The present invention relates generally to an anti-entrapment system of a vehicle for preventing entrapment of an object and, more particularly to, an anti-entrapment system of a vehicle provided with a sensor for preventing entrapment of an object.
Anti-entrapment systems use various types of sensors to detect pinching of an object such as a human body part. For example, in vehicles such as automotive vehicles, sensors are used for pinch sensing at electrically operated doors, windows, hatches, decks, hoods, lids, and the like.
A pinch sensor detects pinching of an object by a translating device such as a movable window, door, sunroof, etc. In operation, the pinch sensor generates a pinch sensor signal in response to the object such as a person's finger being pinched by the translating device such as a window as the window is closing. In response to the pinch sensor signal, a controller controls the window to reverse direction and open in order to prevent further pinching of the person's finger.
Accordingly, it is desirable to provide a sensor for an anti-entrapment system of a vehicle that detects a translating device pinching an object as soon as the translating device has applied a relatively small amount of pinching to the object and/or detects the presence of an object within an opening which may be closed by the translating device in order to prevent any pinching of the object by the translating device. It is also desirable to provide a sensor for use with existing structures of a vehicle such as a seal. Therefore, there is a need in the art to provide a sensor for an anti-entrapment system for preventing entrapment of an object
Accordingly, the present invention provides a sensor for an anti-entrapment system of a vehicle for preventing an object within an opening of the vehicle defined by a movable panel from being pinched by the movable panel. The sensor includes a seal adapted to be mounted to a portion of the vehicle, an electrically conductive mounting carrier disposed in the seal and having a formed shape, wherein the electrically conductive mounting carrier is operable to detect the object in the path of the movable panel and to generate a pinch sensor signal indicative of the object either touching the seal or in close proximity to the seal, and a controller for monitoring the electrically conductive mounting carrier, wherein the controller controls the movable panel to prevent the movable panel from pinching the object in response to the pinch sensor signal.
Further, the present invention provides an anti-entrapment system of a vehicle for preventing an object within an opening of the vehicle defined by a movable panel from being pinched by the movable panel. The system includes a motor adapted to move the movable panel for opening and closing the opening and a sensor adapted to be mounted to a portion of a vehicle operable to detect the object in the path of the moving panel and to generate a pinch sensor signal indicative of the object either touching the sensor or in close proximity to the sensor. The sensor includes a seal adapted to be mounted to a portion of the vehicle and an electrically conductive carrier disposed in the seal and having a formed shape. The system also includes a controller for monitoring the sensor, wherein the controller controls the motor to prevent the movable panel from pinching the object in response to the pinch sensor signal.
In addition, the present invention provides a method of sensing for an anti-entrapment system of a vehicle for preventing an object within an opening of the vehicle defined by a movable panel from being pinched by the movable panel. The method includes the steps of producing a sensor including a seal adapted to be mounted to a portion of the vehicle and an electrically conductive mounting carrier disposed in the seal and having a shape, wherein the electrically conductive mounting carrier is operable to detect the object in the path of the movable panel and to generate the pinch sensor signal indicative of the object either touching the seal or in close proximity to the seal. The method includes monitoring by a controller the electrically conductive mounting carrier and controlling the movable panel by the controller to prevent the movable panel from pinching the object in response to the pinch sensor signal.
One advantage of the present invention is that a new sensor is provided for an anti-entrapment system of a vehicle. Another advantage of the present invention is that the sensor uses a portion of an existing seal structure instead of adding a separate sensor strip or sensor strip components into a seal for use as a sensor to simplify construction and save cost. Yet another advantage of the present invention is that the sensor uses a portion of an existing seal structure, thereby eliminating the need to add a sensor strip and modify seal profiles that are already qualified and being produced. Still another advantage of the present invention is that the sensor is able to use the existing structure of a seal as a sensor element providing many benefits, including reduced tooling, structure change, and cost.
These and other objects, advantages, and features of the present invention will become better understood from the following detailed description of one exemplary embodiment of the present invention that is described in conjunction with the accompanying drawings.
Referring to the drawings, one embodiment of an object sensing or anti-entrapment system 10 for a vehicle (not shown) is shown in
The sensor 12 is generally a capacitance sensor that is operable to detect touching by the object 16 to the sensor and/or the presence (i.e., proximity) of the object 16 near the sensor 12. In response to the object 16, including human body parts, touching the sensor 12, the capacitance of the sensor 12 changes. Likewise, in response to an electrically conductive object 16, including human body parts, coming within the proximity of the sensor 12, the capacitance of the sensor 12 changes even without the object 16 actually touching, or applying any force, to the sensor 12. This provides for zero force detection of a human body part before contact to the sensor 12 is made by the body part. As such, the sensor 12 is a contact (i.e., touch) and a non-contact (i.e., proximity) sensor.
The controller 14 can have switch inputs, communications capability with other sensors and controllers, and various outputs for controlling and monitoring various aspect of the translating device 20. For instance, the controller 14 can have sensor inputs for the motor 18 as designated by line 19 in
In the case of the controller 14 receiving the sensor signals 19 responsive to the motor 18 or other moving members, the controller 14 would have additional anti-entrapment capabilities by making use of motor current and/or commutator pulses and/or sensor signals from Hall (or other type) sensors. This would have the added benefit of being able to detect obstructions while the moving member and the obstruction are too far away from the sensor 12 to be sensed by the sensor 12. It should be appreciated that such a controller 14 is disclosed in U.S. Pat. No. 7,513,166 to Shank et al., the entire disclosure of which is hereby expressly incorporated by reference.
Referring to
Referring now to
Referring now to
The wire sensing element 409 is used to make an electrical connection for the sensor jacket 406. The sensor 405 registers a change in capacitance whenever the distance between the strip sensing element 407 and the sensor jacket 406 changes as a result of the object 16 touching the sensor jacket 406 and/or as a result of an electrically conductive object coming into proximity with the sensor jacket 406. It should be appreciated that the change in capacitance is signaled to the controller 14.
The strip sensing element 407 may be used as a heating element when the anti-pinch strip system is inactive. The heating element function can be used to heat the sensor 405, which may be used as a weather seal, keeping the conductive elastomer 408 and air gaps 410 and 411 pliable in cold weather conditions. It is a goal to have the weather seal properties maintained to application compliance standards while heated. Additionally, the heated weather seal could be used to prevent the window or sliding panel from freezing and/or to aid in thawing a frozen window or sliding panel while in the closed position. The strip sensing element 407 would be engaged as a heating element when powered by relays turned on by the controller 14 with inputs from a temperature sensor, which could be from the vehicle outside temperature sensor. It should be appreciated that the temperature input could also originate from a separate temperature sensor located on a device inside the vehicle door, or anywhere else outside the vehicle.
The temperature setting to turn on the strip sensing element 407 is optional, but would likely be set for temperatures at or below 40 degrees Fahrenheit. where cold weather pliability is required. When the set temperature is reached, the controller 14 will turn the strip sensing element 407 on to make the weather seal pliable. The circuit in the controller 14 can also be configured to automatically cycle the strip sensing element 407 on and off after the desired pliability is achieved to thereafter maintain pliability.
By using relays or transistors, the strip sensing element 407 can be powered such that an appropriate amount of current flows through the element. The current flow through the resistive element will produce the required amount of heat following the well-known equation Power (Watts)=Current (A)2 times Resistance (Ohms). The power can be applied for a given amount of time and then removed. During the time power is removed, the strip sensing element 407 can be connected to a circuit that provides a small amount of current flow through the element and through a series connected resistor.
The strip sensing element 407 and the series connected resistor form a voltage divider. The voltage that is developed can then be interpreted by a microprocessor, or other device such as an op-amp, to determine the temperature of the strip sensing element 407. If the temperature is below a determined set-point, the strip sensing element 407 can again be connected such that power is applied to it increasing the amount of heat generated. After the temperature sensor determines that the temperature is above the set point, the controller 14 will turn off the relays or transistors providing power to the strip sensing element 407.
In another embodiment, the controller 14 can be configured to inhibit a user input command to open a window or sliding panel when, anytime during the time of heating the strip sensing element 407, no window or panel movement is sensed, indicating a stalled motor condition such as may be caused by ice buildup in the weather seal. During such an event, the controller 14 continues to inhibit user commands to open the window or sliding panel until the strip sensing element 407 inside the weather seal has achieved a temperature sufficient to free the window or sliding panel. The controller 14 could be configured to recognize the above condition from temperature sensor inputs at all times, including when vehicle ignition and/or other vehicle power is off. It should be appreciated that implementation of this function could reduce warranty costs related to the window or sliding panel drive mechanism, seals, and motor.
In another embodiment, the strip sensing element 407 could be used as a heating element inside a weather seal not using an anti-pinch strip system. In this case, the controller 14 is configured to only control the heating element function as described above. It should also be appreciated that the controlling function could also be integrated as part of other electronics being employed within the application system.
In yet another embodiment, the strip sensing element 407 could be used as a temperature sensor, either as a stand-alone sensor, or in combination with the anti-pinch system. The function to switch between temperature sensing and anti-pinch sensing would be configured through the controller 14. The temperature sensing function of the strip sensing element 407 could be used to provide the same temperature inputs required to operate the anti-pinch system as described above.
While the aforementioned sensors 396 and 405 can be used by themselves, it is sometimes advantageous or necessary to add them to, or incorporate them into, a seal 459, as shown in
As shown in
The sensor 449 is sized for a typical automobile door window seal application, and has a minimum profile designed to not reduce viewing through the window opening. As shown in
If a non-compressible material is used, then the sensor 449 provides proximity sensing only operation. If compressible material is used, then the sensor 449 provides both pinch and proximity sensing operations. A preferred material for dielectric medium 452 of the sensor 449 is an electrically non-conductive flexible polyurethane foam, such as Rogers Corporation Poron 4701-30-20062-04. Other foam materials, such as EPDM, thermoplastic rubber, thermoplastic elastomer, or TPV could also be used for dielectric medium 452. These materials are currently used in window seals to meet the appearance and reliability requirements for window closures. Santoprene, a thermoplastic elastomer material made by Advanced Elastomer Systems, maintains stable compression characteristics over temperature, whereas EPDM compression characteristics decrease as temperature is reduced.
Stiff compression characteristics increase pinch forces. A material, which maintains flexibility and compression characteristics when cold, is preferred for pinch operation of the sensor 449. The material for dielectric medium 452 could be introduced by co-extrusion as any of the materials mentioned, or made by foaming the sensor jacket 457 in the dielectric space between the sensor elements 450, 451. It should be appreciated that a foamed space would be made up of the material of the sensor jacket 457 and air as the dielectric.
A preferred material of the sensor jacket 457 is a non-electrically conductive thermoplastic rubber or elastomer material, such as Santoprene. The surface resistivity of the sensor jacket 457 and dielectric medium 452 is to be set greater than 10.sup.6 ohm/cm to avoid electrical shorting potential between the sensor elements 450, 451. The thickness of the material of the sensor jacket 457 between the sensor element 450 and the sensing surface of the sensor jacket 457 contains the optimal sensor jacket material thickness required to (a) completely enclose the sensor elements 450, 451 and dielectric medium 452 (i.e., completely enclose the sensor 449) with the sensor jacket 457 to prevent moisture infiltration; (b) reduce the possibility of voids; and (c) keep the dimension between the sensor elements 450, 451 at a useful spacing to provide useful proximity mode detection and sensitivity.
Referring to
Another embodiment of an electrically conductive mounting carrier 200 is shown in
Referring now to
Referring again to
In operation, generally, an operator (not shown) actuates a switch (not shown) to have the controller 14 control the opening and closing of the window as the translating device 20. Such a switch may be configured to provide express-up (i.e., express close) and express-down (i.e., express open) functionality such that a single switch actuation (as opposed to a continuous actuation) causes the controller 14 to control the window as the translating device 20 until the window as the translating device 20 has fully moved into its opened or closed position.
The sensor 12 is placed adjacent to the opening such that the object 16 touches the sensor 12 and/or becomes in close proximity to the sensor 12 if the object 16 is caught between the opening and the window as the translating device 20 and is about to be pinched by the window as the translating device 20. The sensor 12 generates a pinch sensor signal 21 in response to the object 16 touching the sensor 12 and generates a proximity sensor signal 23 in response to the object 16 being in close proximity to the sensor 12. The sensor 12 provides pinch and proximity sensor signals 21, 23 to the controller 14. In response to receiving pinch and/or proximity sensor signals, the controller 14 controls the window as the translating device 20 via the motor 18 accordingly.
For instance, if the operator has actuated the switch to have the controller 14 close the window as the translating device 20 and the window as the translating device 20 is now closing (for example, when the window is in express-up operation), the controller 14 controls the window as the translating device 20 to stop closing and then open in response to a detection by the sensor 12 of the object 16 within the opening or path of the translating device 20. Reversing the direction of the window as the translating device 20 and opening the window as the translating device 20 causes the opening to increase in size in order to prevent any pinching of the object 16 and to give time for the object 16 to be removed from the opening. Similarly, if the sensor 12 detects the presence of the object 16 within window opening or path of the translating device 20, the controller 14 prevents the window as the translating device 20 from subsequently moving in the closing direction until the object 16 has been removed from the opening or path of the translating device 20.
Referring now to
In operation, the sensor 12 of
In order for the internal carriers 100 and 200 to be used as sensing element, the carriers 100 and 200 are isolated from other metal or electrically conductive features such as metal mounting flange 140 of the vehicle as illustrated in
The present invention also provides a method of sensing for the anti-entrapment system 10 of a vehicle for preventing the object 16 within the opening of the vehicle defined by the translating device 20 from being pinched by the translating device 20. The method includes the steps of producing a sensor 12 comprising a seal 459 adapted to be mounted to a portion of the vehicle and an electrically conductive mounting carrier 100, 200 disposed in the seal 459 and having a “U” shape operable to detect the object 16 in the path of the translating device 20 and to generate a pinch sensor signal indicative of the object 16 either touching the seal 459 or in close proximity to the seal 459. The method also includes the steps of monitoring by the controller 14 the electrically conductive mounting carrier 100, 200 and controlling the translating device 20 by the controller 14 to prevent the translating device 20 from pinching the object 16 in response to the pinch sensor signal. The method includes the steps of producing the sensor 12 includes coextruding the seal 459 and the carrier 100, 200, energizing the carrier 100, 200 by the controller 14, and sensing a change in pinch sensor signal based on proximity of the object 16 to the carrier 100, 200. It should be appreciated that the above method also applies to the sensor/controller 13.
The present invention has been described in an illustrative manner. It is to be understood that the terminology, which has been used, is intended to be in the nature of words of description rather than of limitation.
Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, the present invention may be practiced other than as specifically described.
The present application claims the benefit of and priority to U.S. Ser. No. 62/936,089, filed Nov. 15, 2019, the entire disclosure of which is hereby expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5351442 | Gingras | Oct 1994 | A |
5621290 | Heller | Apr 1997 | A |
6243635 | Shank et al. | Jun 2001 | B1 |
6337549 | Bledin | Jan 2002 | B1 |
6377009 | Philipp | Apr 2002 | B1 |
6499359 | Washeleski et al. | Dec 2002 | B1 |
6700393 | Haag | Mar 2004 | B2 |
6782759 | Shank et al. | Aug 2004 | B2 |
6896268 | Hofmann | May 2005 | B2 |
6968746 | Shank et al. | Nov 2005 | B2 |
7132642 | Shank et al. | Nov 2006 | B2 |
7162928 | Shank et al. | Jan 2007 | B2 |
7293467 | Shank et al. | Nov 2007 | B2 |
7319301 | Pribisic | Jan 2008 | B2 |
7513166 | Shank et al. | Apr 2009 | B2 |
7908927 | Washeleski et al. | Mar 2011 | B2 |
8448521 | Washeleski et al. | May 2013 | B2 |
8854061 | Suhara | Oct 2014 | B2 |
9234979 | Bolbocianu | Jan 2016 | B2 |
9389062 | Washeleski et al. | Jul 2016 | B2 |
20030056600 | Shank et al. | Mar 2003 | A1 |
20030233790 | Nuber | Dec 2003 | A1 |
20050016290 | Shank et al. | Jan 2005 | A1 |
20050041375 | Rosenau | Feb 2005 | A1 |
20050092097 | Shank et al. | May 2005 | A1 |
20060117862 | Shank et al. | Jun 2006 | A1 |
20060261769 | Rees | Nov 2006 | A1 |
20070089527 | Shank et al. | Apr 2007 | A1 |
20080011093 | Shank et al. | Jan 2008 | A1 |
20090158857 | Shank et al. | Jun 2009 | A1 |
20110163764 | Shank et al. | Jul 2011 | A1 |
20120153972 | Stockschlager | Jun 2012 | A1 |
20130263672 | Washeleski et al. | Oct 2013 | A1 |
20150121758 | Pohl | May 2015 | A1 |
20170030127 | Elie | Feb 2017 | A1 |
20170233579 | Yushin | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
204720239 | Oct 2015 | CN |
109057604 | Dec 2018 | CN |
2831545 | Dec 1998 | JP |
3834909 | Oct 2006 | JP |
WO-2007147115 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20210148152 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62936089 | Nov 2019 | US |