that is used to treat the wound without the use of negative pressure.
As is used herein, reduced or negative pressure levels, such as −X mmHg, represent pressure levels relative to normal ambient atmospheric pressure, which can correspond to 760 mmHg (or 1 atm, 29.93 inHg, 101.325 kPa, 14.696 psi, etc.). Accordingly, a negative pressure value of −X mmHg reflects absolute pressure that is X mmHg below 760 mmHg or, in other words, an absolute pressure of (760−X) mmHg. In addition, negative pressure that is “less” or “smaller” than X mmHg corresponds to pressure that is closer to atmospheric pressure (such as, −40 mmHg is less than −60 mmHg). Negative pressure that is “more” or “greater” than −X mmHg corresponds to pressure that is further from atmospheric pressure (such as, −80 mmHg is more than −60 mmHg). In some cases, local ambient atmospheric pressure is used as a reference point, and such local atmospheric pressure may not necessarily be, for example, 760 mmHg.
In some wound closure devices described herein, increased wound contraction can lead to increased tissue expansion in the surrounding wound tissue. This effect may be increased by varying the force applied to the tissue, for example by varying the negative pressure applied to the wound over time, possibly in conjunction with increased tensile forces applied to the wound via some of the wound closure devices. In some cases, negative pressure may be varied over time for example using a sinusoidal wave, square wave, or in synchronization with one or more physiological indices (such as, heartbeat).
Any of the systems and methods disclosed herein can be used in combination with any of the features disclosed in one or more of WO2010/061225, US2016/114074, US2006/0142560, and U.S. Pat. No. 5,703,225, which describe absorbent materials; WO2013/007973, which describes non-negative pressure wound dressings; GB1618298.2 (filed on 28 Oct. 2016), GB1621057.7 (filed on 12 Dec. 2016), and GB1709987.0 (filed on 22 Jun. 2017), which describe multi-layered wound dressings; EP2498829 and EP1718257, which describe wound dressings; WO2006/110527, U.S. Pat. No. 6,759,566, and US2002/0099318, which describe compression bandages; U.S. Pat. Nos. 8,235,955 and 7,753,894, which describe wound closure devices; WO2013/175306, WO2016/174048, US2015/0190286, US2011/0282309, and US2016/0339158, which describe negative pressure wound therapy dressings, wound dressing components, wound treatment apparatuses, and methods. The disclosure of each of these applications is hereby incorporated by reference in its entirety.
Sensor Enabled Wound Monitoring or Therapy System
Wound dressing 22 can be disposable and control module 24 can be reusable. In some cases, wound dressing 22 can be reusable. In some cases, control module 24 can be a controller. In some cases, wound dressing 22 can be re-sterilized or otherwise sanitized or disinfected. In some cases, control module 24 can be disposable. In some cases, wound dressing 22 and control module 24 can be permanently connected and the combined wound dressing and control module be disposable, or reusable or re-sterilized or otherwise sanitized or disinfected. The control module 24 can be positioned on the wound dressing 22. The control module 24 can be spatially separated from the wound dressing 22, such as by a cable or another wired or wireless electrical connection. The control module 24 can include a power source (such as a battery), one or more processors, one or more data storage elements, and a communication device. In some cases, the control module 24 can include one or more sensors, such as a temperature sensor or light (or optical) sensors to gather information on patient or environmental conditions located away from the wound dressing 22. In some cases, the one or more sensors of the control module 24 can include an accelerometer, motion sensor or gyroscope.
The wound dressing 22 can include one or more indicators to communicate information to a user. The indicators can be visual, audible, haptic, or tactile. Communicated information can include measurement data, wound status, or the like.
The control module 24 can communicate data to a communication device 30 as requested, periodically, or the like. Communication can be performed over a wired or wireless interface, such as via near field communication (NFC), RFID, or the like when the communication device is placed in communication range. For example, communication range can be close proximity, such as within approximately 3 cm or less or more, to the control module 24. Communication device 30 can be placed in communication range by a clinician, such as during initialization and at the end of treatment. The control module 24 can respond with data to a command from the communication device 30 requesting data. Communication can be performed via transfer of hardware or data storage, such as one or more memory storage devices (for example, SD card). In some cases, communication can be performed non-electronically, such as visually, audibly, or tactilely, and one or more of the control module 24 or communication device 30 can provide an interface for such non-electronic communication of data.
The communication device 30 can be connected via a wired or wireless interface to a computing device 40, such as a personal computer, tablet, smartphone, or the like. For example, wired USB protocol can be used for communication of data between devices 30 and 40. As another example, communication of data can be performed via transfer of hardware or data storage, such as one or more memory storage devices (for example, SD card). In some cases, communication of data can be performed non-electronically, such as visually, audibly, or tactilely, and one or more of the communication device 30 or computing device 40 can provide an interface for such non-electronic communication of data.
Computing device 40 can further process data collected by the dressing 22. For example, the computing device 40 can aggregate data collected from the dressing 22 and perfusion determination device 70, which is configured to determine skin perfusion pressure and communicate data to the computing device 40 via a wired or wireless interface. For example, wired USB protocol can be used for communication between devices 70 and 40.
Computing device 40 can be configured to communicate via a wired or wireless interface with a remote computing device 50 that stores and processes medical data. In some cases, remote computing device 50 can be a cloud computing device, which includes one or more of remote storage, server, processing device, or any means of information storage. For example, remote computing device 50 can process and store medical data according with one or more applicable security and privacy standards, such as Health Insurance Portability & Accountability Act (HIPAA), European Union's Directive on Data Protection, or the like. Remote computing device 50 can make data provided by one or more of the computing device 40 or the mobile device 60 available for remote accessing and viewing, such as on a mobile device 60. In certain implementations, additional data can be added for storage on the remote computing device 50. For example, additional data can be added by the mobile device 60 via a dedicated app, web browser interface, or the like. The remote computing device 50 can process the data from one or more of the wound dressing 22, perfusion determination device 70, or the mobile device and assess or determine treatment plan, such as suggest or adjust one or more treatment therapies.
As described herein, mobile device 60 can take one or more images of a patient's wound. Such data can be transmitted via wired or wireless interface to the remote computing device 50. Although a smartphone is illustrated, mobile device 60 can be any suitable computing device that includes imaging functionality, such as a camera. Mobile device 60 can also collect additional data, such as data input by a healthcare provider in response to a questionnaire.
Sensor Enabled Substrates and Wound Dressings
A wound dressing that incorporates a number of electronic components, including one or more sensors, can be utilized in order to monitor characteristics of a wound. Collecting and analyzing data from a wound can provide useful insights towards determining whether a wound is on a healing trajectory, selecting proper therapy, determining whether the wound has healed, or the like.
In some implementations, a number of sensor technologies can be used in wound dressings or one or more components forming part of an overall wound dressing apparatus. For example, as illustrated in
The sensor integrated substrate can be placed in contact with a wound and can allow fluid to pass through the substrate while causing little to no damage to the tissue in the wound. The substrate can be flexible, elastic, extensible, or stretchable or substantially flexible, elastic, extensible, or stretchable in order to conform to or cover the wound. For example, the substrate can be made from a stretchable or substantially stretchable material, such as one or more of polyurethane, thermoplastic polyurethane (TPU), silicone, polycarbonate, polyethylene, polyimide, polyamide, polyester, polyethelene tetraphthalate (PET), polybutalene tetreaphthalate (PBT), polyethylene naphthalate (PEN), polyetherimide (PEI), along with various fluropolymers (FEP) and copolymers, or another suitable material.
Stretchable or substantially stretchable material can be stretched to 5% or less or more, 10% or less or more, 20% or less or more, or more than 20% of its starting dimensions, such as length or width. In some cases, the stretchable or substantially stretchable material can return to within 5% or less or more of the starting dimensions (such as length or width) after being stretched.
In some cases, the substrate can include one or more flexible circuit boards, which can be formed of flexible polymers, including polyamide, polyimide (PI), polyester, polyethylene naphthalate (PEN), polyetherimide (PEI), along with various fluropolymers (FEP) and copolymers, or the like. One or more sensors can be incorporated into a two-layer flexible circuit. In some scenarios, the one or more circuit boards can be a multi-layer flexible circuit board.
In some cases, the sensor integrated substrate can incorporate adhesive, such as a wound contact layer as described herein, that adheres to wet or dry tissue. In some cases, one or more sensors, which can be positioned one or more flexible circuits, can be incorporated into any layer of the wound dressing. For example, a wound contact layer can have cutouts or slits that allow for one or more sensors to protrude out of the lower surface of the wound contact layer and contact the wound directly. In some situations, one or more sensors can be incorporated into or encapsulated within other components of a wound dressing, such as an absorbent layer.
As shown in
The plurality of electronic components can include one or more impedance or conductivity sensors 110, which can be arranged in an outer 4×4 grid and an inner 4×4 grid as illustrated in
The plurality of electronic components can include one or more temperature sensors 130 configured to measure temperature of the wound or surrounding tissue. For example, nine temperature sensors arranged around the perimeter of the substrate 100B. One or more temperature sensors can include one or more thermocouples or thermistors. One or more temperature sensors can be calibrated and the data obtained from the one or more sensors can be processed to provide information about the wound environment. In some cases, an ambient sensor measuring ambient air temperature can also be used to assist in eliminating problems associated with environment temperature shifts.
The plurality of electronic components can include one or more optical sensors 150. One or more optical sensors 150 can be configured to measure wound appearance or image the wound. In some cases, a light source or illumination source that emits light and a light sensor or detector that detects light reflected by the wound are used as one or more optical sensors. The light source can be a light emitting diode (LED), such as one or more of white LED, red, green, blue (RGB) LED, ultraviolet (UV) LED, or the like. The light sensor can be one or more of an RGB sensor configured to detect color, infrared (IR) color sensor, UV sensor, or the like. In some cases, both the light source and detector would be pressed up against the skin, such that light would penetrate into the tissue and take on the spectral features of the tissue itself. In some scenarios, one or more optical sensor can include an imaging device, such as a charge-coupled device (CCD), CMOS image sensor, or the like.
In some cases, ultra bright LEDs, an RGB sensor, and polyester optical filters can be used as components of the one or more optical sensors to measure through tissue color differentiation. For example, because surface color can be measured from reflected light, a color can be measured from light which has passed through the tissue first for a given geometry. This can include color sensing from diffuse scattered light, from an LED in contact with the skin, or the like. In some cases, an LED can be used with a proximal RGB sensor to detect the light which has diffused through the tissue. The optical sensors can image with diffuse internal light or surface reflected light.
One or more of the plurality of electronic components can be controlled by a control module. The control module can receive and process one or more measurements obtained by the one or more sensors. An external control module, such as 24 illustrated in
In some cases, additional or alternative sensors can be positioned on the substrate, such as one or more pH sensors, pressure sensors, perfusion sensors, or the like.
In some cases, a substrate can be perforated as illustrated in
In some cases, the substrate can be coated to encapsulate or coat one or more of the substrate or components supported by the substrate. Coating can provide biocompatibility, shield or protect the electronics from coming into contact with fluids, provide padding for the electronic components to increase patient comfort, or the like. Such coating can be sometimes referred to as “conformal coat” or “soft coat.” Soft coat can be stretchable or substantially stretchable. Soft coat can be hydrophobic or substantially hydrophobic.
Soft coat can be formed from one or more suitable polymers, adhesives, such as 1072-M adhesive (for example, Dymax 1072-M), 1165-M adhesive (such as, Dymax 1165-M), parylene (such as, Parylene C), silicones, epoxies, urethanes, acrylated urethanes, acrylated urethane alternatives (such as, Henkel Loctite 3381), or other suitable biocompatible and substantially stretchable materials. Soft coat can be thin coating, for example, from about 80 microns or less up to several millimeters or more. Soft coat can have hardness lower than about A100, A80, A50 or lower. Soft coat can have elongation at break higher than about 100%, 200%, 300% or more. Soft coat can have viscosity of about 8,000-14,500 centipoise (cP). In some cases, coating can have viscosity no less than about 3,000 cP. In some cases, coating can have viscosity less than about 3,000 cP.
In some cases, while it may be desirable for a substrate to be stretchable or substantially stretchable to better conform to or cover the wound, at least some of the electronic components or connections may not be stretchable or flexible. In such instances, undesirable or excessive localized strain or stress may be exerted on the one or more electronic components, such as on the supporting area or mountings of an electronic component, when the substrate is positioned in or over the wound. For example, such stress can be due to patient movement, changes in the shape or size of the wound (such as, due to its healing), or the like. Such stress may cause movement, dislodgment, or malfunction of the one or more electronic components or connections (for example, creation of an open circuit from a pin or another connector becoming disconnected). Alternatively or additionally, it may be desirable to maintain the position of one or more electronic components, such as one or more sensors, in the same or substantially same location or region with respect to the wound (such as, in contact with the wound) so that measurements collected by the one or more electronic components accurately capture changes over time in the same or substantially same location or region of the wound. While the surface of the stretchable substrate may move when, for example, the patient moves, it may be desirable to maintain same or substantially same locations of one or more electronic components relative to the wound.
To address these problems, in some cases, non-stretchable or substantially non-stretchable coating (such coating can sometimes be referred to as “hard coat”) can be applied to one or more electronic components, one or more electrical connections, or the like. Hard coat can provide one or more of reinforcement or stress relief for one or more electronic components, one or more electrical connections, or the like. Hard coating can be formed from acrylated or modified urethane material. For example, hard coat can be one or more of Dymax 1901-M, Dymax 9001-E, Dymax 20351, Dymax 20558, Henkel Loctite 3211, or another suitable material. Hard coat can have viscosity from about 13,500 cP to 50,000 cP before being cured or from about 3,600 cP to about 6,600 cP before being cured. In some cases, hard coat can have viscosity of no more than about 50,000 cP. Hard coat can have hardness from about D40 to about D65 and/or linear shrinkage of about 1.5-2.5%.
Any of the hard or soft coats described herein can be applied by one or more of laminating, adhering, welding (for instance, ultrasonic welding), curing by one or more of light, UV, thermal (such as, heat), or the like. Any of the hard or soft coat described herein can be transparent or substantially transparent to facilitate transmission of light through the coating, such as for optical sensing. Any of the coatings described herein can retain bond strength when subjected to sterilization, such as EtO sterilization. Any of the coatings described herein can be modified to fluoresce, such as under UV light.
In some implementations, borders or edges of the substrate can be smoothed by cuts, have smooth contours, include fibers, or the like to improve patient comfort.
In some cases, the substrate can include one or more antennas for wireless communication. For example, one or more antennas can be printed as one or more connections or traces on the substrate. The one or more antennas can be used to communicate measurement data collected by the one or more sensors without using a controller, such as the control module 24. The one or more antennas can additionally be used to receive power wirelessly from a power source. In certain cases, the one or more antenna traces can be positioned on a substantially non-stretchable material (as described herein) such that the resonant frequencies of the one or more antennas remain fixed when the substrate is placed under stress when in use on a patient. Fixing the one or more resonant frequencies can be advantageous for certain communication protocols, such as RFID.
Any of the systems and methods disclosed herein can be used in combination with any of the features disclosed in one or more of G.B. Application No. 1905696.9, entitled “Sensor Integrated Dressings And Systems,” filed Apr. 24, 2019, which describes various dressings and components thereof; and G.B. Application No. 1905696.9, entitled “Sensor Integrated Dressings And Systems,” filed Jan. 20, 2019, which describes various dressings and components thereof. The disclosure of each of these applications is hereby incorporated by reference in its entirety.
Electrical Connections on Substrate
The electronic component 204 can be the same or similar to any electronic component described herein, such as a sensor, amplifier, capacitor, resistor, inductor, controller, processor, diode, connector, or the like. As illustrated, the electronic component 204 can include a plurality of electrical connectors 206. For example, the electronic component 204 can include one or more electrical connectors 206 for power, ground, inputs, outputs, data, etc. In some cases, the electrical connectors 206 include one or more of electrical pads, pins, or tabs. The electrical connectors 206 can be utilized to electrically connect the electronic component 204 to one or more other electronic components, or one or more electrical connections 210, such as traces or tracks printed on the substrate 202.
The substrate 202 can be the same or similar to any combination of one or more of the substrates described herein. For example, the substrate 202 can include any combination of one or more features or characteristics of the sensor integrated substrate 100B of
The electrical connections 210 can be printed on or integrated with the substrate 202. For example, the electrical connections 210 can be screen printed on to the substrate. In some cases, the electrical connections 210 allow various electrical signals, connections, and/or power to be routed on, off, around, or through the substrate 202. For example, a combination of one or more of the electrical connections 210 can electrically connect various points of the substrate and/or electrically connect various electronic components positioned on or off the substrate 202.
In some cases, one or more of the electrical connections 210 include traces or tracks printed on the substrate 202. For example, the electrical connections 210 can include a combination of one or more of copper, conductive inks (for example, inks that include one or more of silver, graphite, carbon, graphene, graphene oxide, carbon nanotube, nano-silver), nanotechnology-based conductive inks, organic conductive inks, etc., conductive glues, conductive tapes, fibers, soldering pastes, or the like. As described herein, in some cases, the electrical connections 210 can include one or more types of conductive inks, conductive glues, conductive tapes, fibers, soldering pastes, or the like. For example, a first type of conductive ink may be utilized in a first location on the substrate 202, and a second type of conductive ink may be utilized in a second location on the substrate 202. In some such examples, the use or placement of different types of conductive inks can be based at least in part on one or more characteristics or properties of the conductive inks. For instance, a more conductive ink may be utilized in regions or areas for soldering, and a different ink (for example, one whose resistance doesn't drastically change when the ink is stretched) can be utilized in one or more other areas on the substrate 202. In this way, the wound monitoring and/or therapy apparatus 200 can make use of the advantages of multiple conductive inks. As another example, a more conductive ink, or an ink having a smaller impedance, may be utilized for communication signals, such as antenna traces.
In some cases, one or more of portions of soldering paste 208 can be printed on the electrical connections 210 or the substrate 202. For example, the soldering paste 208 can be printed on the electrical connections 210 and/or the substrate 202, and then it can be heated (along with the rest of the board) to melt the soldering paste 208 and form a mechanical bond as well as an electrical connection. In some cases, the soldering paste 208 is replaced with a different material, such as a conductive glue or conductive tape. In some cases, the wound monitoring and/or therapy apparatus 200 does not include soldering paste 208. For example, in some cases, the electronic component 204 can be coupled directly to the electrical connections 210 rather than being indirectly coupled to the electrical connections 210 via the soldering paste 208.
Multiple Conductive Inks
Different types of conductive inks can have different properties and/or characteristics. For example, the impedance, impedance variance (for example, due to stretching of the ink), thermal conductivity, electrical conductivity, etc. can vary based on the type of ink used. It follows that some inks may be better for some purposes, while other inks may be better for other purposes. Accordingly, in some cases, a wound monitoring and/or therapy apparatus 200 can utilize electrical connections 210 that include multiple types of conductive inks. Furthermore, in some cases, a particular type of conductive ink can be arranged on the substrate 202 based on its advantageous properties. In this way, in some implementations, two or more different types of conductive inks can be arranged on (or coupled to) the substrate 202, for example, to exploit the beneficial characteristics of the different types of conductive inks. However, it will be understood that, in some cases, one or more types of conductive ink can be arranged on the substrate 202 without regard to, or in opposition to, one or more of its characteristics (e.g., thermal conductivity, electrical conductivity, impedance, flexibility, etc.)
Similar to
In some cases, the first ink 212 and the second ink 214 have one or more different characteristics, such as different thermal conductivity, electrical conductivity, impedance, flexibility, or the like. For example, in some cases, the first ink 212 and the second ink 214 have different electrical conductivities. For instance, an ink with a relatively high conductivity may allow for thinner traces and/or may allow for improved electrical connections. As such, in some cases, the ink 212 or 214 having the higher conductivity can be utilized in areas for various connections, such as contact areas of the electronic components 204 (for example, the areas to which the electronic components 204 connect to the substrate) and/or ink footprints around the electronic components 204. Furthermore, in some cases, the ink 212 or 214 having the higher conductivity can be utilized for mounting electronic components 204 to the substrate 202. Furthermore, in some cases, the ink 212 or 214 having the higher conductivity can be utilized for communication signals, such as antenna traces. As shown in the example of
In some cases, the first ink 212 and the second ink 214 have different thermal conductivities. For example, in some cases, the first ink 212 has a higher thermal conductivity than does the second ink 214, while in other cases, the second ink 214 has a higher thermal conductivity than the does the first ink 214.
In some cases, the first ink 212 and the second ink 214 attach, adhere, or bond differently to soldering paste 208. For example, in some cases, the first ink 212 makes a good electrical connections with the soldering paste 208, and the second ink 212 does not make as good of an electrical connection with the soldering paste 208 as does the first ink 212. In some cases, the soldering paste 208 at least partially overlaps with one or more of the first ink 212 or the second ink 214. For example, the soldering paste 208 can be one layer of multiple layers on the substrate 202.
In some cases, the first ink 212 and the second ink 214 have different impedance variabilities. For example, when stretched, the impedance on an ink may change. For instance, in some cases, a conductive ink 212 or 214 may have a relatively low impedance variability such that, when stretched, the impedance of the ink remains relatively constant. As another example, in some cases, a conductive ink 212 or 214 may have a relatively high impedance variability such that, when stretched, the impedance of the ink fluctuates. In some cases, the first ink 212 has a higher impedance variability than does the second ink 214, while in other cases, the second ink 214 has a higher impedance variability than the does the first ink 214. As described herein, the substrate 202 is substantially flexible and is prone to flexing. As such, in some cases, to minimize or limit impedance changes due to stretching, it can be advantageous to utilize the ink with a lower impedance variability in at least some of the areas on the substrate 202 that are prone to flex or stretch.
As shown, in the example of
It will be appreciated that the arrangement of the first ink 212 and the second ink 214 can change, as desired, or can change, for example based on the properties and/or characteristics of the first and second inks 212, 214. For example, in some cases, the first ink 212 and the second ink 214 are at least partially mixed or are at least partially overlapping. As another example, the first and second inks 212, 214 can be shorter, longer, thinner, or thicker than illustrated. Furthermore, in some cases, at least some portions of the first ink 212 and the second ink 214 are directly connected to each other. In some cases, at least some portions of the first ink 212 and the second ink 214 are indirectly connected to each other. For example, at least some portions of the first ink 212 and the second ink 214 can be connected to each other via conductive glue, conductive tape, or the like.
Furthermore, in some cases, the electrical connections 210 can include a fewer or greater number of types of conductive ink. For instance, a particular electrical connection 212 can include a first conductive ink, while a different electrical connection 212 can include a second conductive ink and a third conductive ink.
Similar to
In some cases, the first ink 212 and the second ink 214 can at least partially overlap. For example, the first ink 212 and the second ink 214 can at least partially overlap at joining points or the points at which the first ink 212 and the second ink 214 converge. In some cases, overlapping the inks 212 and 214 at the convergence point can improve an electrical connection between the first ink 212 and the second ink 214, for example, as compared to connecting them in a side-by-side manner. Although illustrated as the first ink 212 extending over so as to cover partly at least a portion of the second ink 214, in some cases, to overlap the inks, at least one portion of the second ink 214 extends over so as to cover partly at least a portion of the first ink 212. Furthermore, it will be understood that the first ink 212 and the second ink 214 can have various configurations. For example, in some cases, at least some portions of the first ink 212 and the second ink 214 are side-by-side. As another example, in some cases, at least some portions of the first ink 212 and the second ink 214 are mixed together or are layered on each other.
In some cases, the first ink 212 and the second ink 214 can be connected together using a conductive medium 220. For example, the conductive medium 220 can include soldering paste, conductive glue, conductive tape, or the like. In some cases, the conductive medium 220 improves the connectivity between the first ink 212 and the second ink 214. However, it will be understood that, in some cases, the first ink 212 and the second ink 214 are directly connected, without a conductive medium 220 in between. In some cases, any of the wound monitoring and/or therapy apparatuses 200, 250, 260 or 270 can include an isolation mask or layer. For example, an isolation mask can be printed between two or more electrical connections 210 in order keep the electrical connections 210 isolation. In some cases, the isolation mask allows stacking or layering of electrical connections 210 or electronic component 204, such that the isolation mask electrically separates the stacked electrical connections 210 or electronic components 204.
Fibers
Similar to
As illustrated, one or more of the electrical connections 210 can include the electrical textiles 222. For instance, in cases in which the electrical connections 210 include conductive ink, one or more electrical textiles 222 can be in the conductive ink. In some cases, electrical textiles 222 can be utilized in conductive inks that are prone to impedance variability due to stretching, such as in some examples of the first ink 212. In some cases, utilizing electrical textiles 222 in this way allow the electrical connections 210 to be thinner, or include thinner traces.
In some cases, the electrical textiles 222 can include a fiber, such as a single type of fiber or a blend of two or more types of fibers. For example, the electrical textiles 222 can include, but are not limited to, cotton, wool, jute, silk, polyester, polypropylene, nylon, Kevlar, or synthetic fibers.
It will be appreciated that the electrical textiles 222 can be embedded in different patterns and densities, and that the electrical textiles 222 can have one or more different lengths. For example, in some cases, the electrical textiles 222 include one or more continuous strands of fiber 222 that extend throughout the length of an electrical connection 210. As another example, in some cases, the electrical textiles 222 include a plurality of relatively short electrical textiles 222. For instance, during stretching of the electrical connection 210, one or more electrical textiles 222 can move within the electrical connection 210 to move toward or away from other electrical textiles 222. In some cases, at least some of the electrical textiles 222 remain in contact with each other. For example, the electrical textiles 222 can be tightly condensed into the electrical connection 210. In some cases, at least some of the electrical textiles 222 do not touch any other electrical textiles 222. For example, the electrical textiles 222 can be spaced throughout the electrical connection 210.
As illustrated, in some cases, the electrical connection 210 is directly coupled to the electrical connectors 206. However, it will be understood that the electrical connection 210 can be indirectly coupled to the electrical connectors 206, for example via soldering paste or conductive glue.
Quality Control
In some cases, the electrical connections 210 can include one or more components or markers, which can allow for quality control of one or more various connections. For example, in some cases, the electrical connections 210 include a fluorescent component. In some cases, a fluorescent component can be used for quality control, for example, checking the connections under UV light. As another example, in some cases, the electrical connections 210 can include radio transparent material that can be visible, or seen under x-ray or MM. In some cases, these components or markers can be biodegradable. In some cases, these markers could be used for quality control and/or can allow a user to check whether electronics are present in the wound and/or wound dressing, or where the electronics are present.
Conductive Inks
As described herein, in some cases, the substrate 202 is flexible, elastic, extensible, or stretchable or substantially flexible, elastic, extensible, or stretchable in order to conform to or cover the wound. Thus, in some cases, it can be advantageous to utilize electrical connections 210 that can be stretched. Furthermore, it can be advantageous to utilize electrical connections 210 whose properties (for example, resistance) are not substantially affected when the electrical connection 210 is stretched. In some cases, the second ink 214 may have less resistance variability due to stretching than does the first ink 212. In some such examples, the second ink 214 may be selected to form portions of the electrical connections 210 that reside on areas of the substrate 202 that are likely to be flexed. For example, as illustrated in
In some cases, areas of the substrate 202 that include electronic components 204 can be more rigid, or less flexible, than other areas of the substrate 202. In some such cases, the electrical connection 210 proximate (for example, under and/or around) the electronic component 204 can include the first ink 212. For example, as illustrated in
Other Variations
In some cases, one or more electronic components can be positioned on the side of a substrate opposite the side that faces the wound. Systems and methods described herein are equally applicable to such substrates. Although certain embodiments described herein relate to wound dressings, systems and methods disclosed herein are not limited to wound dressings or medical applications. Systems and methods disclosed herein are generally applicable to electronic devices in general, such as electronic devices that can be worn by or applied to a user.
Any value of a threshold, limit, duration, etc. provided herein is not intended to be absolute and, thereby, can be approximate. In addition, any threshold, limit, duration, etc. provided herein can be fixed or varied either automatically or by a user. Furthermore, as is used herein relative terminology such as exceeds, greater than, less than, etc. in relation to a reference value is intended to also encompass being equal to the reference value. For example, exceeding a reference value that is positive can encompass being equal to or greater than the reference value. In addition, as is used herein relative terminology such as exceeds, greater than, less than, etc. in relation to a reference value is intended to also encompass an inverse of the disclosed relationship, such as below, less than, greater than, etc. in relations to the reference value. Moreover, although blocks of the various processes may be described in terms of determining whether a value meets or does not meet a particular threshold, the blocks can be similarly understood, for example, in terms of a value (i) being below or above a threshold or (ii) satisfying or not satisfying a threshold.
Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of protection. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. For example, the actual steps or order of steps taken in the disclosed processes may differ from those shown in the figure. Depending on the embodiment, certain of the steps described above may be removed, others may be added. For instance, the various components illustrated in the figures may be implemented as software or firmware on a processor, controller, ASIC, FPGA, or dedicated hardware. Hardware components, such as controllers, processors, ASICs, FPGAs, and the like, can include logic circuitry. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.
Although the present disclosure includes certain embodiments, examples and applications, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments or uses and obvious modifications and equivalents thereof, including embodiments which do not provide all of the features and advantages set forth herein. Accordingly, the scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments herein, and may be defined by claims as presented herein or as presented in the future.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, or steps. Thus, such conditional language is not generally intended to imply that features, elements, or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.
The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.
Number | Date | Country | Kind |
---|---|---|---|
1914443 | Oct 2019 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/077464 | 10/1/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/069286 | 4/15/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3896802 | Williams | Jul 1975 | A |
4334530 | Hassell | Jun 1982 | A |
5036859 | Brown | Aug 1991 | A |
5090410 | Saper et al. | Feb 1992 | A |
5253654 | Thomas et al. | Oct 1993 | A |
5635201 | Fabo | Jun 1997 | A |
5642096 | Leyerer et al. | Jun 1997 | A |
5678448 | Fullen et al. | Oct 1997 | A |
5690610 | Ito et al. | Nov 1997 | A |
5836990 | Li | Nov 1998 | A |
6095992 | Augustine | Aug 2000 | A |
6178342 | Borgos et al. | Jan 2001 | B1 |
6381482 | Jayaraman et al. | Apr 2002 | B1 |
6517484 | Wilk et al. | Feb 2003 | B1 |
6551252 | Sackner et al. | Apr 2003 | B2 |
6731987 | McAdams et al. | May 2004 | B1 |
7077832 | Fleischmann | Jul 2006 | B2 |
7088591 | Kishimoto et al. | Aug 2006 | B2 |
7201063 | Taylor | Apr 2007 | B2 |
7206623 | Blank et al. | Apr 2007 | B2 |
7289205 | Yaroslavsky et al. | Oct 2007 | B2 |
7316652 | Dalgaard et al. | Jan 2008 | B2 |
7429255 | Thompson | Sep 2008 | B2 |
7520875 | Bernabei | Apr 2009 | B2 |
7521292 | Rogers et al. | Apr 2009 | B2 |
7625117 | Haslett et al. | Dec 2009 | B2 |
7687678 | Jacobs | Mar 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
7877866 | Greenberg et al. | Feb 2011 | B1 |
7884258 | Boehringer et al. | Feb 2011 | B2 |
7904133 | Gehman et al. | Mar 2011 | B2 |
7922676 | Daskal et al. | Apr 2011 | B2 |
7942869 | Houbolt et al. | May 2011 | B2 |
7945302 | McAdams | May 2011 | B2 |
8019401 | Smith et al. | Sep 2011 | B1 |
8032210 | Finneran et al. | Oct 2011 | B2 |
8060174 | Simpson et al. | Nov 2011 | B2 |
8079247 | Russell et al. | Dec 2011 | B2 |
8111165 | Ortega et al. | Feb 2012 | B2 |
8116841 | Bly et al. | Feb 2012 | B2 |
8182425 | Stamatas et al. | May 2012 | B2 |
8238996 | Burnes et al. | Aug 2012 | B2 |
8241231 | Bausewein et al. | Aug 2012 | B2 |
8332053 | Patterson et al. | Dec 2012 | B1 |
8333874 | Currie | Dec 2012 | B2 |
8480641 | Jacobs | Jul 2013 | B2 |
8525340 | Eckhardt et al. | Sep 2013 | B2 |
8579872 | Coulthard et al. | Nov 2013 | B2 |
8644911 | Panasyuk et al. | Feb 2014 | B1 |
8682442 | McAdams | Mar 2014 | B2 |
8783948 | Panda et al. | Jul 2014 | B2 |
8788009 | Greene et al. | Jul 2014 | B2 |
8800386 | Taylor | Aug 2014 | B2 |
8818478 | Scheffler et al. | Aug 2014 | B2 |
8848187 | Uematsu et al. | Sep 2014 | B2 |
8894590 | Lamoise et al. | Nov 2014 | B2 |
8925392 | Esposito et al. | Jan 2015 | B2 |
8934957 | Dias et al. | Jan 2015 | B2 |
8934965 | Rogers et al. | Jan 2015 | B2 |
8943897 | Beauvais et al. | Feb 2015 | B2 |
8948839 | Longinotti-Buitoni et al. | Feb 2015 | B1 |
8997588 | Taylor | Apr 2015 | B2 |
9000251 | Murphy et al. | Apr 2015 | B2 |
9042075 | Borini et al. | May 2015 | B2 |
9192531 | Wu | Nov 2015 | B2 |
9204806 | Stivoric et al. | Dec 2015 | B2 |
9220455 | Sarrafzadeh et al. | Dec 2015 | B2 |
9282897 | Ross, Jr. et al. | Mar 2016 | B2 |
9314175 | Jacofsky et al. | Apr 2016 | B2 |
9320473 | Shuler | Apr 2016 | B2 |
9372123 | Li et al. | Jun 2016 | B2 |
9378450 | Mei et al. | Jun 2016 | B1 |
9380698 | Li et al. | Jun 2016 | B1 |
9386947 | Johnson | Jul 2016 | B2 |
9393354 | Freedman et al. | Jul 2016 | B2 |
9402988 | Buchanan et al. | Aug 2016 | B2 |
9408573 | Welch et al. | Aug 2016 | B2 |
9427179 | Mestrovic et al. | Aug 2016 | B2 |
9439599 | Thompson et al. | Sep 2016 | B2 |
9483726 | Mei et al. | Nov 2016 | B2 |
9494474 | Servati et al. | Nov 2016 | B2 |
9511215 | Skiba | Dec 2016 | B2 |
9516758 | Arora et al. | Dec 2016 | B2 |
9526439 | Connelly et al. | Dec 2016 | B2 |
9554484 | Rogers et al. | Jan 2017 | B2 |
9572507 | Moore et al. | Feb 2017 | B2 |
9582072 | Connor | Feb 2017 | B2 |
9585620 | Paquet et al. | Mar 2017 | B2 |
9587991 | Padiy | Mar 2017 | B2 |
9592007 | Nuovo et al. | Mar 2017 | B2 |
9603560 | Monty et al. | Mar 2017 | B2 |
9610388 | Aceto et al. | Apr 2017 | B2 |
9613911 | Rogers et al. | Apr 2017 | B2 |
9629584 | Macia Barber et al. | Apr 2017 | B2 |
9675238 | Iida et al. | Jun 2017 | B2 |
9687195 | Sims et al. | Jun 2017 | B2 |
9717565 | Blair | Aug 2017 | B2 |
9844145 | Hsu | Dec 2017 | B2 |
9907103 | Chen et al. | Feb 2018 | B2 |
9999711 | Weston et al. | Jun 2018 | B2 |
10004643 | Luckemeyer et al. | Jun 2018 | B2 |
10046096 | Askem et al. | Aug 2018 | B2 |
10080524 | Xi | Sep 2018 | B1 |
10086117 | Locke et al. | Oct 2018 | B2 |
10117705 | Chernov et al. | Nov 2018 | B2 |
10152789 | Carnes et al. | Dec 2018 | B2 |
10166387 | Bergelin et al. | Jan 2019 | B2 |
10182740 | Tonar et al. | Jan 2019 | B2 |
10201644 | Haggstrom et al. | Feb 2019 | B2 |
10206604 | Bergelin et al. | Feb 2019 | B2 |
10209213 | Kang et al. | Feb 2019 | B2 |
10285620 | Jung et al. | May 2019 | B2 |
10288590 | Hammond et al. | May 2019 | B2 |
10321862 | Dalene et al. | Jun 2019 | B2 |
10463773 | Haggstrom et al. | Nov 2019 | B2 |
10687984 | Rovaniemi | Jun 2020 | B2 |
10702153 | Shamim et al. | Jul 2020 | B2 |
10716490 | Connolly | Jul 2020 | B2 |
10857038 | Zamierowski et al. | Dec 2020 | B2 |
11026847 | Piotrowski et al. | Jun 2021 | B2 |
20020016536 | Benni | Feb 2002 | A1 |
20020135752 | Sokolov et al. | Sep 2002 | A1 |
20030033032 | Lind et al. | Feb 2003 | A1 |
20030208148 | Sullivan | Nov 2003 | A1 |
20030210810 | Gee, Jr. et al. | Nov 2003 | A1 |
20030216630 | Jersey-Willuhn et al. | Nov 2003 | A1 |
20040176675 | Rice | Sep 2004 | A1 |
20040230132 | Shehada | Nov 2004 | A1 |
20050088832 | Su et al. | Apr 2005 | A1 |
20050240107 | Alfano et al. | Oct 2005 | A1 |
20050280531 | Fadem et al. | Dec 2005 | A1 |
20060058690 | Bartnik et al. | Mar 2006 | A1 |
20060181791 | Van Beek et al. | Aug 2006 | A1 |
20060234383 | Gough | Oct 2006 | A1 |
20060241495 | Kurtz | Oct 2006 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070173892 | Fleischer et al. | Jul 2007 | A1 |
20070191754 | Aali | Aug 2007 | A1 |
20070260421 | Berner, Jr. et al. | Nov 2007 | A1 |
20070270774 | Bergman | Nov 2007 | A1 |
20070293748 | Engvall et al. | Dec 2007 | A1 |
20080081973 | Hoarau | Apr 2008 | A1 |
20080167535 | Stivoric et al. | Jul 2008 | A1 |
20080258717 | Igney et al. | Oct 2008 | A1 |
20080287747 | Mestrovic et al. | Nov 2008 | A1 |
20080319282 | Tran | Dec 2008 | A1 |
20080319283 | Cotton et al. | Dec 2008 | A1 |
20090149800 | Durand | Jun 2009 | A1 |
20090177051 | Arons et al. | Jul 2009 | A1 |
20090177110 | Lyden et al. | Jul 2009 | A1 |
20090209830 | Nagle et al. | Aug 2009 | A1 |
20090234206 | Gaspard et al. | Sep 2009 | A1 |
20090245601 | Cohen et al. | Oct 2009 | A1 |
20100022990 | Karpowicz et al. | Jan 2010 | A1 |
20100025831 | Yamazaki et al. | Feb 2010 | A1 |
20100166252 | Ahmed et al. | Jul 2010 | A1 |
20100168727 | Hancock et al. | Jul 2010 | A1 |
20100268111 | Drinan et al. | Oct 2010 | A1 |
20100305473 | Yuzhakov | Dec 2010 | A1 |
20110004088 | Grossman | Jan 2011 | A1 |
20110015591 | Hanson et al. | Jan 2011 | A1 |
20110054283 | Shuler | Mar 2011 | A1 |
20110130697 | Nagle et al. | Jun 2011 | A1 |
20110140703 | Chiao et al. | Jun 2011 | A1 |
20110190639 | Peltie et al. | Aug 2011 | A1 |
20110218757 | Callsen et al. | Sep 2011 | A1 |
20110242532 | McKenna | Oct 2011 | A1 |
20110245682 | Robinson et al. | Oct 2011 | A1 |
20110301441 | Bandic et al. | Dec 2011 | A1 |
20120029306 | Paquet et al. | Feb 2012 | A1 |
20120029307 | Paquet et al. | Feb 2012 | A1 |
20120029410 | Koenig et al. | Feb 2012 | A1 |
20120165717 | Al Khaburi | Jun 2012 | A1 |
20120190989 | Kaiser et al. | Jul 2012 | A1 |
20120265120 | Beisang, III et al. | Oct 2012 | A1 |
20120271265 | Langdon | Oct 2012 | A1 |
20120277559 | Kohl-Bareis et al. | Nov 2012 | A1 |
20120316538 | Heiser et al. | Dec 2012 | A1 |
20120330252 | Stokes et al. | Dec 2012 | A1 |
20130041235 | Rogers et al. | Feb 2013 | A1 |
20130064772 | Swiss et al. | Mar 2013 | A1 |
20130121544 | Sarrafzadeh et al. | May 2013 | A1 |
20130123722 | Pratt et al. | May 2013 | A1 |
20130151223 | Zamierowski et al. | Jun 2013 | A1 |
20130200268 | Rafferty et al. | Aug 2013 | A1 |
20130211208 | Varadan et al. | Aug 2013 | A1 |
20130261409 | Pathak et al. | Oct 2013 | A1 |
20130271278 | Duesterhoft et al. | Oct 2013 | A1 |
20130274629 | Duesterhoft et al. | Oct 2013 | A1 |
20130317367 | Shuler | Nov 2013 | A1 |
20140012108 | McPeak | Jan 2014 | A1 |
20140018637 | Bennett et al. | Jan 2014 | A1 |
20140024905 | Sarrafzadeh et al. | Jan 2014 | A1 |
20140031663 | Gallego et al. | Jan 2014 | A1 |
20140072190 | Wu et al. | Mar 2014 | A1 |
20140075658 | McGuin | Mar 2014 | A1 |
20140107495 | Marinelli et al. | Apr 2014 | A1 |
20140107498 | Bower et al. | Apr 2014 | A1 |
20140147611 | Ackerman, Jr. | May 2014 | A1 |
20140203797 | Stivoric et al. | Jul 2014 | A1 |
20140206947 | Isserow et al. | Jul 2014 | A1 |
20140232516 | Stivoric et al. | Aug 2014 | A1 |
20140235166 | Molettiere et al. | Aug 2014 | A1 |
20140243709 | Gibson et al. | Aug 2014 | A1 |
20140296749 | Reid, Jr. et al. | Oct 2014 | A1 |
20140298927 | Allin et al. | Oct 2014 | A1 |
20140298928 | Duesterhoft et al. | Oct 2014 | A1 |
20140303463 | Robinson et al. | Oct 2014 | A1 |
20140324120 | Bogie et al. | Oct 2014 | A1 |
20140340857 | Hsu et al. | Nov 2014 | A1 |
20140343478 | Brennan et al. | Nov 2014 | A1 |
20140350882 | Everett et al. | Nov 2014 | A1 |
20150018792 | Marsiquet et al. | Jan 2015 | A1 |
20150025343 | Gareau et al. | Jan 2015 | A1 |
20150138330 | Krishnamoorthi | May 2015 | A1 |
20150141767 | Rogers et al. | May 2015 | A1 |
20150148760 | Dodd et al. | May 2015 | A1 |
20150150479 | Yoshino et al. | Jun 2015 | A1 |
20150182166 | Evans et al. | Jul 2015 | A1 |
20150223716 | Korkala et al. | Aug 2015 | A1 |
20150257644 | Cao | Sep 2015 | A1 |
20150265191 | Harding et al. | Sep 2015 | A1 |
20150292968 | Vogt et al. | Oct 2015 | A1 |
20150313476 | Pisani et al. | Nov 2015 | A1 |
20150313533 | Rapp et al. | Nov 2015 | A1 |
20150327777 | Kostic et al. | Nov 2015 | A1 |
20150335254 | Fastert et al. | Nov 2015 | A1 |
20150335287 | Neuman et al. | Nov 2015 | A1 |
20150335288 | Toth et al. | Nov 2015 | A1 |
20150351970 | Dagger et al. | Dec 2015 | A1 |
20150359485 | Berg et al. | Dec 2015 | A1 |
20150374309 | Farkas et al. | Dec 2015 | A1 |
20160015962 | Shokoueinejad Maragheh et al. | Jan 2016 | A1 |
20160022223 | Grundfest et al. | Jan 2016 | A1 |
20160029900 | LaPlante et al. | Feb 2016 | A1 |
20160030132 | Cheung et al. | Feb 2016 | A1 |
20160038045 | Shapiro | Feb 2016 | A1 |
20160038083 | Ding et al. | Feb 2016 | A1 |
20160051147 | Cohen et al. | Feb 2016 | A1 |
20160058380 | Lee et al. | Mar 2016 | A1 |
20160066854 | Mei et al. | Mar 2016 | A1 |
20160069743 | McQuilkin et al. | Mar 2016 | A1 |
20160074234 | Abichandani et al. | Mar 2016 | A1 |
20160081601 | Ballam et al. | Mar 2016 | A1 |
20160100790 | Cantu et al. | Apr 2016 | A1 |
20160100987 | Hartwell et al. | Apr 2016 | A1 |
20160129469 | Kulinsky et al. | May 2016 | A1 |
20160143534 | Hyde et al. | May 2016 | A1 |
20160157779 | Baxi et al. | Jun 2016 | A1 |
20160213269 | Lam et al. | Jul 2016 | A1 |
20160228049 | Nackaerts et al. | Aug 2016 | A1 |
20160232807 | Ghaffari et al. | Aug 2016 | A1 |
20160242331 | Park et al. | Aug 2016 | A1 |
20160249810 | Darty et al. | Sep 2016 | A1 |
20160262672 | Hammond et al. | Sep 2016 | A1 |
20160262687 | Vaidyanathan et al. | Sep 2016 | A1 |
20160270700 | Baxi et al. | Sep 2016 | A1 |
20160287177 | Huppert et al. | Oct 2016 | A1 |
20160302729 | Starr et al. | Oct 2016 | A1 |
20160310023 | Chachisvilis et al. | Oct 2016 | A1 |
20160317057 | Li et al. | Nov 2016 | A1 |
20160331263 | Cailler et al. | Nov 2016 | A1 |
20160331322 | Son et al. | Nov 2016 | A1 |
20160338591 | Lachenbruch et al. | Nov 2016 | A1 |
20160354001 | Buckley et al. | Dec 2016 | A1 |
20160367189 | Aimone et al. | Dec 2016 | A1 |
20160367192 | Iyengar et al. | Dec 2016 | A1 |
20160367406 | Barnett | Dec 2016 | A1 |
20170000407 | Saxby et al. | Jan 2017 | A1 |
20170007853 | Alford et al. | Jan 2017 | A1 |
20170027498 | Larson et al. | Feb 2017 | A1 |
20170079740 | Hufnagel et al. | Mar 2017 | A1 |
20170086519 | Vigano'et al. | Mar 2017 | A1 |
20170086709 | Khine et al. | Mar 2017 | A1 |
20170095208 | Oberleitner et al. | Apr 2017 | A1 |
20170146474 | Bedell et al. | May 2017 | A1 |
20170156594 | Stivoric et al. | Jun 2017 | A1 |
20170156621 | Bettinger et al. | Jun 2017 | A1 |
20170156658 | Maharbiz et al. | Jun 2017 | A1 |
20170164865 | Rafferty et al. | Jun 2017 | A1 |
20170164876 | Hyde et al. | Jun 2017 | A1 |
20170172439 | Zhu et al. | Jun 2017 | A1 |
20170202711 | Cernasov et al. | Jul 2017 | A1 |
20170224271 | Lachenbruch et al. | Aug 2017 | A1 |
20170231015 | Jang et al. | Aug 2017 | A1 |
20170258972 | Weston | Sep 2017 | A1 |
20170319075 | Homan et al. | Nov 2017 | A1 |
20170326004 | Long et al. | Nov 2017 | A1 |
20170367644 | Sharman et al. | Dec 2017 | A1 |
20180003579 | Esposito et al. | Jan 2018 | A1 |
20180008177 | Shimuta et al. | Jan 2018 | A1 |
20180049923 | Chen | Feb 2018 | A1 |
20180055697 | Mihali et al. | Mar 2018 | A1 |
20180056087 | Ribeiro et al. | Mar 2018 | A1 |
20180070880 | Trembly et al. | Mar 2018 | A1 |
20180074547 | Smadi et al. | Mar 2018 | A1 |
20180116877 | Ineichen | May 2018 | A1 |
20180132287 | Cheng et al. | May 2018 | A1 |
20180192514 | Seo | Jul 2018 | A1 |
20180200414 | Askem et al. | Jul 2018 | A1 |
20180206758 | Feldkamp et al. | Jul 2018 | A1 |
20180235484 | Mozdzierz | Aug 2018 | A1 |
20180266976 | Naiknaware | Sep 2018 | A1 |
20180296397 | Askem et al. | Oct 2018 | A1 |
20190021911 | Askem et al. | Jan 2019 | A1 |
20190060126 | Ribble et al. | Feb 2019 | A1 |
20190076298 | Quintanar et al. | Mar 2019 | A1 |
20190083025 | Aung et al. | Mar 2019 | A1 |
20190133812 | Seres et al. | May 2019 | A1 |
20190134280 | Toth | May 2019 | A1 |
20190159938 | Askem et al. | May 2019 | A1 |
20190175098 | Burns | Jun 2019 | A1 |
20190192066 | Schoess et al. | Jun 2019 | A1 |
20190231939 | Askem et al. | Aug 2019 | A1 |
20190290496 | Brownhill et al. | Sep 2019 | A1 |
20190374387 | Ribble et al. | Dec 2019 | A1 |
20200054218 | Xi | Feb 2020 | A1 |
20200060541 | Andrade | Feb 2020 | A1 |
20200078482 | Yoon et al. | Mar 2020 | A1 |
20200078499 | Gadde et al. | Mar 2020 | A1 |
20200100711 | Choudhury et al. | Apr 2020 | A1 |
20200147407 | Efremkin | May 2020 | A1 |
20200281512 | Grubb et al. | Sep 2020 | A1 |
20200281513 | Grubb et al. | Sep 2020 | A1 |
20200281529 | Grubb et al. | Sep 2020 | A1 |
20200289346 | Hansen et al. | Sep 2020 | A1 |
20200330258 | Hansen et al. | Oct 2020 | A1 |
20200360547 | Smith et al. | Nov 2020 | A1 |
20210137446 | Brownhill et al. | May 2021 | A1 |
20210145359 | Hunt et al. | May 2021 | A1 |
20220031231 | Hunt | Feb 2022 | A1 |
20220079509 | Gellman et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
2844534 | Feb 2013 | CA |
105232229 | Jan 2016 | CN |
105395184 | Mar 2016 | CN |
106102322 | Nov 2016 | CN |
109350362 | Feb 2019 | CN |
102012211015 | Jan 2014 | DE |
102013013013 | Feb 2015 | DE |
2454990 | May 2012 | EP |
2565630 | Mar 2013 | EP |
3231478 | Oct 2017 | EP |
3409190 | Dec 2018 | EP |
3499510 | Jun 2019 | EP |
3563761 | Nov 2019 | EP |
2316171 | Feb 1998 | GB |
2563602 | Dec 2018 | GB |
2006019336 | Jan 2006 | JP |
2009225863 | Oct 2009 | JP |
20120119523 | Oct 2012 | KR |
101224629 | Jan 2013 | KR |
20140024743 | Mar 2014 | KR |
20140058041 | May 2014 | KR |
20160071044 | Jun 2016 | KR |
20190105898 | Sep 2019 | KR |
1027236 | Apr 2006 | NL |
WO-0021433 | Apr 2000 | WO |
WO-0043046 | Jul 2000 | WO |
WO-03067229 | Aug 2003 | WO |
WO-2006041997 | Apr 2006 | WO |
WO-2007030379 | Mar 2007 | WO |
WO-2008006150 | Jan 2008 | WO |
WO-2008010604 | Jan 2008 | WO |
WO-2009052607 | Apr 2009 | WO |
WO-2009103165 | Aug 2009 | WO |
WO-2009120951 | Oct 2009 | WO |
WO-2009141777 | Nov 2009 | WO |
WO-2010020919 | Feb 2010 | WO |
WO-2010105053 | Sep 2010 | WO |
WO-2011082420 | Jul 2011 | WO |
WO-2011113070 | Sep 2011 | WO |
WO-2011123848 | Oct 2011 | WO |
WO-2012141999 | Oct 2012 | WO |
WO-2013026999 | Feb 2013 | WO |
WO-2013044226 | Mar 2013 | WO |
WO-2014036577 | Mar 2014 | WO |
WO-2015112095 | Jul 2015 | WO |
WO-2015127218 | Aug 2015 | WO |
WO-2015168720 | Nov 2015 | WO |
WO-2016025438 | Feb 2016 | WO |
WO-2016030752 | Mar 2016 | WO |
WO-2016058032 | Apr 2016 | WO |
WO-2016073777 | May 2016 | WO |
WO-2016100218 | Jun 2016 | WO |
WO-2016110564 | Jul 2016 | WO |
WO-2016187136 | Nov 2016 | WO |
WO-2016205872 | Dec 2016 | WO |
WO-2016205881 | Dec 2016 | WO |
WO-2017021006 | Feb 2017 | WO |
WO-2017021965 | Feb 2017 | WO |
WO-2017033058 | Mar 2017 | WO |
WO-2017037479 | Mar 2017 | WO |
WO-2017041014 | Mar 2017 | WO |
WO-2017041385 | Mar 2017 | WO |
WO-2017041386 | Mar 2017 | WO |
WO-2017041387 | Mar 2017 | WO |
WO-2017119996 | Jul 2017 | WO |
WO-2017205728 | Nov 2017 | WO |
WO-2017214188 | Dec 2017 | WO |
WO-2018035612 | Mar 2018 | WO |
WO-2018060417 | Apr 2018 | WO |
WO-2018064569 | Apr 2018 | WO |
WO-2018115461 | Jun 2018 | WO |
WO-2018144938 | Aug 2018 | WO |
WO-2018144941 | Aug 2018 | WO |
WO-2018144943 | Aug 2018 | WO |
WO-2018144946 | Aug 2018 | WO |
WO-2018185138 | Oct 2018 | WO |
WO-2018189265 | Oct 2018 | WO |
WO-2018209090 | Nov 2018 | WO |
WO-2018211458 | Nov 2018 | WO |
WO-2018234443 | Dec 2018 | WO |
WO-2019020550 | Jan 2019 | WO |
WO-2019020551 | Jan 2019 | WO |
WO-2019020666 | Jan 2019 | WO |
WO-2019030384 | Feb 2019 | WO |
WO-2019048624 | Mar 2019 | WO |
WO-2019048626 | Mar 2019 | WO |
WO-2019048638 | Mar 2019 | WO |
WO-2019063481 | Apr 2019 | WO |
WO-2019063488 | Apr 2019 | WO |
WO-2019067264 | Apr 2019 | WO |
WO-2019072531 | Apr 2019 | WO |
WO-2019076967 | Apr 2019 | WO |
WO-2019096828 | May 2019 | WO |
WO-2019140441 | Jul 2019 | WO |
WO-2019140444 | Jul 2019 | WO |
WO-2019140448 | Jul 2019 | WO |
WO-2019140449 | Jul 2019 | WO |
WO-2019193141 | Oct 2019 | WO |
WO-2019216883 | Nov 2019 | WO |
WO-2019230183 | Dec 2019 | WO |
WO-2019238180 | Dec 2019 | WO |
WO-2019238181 | Dec 2019 | WO |
WO-2019238182 | Dec 2019 | WO |
WO-2019238195 | Dec 2019 | WO |
WO-2019238196 | Dec 2019 | WO |
WO-2019238197 | Dec 2019 | WO |
WO-2019238198 | Dec 2019 | WO |
WO-2020043806 | Mar 2020 | WO |
WO-2020139541 | Jul 2020 | WO |
WO-2020157103 | Aug 2020 | WO |
WO-2020159677 | Aug 2020 | WO |
WO-2020167547 | Aug 2020 | WO |
WO-2020242876 | Dec 2020 | WO |
WO-2021059209 | Apr 2021 | WO |
Entry |
---|
Aubakir B., et al., “Vital Sign Monitoring Utilizing Eulerian Video Magnification and Thermography,” 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug. 16, 2016, pp. 3527-3530 (4 pages). |
Bandodkar A.J., et al., “Battery-Free, Skin-Interfaced Microfluidic/Electronic Systems for Simultaneous Electrochemical, Colorimetric and Volumetric Analysis of Sweat,” Science Advances, vol. 5 (1), Jan. 18, 2019, retrieved from http://advances.sciencemag.org/content/5/1/eaav3294, 16 pages. |
Cauwe M., et al., “Technology Development for a Low-Cost, Roll-to-Roll Chip Embedding Solution Based on PET Foils,” 18th European Microelectronics and Packaging Conference (EMPC), IEEE, Sep. 12, 2011, 6 pages. |
Farooqui M.F., et al., “Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds,” Scientific Reports, vol. 6, Jun. 29, 2016, 14 pages. |
Geng Y., et al., “A Hybrid Low Power Biopatch for Body Surface Potential Measurement,” IEEE Journal of Biomedical and Health Informatics, vol. 17, No. 3, May 1, 2013, pp. 591-599. |
George J., et al., “Reliability of Plastic-Encapsulated Electronic Components in Supersaturated Steam Environments,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 5 (10), Oct. 2015, pp. 1423-1431. |
Iannetta Jr. R.A., et al., “Successful Case Histories of Polymer Based Circuitry on Flexible Film Substrates,” Electro/94 International Conference Proceedings Combined Volumes, IEEE, XP010149465, May 10-12, 1994, pp. 885-889. |
International Search Report and Written Opinion for Application No. PCT/EP2020/077464, mailed on Jan. 13, 2021, 14 pages. |
Little Miss Plasters, kidstravelclub.co.uk., retrieved from http://www.kidstravelclub.co.uk/little-miss-girls-childrens-plasters on Aug. 26, 2016, 2 pages. |
Lu B., et al., “A Study of the Autofluorescence of Parylene Materials for μTAS Applications,” Lab on Chip, vol. 10 (14), Jul. 2010, pp. 1826-1834. |
McLeod A.J., et al., “Motion Magnification for Endoscopic Surgery,” Progress in Biomedical Optics and Imaging, SPIE—International Society for Optical Engineering, Mar. 12, 2014, vol. 9036, 8 pages. |
Mehmood N., et al., “Applications of Modern Sensors and Wireless Technology in Effective Wound Management: Modern Sensors and Wireless Technology,” Journal of Biomedical Materials Research Part B, vol. 102, May 1, 2014, XP055739544, pp. 885-895. |
Mostafalu P., et al., “Wireless Flexible Smart Bandage for Continuous Monitoring of Wound Oxygenation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 9 (5), Oct. 1, 2015, XP055526132, pp. 670-677 (8 pages). |
Narusawa H., “The Corona Discharge Causes Short Destruction that had Bad Influence on a Power Switching Circuit,” Adphox Corporation, Jan. 1, 2009, retrieved from http://www.adphox.co.jp/keisokuki/ke-english-corona/CORONA_DISCHARGE_EN.pdf, 12 pages. |
Pang Q., et al., “Smart Flexible Electronics-Integrated Wound Dressing for Real-Time Monitoring and On-Demand Treatment of Infected Wounds,” Advanced Science, vol. 7, No. 6, Mar. 2020, 1902673, XP055739532, 10 pages. |
Raviglione A., et al., “Real-Time Smart Textile-Based System to Monitor Pressure Offloading of Diabetic Foot Ulcers,” Journal of Diabetes Science and Technology, vol. 11 (5), Sep. 2017, pp. 894-898. |
Rose D.P., et al., “Adhesive RFID Sensor Patch for Monitoring of Sweat Electrolytes,” IEEE Transactions on Biomedical Engineering, vol. 62 (6), Jun. 2015, first published on Nov. 11, 2015, pp. 1457-1465. |
Wakita J., et al., “Variations in Optical Absorption and Fluorescence Spectra for Polyimide Thin Films Caused by Structural Isomerism,” Journal of Photopolymer Science and Technology, Jan. 1, 2003, 1 page. |
Willis B., “Conformal Coating Inspection & Coating Faults,” Vision Engineering, Jul. 21, 2016, retrieved from http://www.visioneng.com/wp-content/uploads/2017/11/Conformal-Coating-Inspection-and-Defects.21JUL16.pdf, 35 pages. |
Willis B., “Guide to Conformal Coating & Cleaning Defects Contents,” Mar. 1, 2014, retrieved from http://coatingguide.smartgroup.org/Files%20pdf/Coating%20Defects%20V2%2014March2014.pdf, vol. 1, 31 pages. |
Number | Date | Country | |
---|---|---|---|
20240091430 A1 | Mar 2024 | US |