Sensor for tissue gas detection and technique for using the same

Information

  • Patent Grant
  • 8062221
  • Patent Number
    8,062,221
  • Date Filed
    Friday, September 30, 2005
    19 years ago
  • Date Issued
    Tuesday, November 22, 2011
    13 years ago
Abstract
A sensor for carbon dioxide detection may be adapted to have reduced water permeability. A sensor is provided that is appropriate for use in an aqueous medium. The sensor has a barrier with reduced water permeability, but that is permeable to carbon dioxide, that separates the sensor components from the aqueous medium.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.


2. Description of the Related Art


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring many such characteristics of a patient. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.


Among other blood constituents, physicians often desire to monitor levels of carbon dioxide in a patient's bloodstream. For example, decreased levels of carbon dioxide in the blood may be related to poor perfusion. Thus, assessment of carbon dioxide levels may be useful for diagnosing a variety of clinical states related to poor perfusion. One method of determining the level of blood carbon dioxide involves measuring carbon dioxide levels of respiratory gases. As carbon dioxide in the bloodstream equilibrates rapidly with carbon dioxide in the lungs, the partial pressure of the carbon dioxide in the lungs approaches the amount in the blood during each breath. Accordingly, physicians often monitor respiratory gases during breathing in order to estimate the carbon dioxide levels in the blood.


Respiratory gas analyzers typically function by passing electromagnetic radiation through a respiratory gas sample and measuring the absorption that is related to carbon dioxide. Often, the gas samples are collected with adapters that are fitted into patients being given respiratory assistance, such as patients under anesthesia or patients on life support systems, to connect between the endotracheal tube (ET tube) and the ventilating tube of the breathing apparatus. These tubes convey breathing gases to the patient and exhaled breath away from the patient. The airway adapter is in the form of a short connector of tubular shape, and the adapter is required to make a connection between the generally very different cross sections of these two tubes.


Respiratory gases may also be collected through the use of cannulas, which are flexible tubes that are threaded through the mouth or nose. Respiratory gas samples collected from a cannula may be aspirated from the airway stream and exposed to a carbon dioxide sensor.


It is often inconvenient to measure carbon dioxide in respiratory gases from respiratory gas samples collected from an intubation tube or cannula. Although these methods are considered to be noninvasive, as the surface of the skin is not breached, the insertion of such devices may cause discomfort for the patient. Further, the insertion and operation of such devices also involves the assistance of skilled medical personnel.


Carbon dioxide may also be measured transcutaneously by sensors held against a patient's skin. While these sensors are easier to use than respiratory gas sensors, they also have certain disadvantages. Because transcutaneous sensors depend upon the perfusion of carbon dioxide through a relatively thick epidermal layer, these sensors may not be as accurate. This problem may be addressed by measuring carbon dioxide that perfuses through a relatively thinner mucous membrane surface. However, a patient's mucous membrane is an aqueous environment, and surrounding water and other fluids may infiltrate a sensor, possibly damaging the sensing components and causing measurement inaccuracies.


Thus, it may be desirable to provide a water-resistant sensor for the measurement of carbon dioxide and other gases to protect a sensor that may be used in relatively aqueous environments, such as those containing mucous membranes.


SUMMARY

Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms that the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.


There is provided a sensor that includes: a solid indicator layer adapted to provide feedback related to a presence of carbon dioxide in a non-gaseous patient sample; and a selective barrier disposed on a sample-contacting side of the indicator, wherein the selective barrier is permeable to carbon dioxide and substantially impermeable to water.


There is also provided a system that includes a sensor adapted to be operatively coupled to the monitor. The sensor includes: a solid indicator layer adapted to provide feedback related to a presence of carbon dioxide in a non-gaseous patient sample; and a selective barrier disposed on a sample-contacting side of the indicator, wherein the selective barrier is permeable to carbon dioxide and substantially impermeable to water.


There is also provided a method of operating a sensor that includes: contacting a non-gaseous patient sample with a selective barrier, wherein the selective barrier is permeable to carbon dioxide and substantially impermeable to water; and contacting a carbon dioxide-containing portion of the patient sample with a solid indicator layer, wherein the indicator is adapted to provide feedback related to a presence of carbon dioxide.


There is also provided a method of manufacturing a sensor that includes: providing a solid indicator layer adapted to provide feedback related to a presence of carbon dioxide in a non-gaseous patient sample; and providing a selective barrier disposed on a sample-contacting side of the indicator, wherein the selective barrier is permeable to carbon dioxide and substantially impermeable to water.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 is a schematic cross-section of a carbon dioxide sensor showing the selective barrier layer according to the present invention;



FIG. 2 illustrates a perspective view of a patient using a sensor for carbon dioxide detection according to the present invention;



FIG. 3 illustrates a cross-sectional view of the patient's oral passage with a sensor for carbon dioxide detection applied under the patient's tongue according to the present invention;



FIG. 4 illustrates a perspective view of an exemplary sensor for carbon dioxide detection;



FIG. 5 illustrates an exploded view of an exemplary sensor for carbon dioxide detection;



FIG. 6 is a schematic cross-section of the carbon dioxide sensor of FIG. 5 according to the present invention; and



FIG. 7 illustrates a carbon dioxide detection system coupled to a multi-parameter patient monitor and a sensor according to embodiments of the present invention.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


A sensor is provided herein that may assess carbon dioxide that perfuses through a barrier layer that is resistant to water but is permeable to carbon dioxide. Thus, such sensors are appropriate for use in an aqueous environment. Sensors according to the present techniques may transcutaneously sense carbon dioxide in a mucous membrane layer and/or carbon dioxide dissolved in patient fluids, such as salivary or mucosal fluids.


Carbon dioxide generated by metabolic activity occurring in the bloodstream may diffuse through the tissue and may dissolve into any liquids that may be found at the surface of the tissue. Thus, the levels of carbon dioxide in the tissue and bodily fluids may serve as a surrogate marker for carbon dioxide levels in the bloodstream. A sensor according to the present techniques placed adjacent to a tissue surface or a bodily fluid may capture carbon dioxide that would otherwise diffuse into the airstream or other surrounding airspace.


Generally, it is envisioned that a sensor according to the present technique is appropriate for use in determining the presence or levels of carbon dioxide in a variety of nongaseous patient sample sites, including tissue and/or bodily fluids. The sensor may be held against the mucosal tissue, either manually or otherwise, forming a seal to prevent the carbon dioxide from diffusing away. For example, a sensor may be used in the upper respiratory tract, including the oral and nasal passages. The oral passages may include the tongue, the floor of the mouth, the roof of the mouth, the soft palate, the cheeks, the gums, the lips, and any other oral tissue. Further, a sensor as described herein is appropriate for use adjacent to or proximate to any mucosal surface, i.e. patient surfaces that include a mucous membrane or surfaces that are associated with mucus production. In addition to the respiratory tract, mucosal surfaces may include vaginal or rectal surfaces.


Sensors as provided by the present techniques may be disposable or reusable. In addition, the sensors may be appropriate for short-term spot-checking or for longer-term, continuous monitoring. When used for long-term monitoring, the sensor may be applied to the patient's tissue by a suitable adhesive, such as a mucoadhesive, or by any other suitable holding device.


In additional to carbon dioxide monitoring, sensors as provided herein may be used to monitor oxygen, ethanol, metabolic trace gases such as acetone or anesthetic gases such as isoflurane, halothane, desflurane, sevoflurane and enflurane that may diffuse transcutaneously. Further, sensors as provided herein may be used to monitor tissue gases associated with an acute or chronic disease state. For example, such sensors may monitor hydrogen ions or bicarbonate ions in the tissue as a marker to assess the acidity of the blood. Variations from normal blood pH may be useful in assessing renal function.



FIG. 1 is a schematic view of an exemplary sensor 10. The sensor 10 has a selective barrier layer 12 and an indicator layer 14. When the sensor 10 is contacted with a tissue or fluid sensor site, carbon dioxide in the tissue and fluids, indicated by arrow 16, contacts the selective barrier layer 12, which is permeable to the carbon dioxide. The selective barrier is relatively impermeable to the water in or on the surface of the tissue, represented by arrows 18. Thus, the carbon dioxide is able to perfuse into the indicator layer 14, while the water at the sensor site is prevented from contacting the indicator layer 14. The indicator layer 14 is adapted to respond to the change in carbon dioxide concentration and to provide a feedback, as discussed in more detail below.


The selective barrier 12 may include materials that are hydrophobic or otherwise water-resistant, but that are permeable to carbon dioxide. In certain embodiments, it is envisioned that the ratio of water permeability to carbon dioxide permeability of the selective barrier may be less than 10, and in certain embodiments, the ratio may be less than 1. Suitable materials include polymers, such as polytetrafluorethylene (PTFE). Other suitable materials include microporous polymer films, such as those available from the Landec Corporation (Menlo Park, Calif.). Such microporous polymer films are formed from a polymer film base with a customizable crystalline polymeric coating that may be customized to be highly permeable to carbon dioxide and relatively impermeable to water.


The thickness of the selective barrier 12 may be modified in order to achieve the desired rate of carbon dioxide perfusion and indicator response time. Indicator response time may involve a change in indicator color or may involve an electrical signal. Generally, response times may be in the range of instantaneous to less than 5 minutes. In certain embodiments, the response time is in the range of 5 seconds to 5 minutes. Where a very rapid response is desired, a thin film of the selective barrier, for example less than 0.2 mm in thickness, may be used. In certain embodiments, when a slower response is desired, the selective barrier 12 may range from 0.2 mm to several millimeters in thickness. Additionally, the selective barrier 12 may be formed with small pores that increase the carbon dioxide permeability. The pores may range in size from 0.1 microns to 5 microns, depending on the desired response time. In one embodiment, the selective barrier 12 may be a relatively thin PTFE material such as plumber's tape (0.04 mm). In other embodiments, the selective barrier may be a PTFE material such as Gore-Tex® (W. L. Gore & Associates, Inc., Newark, Del.). Alternatively, the selective barrier 12 may be formed from a combination of appropriate materials, such as materials that are heat-sealed to one another. For example, the selective barrier 12 may include a PTFE layer with a pore size of 3 microns and a second PTFE layer with a pore size of 0.1 microns.


The indicator layer 14 includes the active ingredient of the indicating element, which provides the required response signal when exposed to a given concentration of carbon dioxide. The active ingredient may be any indicator that is sensitive to the presence of carbon dioxide and that is capable of being calibrated to give a response signal corresponding to a given predetermined concentration of carbon dioxide. For example, the signal may be visual, such as a change in color, or electrical.


Indicators which provide a color change in a presence of carbon dioxide include chromogenic pH-sensitive indicators and oxidation/reduction indicators. A chromogenic pH-sensitive indicator will provide a color change upon exposure to a given concentration of carbon dioxide in the presence of other ingredients of the element which provide the appropriate chemical conditions to induce the required color change. A chromogenic pH-sensitive indicator, which may be a compound or mixture of compounds, changes color when there is a change in pH in the surrounding medium. In certain embodiments, the indicator is used in combination with a suitable base which provides an alkaline solution. The hydroxyl ions or amine residues present in the alkaline solution react chemically with carbon dioxide to produce a carbonate, bicarbonate and/or carbamate moiety. The resulting reaction depletes the hydroxyl ion or amine at the interface and thus lowers the pH at the surface of the component impregnated with the indicating element. The lowering of the pH causes a color change in the indicator.


Chromogenic pH-sensitive indicators according to the present techniques include metacresol purple, thymol blue, cresol red, phenol red, xylenol blue, a 3:1 mixture of cresol red and thymol blue, bromthymol blue, neutral red, phenolphthalein, rosolic acid, alpha-naphtholphthalein and orange I. Examples of other indicators which may be used in the present invention include bromcresol purple, bromphenol red, p-nitrophenol, m-nitrophenol, curcumin, quinoline blue, thymolphthalein and mixtures thereof. Suitable bases include sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium barbitol, tribasic sodium phosphate, dibasic sodium phosphate, potassium acetate, monoethanolamine, diethanolamine and piperidine. In certain embodiments, it may be appropriate to incorporate surfactants, antioxidants and ultraviolet stabilizers in the indicator composition.


In other embodiments, it is contemplated that the carbon dioxide indicator may be an electrical indicator. When the indicator is an electrical or electronic device, it may be an electrode or transistor which is adapted to detect and measure changes in the ambient chemical parameters induced by the presence of critical amounts of carbon dioxide. For example, optical fiber carbon dioxide sensors may be used to convert a change in a chemical indicator to a quantitative measurement of carbon dioxide in the sample. Generally, such sensors operate by directing light of a predetermined wavelength from an external source through the optical fiber to impinge the chemical indicator. The intensity of the emitted fluorescent light returning along the fiber is directly related to the concentration of carbon dioxide in the sample as a result of the pH-sensitive indicator material present at the fiber tip (i.e., the pH of the indicator solution is directly related to carbon dioxide concentration, as a result of carbonic acid formation). The emitted light is carried by the optical fiber to a device where it is detected and converted electronically to a carbon dioxide concentration value. The sensor may additionally have a reference dye present in the indicator composition. The intensity of the light emitted form the reference dye may be used to compensate, via rationing, the signal obtained from the indicator. In one embodiment, the electrical indicator may include nanoelectronic components, such as carbon nanotubes that are coated with a carbon dioxide-sensitive compound or polymer, such as a polyethyleneimine and starch polymer. Carbon dioxide may combine with primary and tertiary amines in the polymer coating to form carbamates. The chemical reaction lowers the pH of the polymer coating, altering charge transfer to the carbon nanotubes and resulting in an electrical signal.


The indicator layer 14 may be formed from any appropriate substrate. For example, the indicator layer 14 may be filter paper that may be soaked in, dipped in, or otherwise exposed to the appropriate carbon dioxide-sensing compounds. In certain embodiments, only one side of the filter paper may be dipped into a solution containing the indicating compounds. The indicator layer 14 may be formed from polysulfone, polypropylene, or other polymer substrates, for example. The indicator layer 14 may be a thin film or a thicker substrate. A thicker substrate may lead to a slower response time, which may be advantageous in situations in which a sensor is monitoring carbon dioxide levels over a longer period of time. Additionally, the indicator layer 14 may have pores of a variety of sizes. In certain embodiments, the pore sizes of the indicator layer 14 substrate range from 0.2 microns to 5 microns.


Generally, the indicator layer 14 may be attached to the selective barrier 12 by any suitable means, such as by adhesives, heat sealing, or lamination. In certain embodiments, the selective barrier 12 may encapsulate and substantially surround the indicator layer 14. Although regular water infiltration into an indicator layer may lead to damage and inaccurate measurements, certain carbon dioxide indicators may work best in the presence of a small amount of water that is typically provided when preparing the indicator layer 14. Thus, complete encapsulation of the indicator layer 14 may serve to provide the additional advantage of preventing or slowing the drying out of the small amount of water present in the indicator layer 14.


In specific embodiments, it may be advantageous to provide a sensor assembly 10A as a dipstick-like device with a holder 20 that has a familiar and comfortable shape that is easy to use. For example, water-resistant sensors as provided herein may be used in vivo by a patient much like an oral thermometer. For example, FIG. 2 illustrates the placement of a sensor assembly 10A according to the present techniques adjacent a mucosal surface in the upper respiratory tract, such as a sublingual surface, in order to assess carbon dioxide in the tissue or oral liquids. The sensor assembly 10A includes a holder 20 that may be inserted into the oral passage and placed under the tongue 22 of the patient 24. The holder 20 may be suitably sized and shaped such that a patient may easily close his or her mouth around the holder 20 with minimal discomfort. In certain embodiments, the holder 20 may be adapted to be held against the cheek or any other mucosal tissue.



FIG. 3 shows a cross-sectional view of the patient 24 with the sensor assembly 10A placed sublingually. The holder 20 has a sublingual portion 26 that is shaped to fit under the patient's tongue 22 and to lie on the floor of the mouth. The holder also has a handle portion 28 that is accessible from outside the mouth and may be manipulated by the patient 24 or a healthcare worker in order to properly position the sensor assembly 10A within the mouth. The holder 20 may contain an opening, such as a slot, that contains the sensing components (e.g. the selective barrier and indicator layer as described above) such that when the holder 20 is inserted into the mouth, the sensing components are positioned to be inside the mouth. In certain embodiments, the holder 20 may include electrical input and output wires (not shown) that may extend along the holder 20 to contact the sensing components.


The holder 20 may also serve to prevent air flow around the sensor, thus preventing carbon dioxide in the tissue or oral fluids 30 from dissipating into the airstream, which may lead to inaccurate measurements. Generally, the sublingual portion 26 of the holder 20 may be suitably sized and shaped to allow the sensor assembly 10A to be positioned flush against the tissue, trapping any oral fluids 30 between the tissue and the sensor assembly 10A. Thus, it is more likely that the dissolved carbon dioxide in the oral fluids 30 may contact the carbon dioxide sensing elements of the sensor assembly 10A.



FIG. 4 is a perspective view of a sensor assembly 10B with a holder 32, which includes a tissue-contacting portion 34 and a handle portion 36. The holder 32 may be formed of an elastomeric material, such as a soft rubber or soft foam or of a more rigid plastic material. The handle 34 extends outwardly from the tissue-contacting portion 36 and may include a flexible cable (not shown) that extends outwardly from the handle 34 and may provide a connection to a medical monitoring device. The cable may be detachable, such that the cable is reusable after the sensor assembly 10B is disposed of. As depicted, the sensor assembly 10B includes a transparent window 38 that allows viewing of the color change of the sensing elements.



FIG. 5 depicts an exploded view of the sensor assembly 10B. The sensor 10B includes a transparent window 38 disposed on a surface of an indicator layer 40. A selective barrier 42 is disposed on the indicator layer 40 on the opposite side from the transparent layer 38. A porous substrate 44 is disposed on the selective barrier layer. It is contemplated that the transparent window 38, the indicator layer 40, the selective barrier 42, and the porous substrate 44 may be attached to one another with adhesives or by a heat sealing process. In an alternate embodiment, the transparent window 38 and the porous substrate 44 may integrally formed with the holder 40.


The transparent window 38 may be any suitable optically transparent material that allows for viewing of the indicator layer 40 beneath. Exemplary materials include transparent polymers, such as polypropylene or polyethylene terephlate.


In certain embodiments, no transparent layer is used in conjunction with the sensor assembly 10B. For example, in embodiments in which the indicator provides an electrical signal that is received by a monitor, the sensor assembly 10B may not include a transparent layer.


The porous substrate 44 may be any suitable material which is permeable to carbon dioxide. As the indicator layer 40 and the selective barrier 42 may be quite thin, the porous substrate 44 may be advantageous in providing rigidity and support to the sensor assembly 10B. Suitable materials include paper, plastics, or woven materials. In certain embodiments, no porous substrate 44 is used in conjunction with the sensor assembly 10B.



FIG. 6 is a schematic view of the sensor assembly 10B. Carbon dioxide 46 dissolved in liquid at the surface of the mucosal tissue contacts the porous substrate 44 when the sensor assembly 10B is applied to a mucosal surface. The porous substrate 44 is permeable to carbon dioxide 46, which diffuses through the selective barrier 42 to contact the indicator layer 40. The transparent window 38 allows viewing of the response, such as a change in color of the indicator layer 40. Water in the liquid sample may be able to diffuse through the porous substrate 44, but is repelled by the selective barrier 42, and thus prevented from reaching the indicator layer 40.


The exemplary sensors described herein, described here generically as a sensor 10, may be coupled to a monitor that may display the concentration of carbon dioxide in the patient sample (e.g. mucosal tissue or bodily fluids), as shown in FIG. 7. It should be appreciated that the cable 50 of the sensor 10 may be coupled to the monitor 48 or it may be coupled to a transmission device (not shown) to facilitate wireless transmission between the sensor 10 and the monitor 48. The monitor 48 may be any suitable carbon dioxide monitor, such as those available from Nellcor Puritan Bennett Inc. Furthermore, to upgrade conventional carbon dioxide detection provided by the monitor 48 to provide additional functions, the monitor 48 may be coupled to a multi-parameter patient monitor 52 via a cable 54 connected to a sensor input port or via a cable 56 connected to a digital communication port.


While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Indeed, the present techniques may not only be applied to measurements of carbon dioxide, but these techniques may also be utilized for the measurement and/or analysis of other blood constituents. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims. It will be appreciated by those working in the art that sensors fabricated using the presently disclosed and claimed techniques may be used in a wide variety of contexts. That is, while the invention has primarily been described in conjunction with the measurement of carbon dioxide concentration in blood, the sensors fabricated using the present method may be used to evaluate any number of sample types in a variety of industries, including fermentation technology, cell culture, and other biotechnology applications.

Claims
  • 1. A sensor comprising: a porous substrate being permeable to water and carbon dioxide and having a first surface and a second surface, the first surface being adapted to be placed on mucosal tissue of a patient to obtain a sample;a selective barrier being permeable to carbon dioxide and substantially impermeable to water, the selective barrier being disposed on the second surface of the porous substrate; anda solid indicator disposed on the selective barrier opposite the porous substrate, the solid indicator being adapted to provide feedback related to a presence of carbon dioxide in a non-gaseous portion of the sample.
  • 2. The sensor, as set forth in claim 1, wherein the selective barrier has a ratio of water permeability to carbon dioxide permeability of less than 10.
  • 3. The sensor, as set forth in claim 1, comprising an optically transparent layer or an optically opaque layer disposed on the indicator opposite the selective barrier.
  • 4. The sensor, as set forth in claim 1, comprising a holder adapted to hold the sensor adjacent to the mucosal tissue.
  • 5. The sensor, as set forth in claim 1, wherein the indicator comprises a carbon dioxide-sensitive chemical compound.
  • 6. The sensor, as set forth in claim 1, wherein the selective barrier comprises a polymer film.
  • 7. The sensor, as set forth in claim 6, wherein the polymer film comprises pores less than 5 microns in diameter.
  • 8. The sensor, as set forth in claim 1, wherein the selective barrier comprises a polytetrafluoroethylene layer.
  • 9. A system comprising: a monitor; anda sensor adapted to be operatively coupled to the monitor, the sensor comprising: a porous substrate being permeable to water and carbon dioxide and having a first surface and a second surface, the first surface being adapted to be placed on mucosal tissue of a patient to obtain a sample;a selective barrier being permeable to carbon dioxide and substantially impermeable to water, the selective barrier being disposed on the second surface of the porous substrate; anda solid indicator disposed on the selective barrier opposite the porous substrate, the solid indicator being adapted to provide feedback related to a presence of carbon dioxide in a non-gaseous portion of the sample.
  • 10. The system, as set forth in claim 9, wherein the selective barrier has a ratio of water permeability to carbon dioxide permeability of less than 10.
  • 11. The system, as set forth in claim 9, comprising an optically transparent or an optically opaque layer disposed on the indicator opposite the selective barrier.
  • 12. The system, as set forth in claim 9, comprising a holder adapted to hold the sensor adjacent to the mucosal tissue.
  • 13. The system, as set forth in claim 9, wherein the indicator comprises a carbon dioxide-sensitive chemical compound.
  • 14. The system, as set forth in claim 9, wherein the selective barrier comprises a polymer film.
  • 15. The system, as set forth in claim 14, wherein the polymer film comprises pores less than 5 microns in diameter.
  • 16. The system, as set forth in claim 9, wherein the selective barrier comprises a polytetrafluoroethylene layer.
  • 17. A method comprising: taking a patient sample by contacting a mucosal tissue of a patient with a porous substrate that is permeable to water and carbon dioxide, wherein the porous substrate is disposed on a sample-contacting surface of a selective barrier;contacting the patient sample with the sample-contacting surface of the selective barrier, wherein the selective barrier is permeable to carbon dioxide and substantially impermeable to water; andcontacting a carbon dioxide-containing portion of the patient sample with a solid indicator layer disposed on a surface of the selective barrier opposite the sample-contacting surface, wherein the indicator is adapted to provide feedback related to a presence of carbon dioxide.
  • 18. The method, as set forth in claim 17, wherein the selective barrier has a ratio of water permeability to carbon dioxide permeability of less than 10.
  • 19. The method, as set forth in claim 17, comprising assessing the presence of carbon dioxide by viewing the indicator through an optically transparent layer.
  • 20. The method, as set forth in claim 17, wherein the indicator changes color in response to the presence of carbon dioxide.
  • 21. A method of providing a sensor, comprising: providing a solid indicator layer adapted to provide feedback related to a presence of carbon dioxide in a non-gaseous patient sample;providing a selective barrier disposed on a sample-contacting side of the indicator, wherein the selective barrier is permeable to carbon dioxide and substantially impermeable to water; andproviding a holder adapted to hold the selective barrier against and in direct contact with a mucosal tissue.
  • 22. The method, as set forth in claim 21, comprising: providing an optically transparent layer or an optically opaque layer disposed on the indicator.
  • 23. The method, as set forth in claim 21, wherein the selective barrier substantially surrounds the indicator.
  • 24. The method, as set forth in claim 21, comprising: providing a porous substrate that is permeable to water and carbon dioxide, wherein the porous substrate is disposed on the sample-contacting surface of the selective barrier.
  • 25. The method, as set forth in claim 21, wherein the indicator comprises a carbon dioxide-sensitive chemical compound.
  • 26. The method, as set forth in claim 21, wherein the selective barrier comprises a polymer film.
  • 27. The method, as set forth in claim 26, wherein the polymer film comprises pores less than 5 microns in diameter.
  • 28. The method, as set forth in claim 21, wherein the selective barrier comprises a polytetrafluoroethylene layer.
  • 29. The method, as set forth in claim 21, wherein the selective barrier has a ratio of water permeability to carbon dioxide permeability of less than 10.
US Referenced Citations (973)
Number Name Date Kind
2136236 Drper Nov 1938 A
2638096 Wldhus May 1953 A
2880072 Grosskopf Mar 1959 A
2890177 Kilmer Jun 1959 A
2904033 Shne Sep 1959 A
3067015 Lwdermilt Dec 1962 A
3068073 Stnford Dec 1962 A
3113842 Udll Dec 1963 A
3114610 Gafford et al. Dec 1963 A
3238020 Eisemn Mar 1966 A
3363833 Lerdl Jan 1968 A
3373735 Gllgher Mar 1968 A
3420635 Dvis Jan 1969 A
3467601 Bruer Sep 1969 A
3505022 Luckey Apr 1970 A
3507623 McConnughey Apr 1970 A
3556122 Laerdal Jan 1971 A
3612048 Takaoka Oct 1971 A
3615233 Doering et al. Oct 1971 A
3659586 Johns et al. May 1972 A
3694164 Guenther Sep 1972 A
3721813 Condon et al. Mar 1973 A
3754867 Guenther Aug 1973 A
3830630 Kiefer et al. Aug 1974 A
4003709 Eaton et al. Jan 1977 A
4019862 Dahms Apr 1977 A
4077404 Elam Mar 1978 A
4106502 Wilson Aug 1978 A
4144306 Figueras Mar 1979 A
4277251 Leichnitz Jul 1981 A
4287153 Towsend Sep 1981 A
4332771 Leichnitz Jun 1982 A
4346584 Boehringer Aug 1982 A
4366821 Wittmaier et al. Jan 1983 A
4389372 Lalin Jun 1983 A
4438067 Siddiqi Mar 1984 A
4548906 Sekikawa Oct 1985 A
4557900 Heitzmann Dec 1985 A
4557901 Koyama et al. Dec 1985 A
4586513 Hamaguri May 1986 A
4603700 Nichols et al. Aug 1986 A
4621643 New, Jr. et al. Nov 1986 A
4653498 New, Jr. et al. Mar 1987 A
4685464 Goldberger et al. Aug 1987 A
4691701 Williams Sep 1987 A
4694833 Hamaguri Sep 1987 A
4697593 Evans et al. Oct 1987 A
4700708 New, Jr. et al. Oct 1987 A
4714080 Edgar, Jr. et al. Dec 1987 A
4714341 Hamaguri et al. Dec 1987 A
4728499 Fehder Mar 1988 A
4734125 Gehring et al. Mar 1988 A
4759369 Taylor Jul 1988 A
4770179 New, Jr. et al. Sep 1988 A
4773422 Isaacson et al. Sep 1988 A
4774941 Cook Oct 1988 A
4776339 Schreiber Oct 1988 A
4780411 Piejko et al. Oct 1988 A
4781195 Martin Nov 1988 A
4788153 Detwiler et al. Nov 1988 A
4790327 Despotis Dec 1988 A
4796636 Branstetter et al. Jan 1989 A
4800495 Smith Jan 1989 A
4800885 Johnson Jan 1989 A
4802486 Goodman et al. Feb 1989 A
4805623 Jöbsis Feb 1989 A
4807630 Malinouskas Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4819646 Cheung et al. Apr 1989 A
4819752 Zelin Apr 1989 A
4824242 Frick et al. Apr 1989 A
4824640 Hildenbrand et al. Apr 1989 A
4825872 Tan et al. May 1989 A
4825879 Tan et al. May 1989 A
4830014 Goodman et al. May 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4848901 Hood, Jr. Jul 1989 A
4854699 Edgar, Jr. Aug 1989 A
4859056 Prosser et al. Aug 1989 A
4859057 Taylor et al. Aug 1989 A
4863265 Flower et al. Sep 1989 A
4865038 Rich et al. Sep 1989 A
4867557 Takatani et al. Sep 1989 A
4869253 Craig, Jr. et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4879999 Leiman et al. Nov 1989 A
4880304 Jaeb et al. Nov 1989 A
4883055 Merrick Nov 1989 A
4883353 Hausman et al. Nov 1989 A
4890619 Hatschek Jan 1990 A
4892101 Cheung et al. Jan 1990 A
4901238 Suzuki et al. Feb 1990 A
4908762 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4926867 Kanda et al. May 1990 A
4927264 Shiga et al. May 1990 A
4928687 Lampotang et al. May 1990 A
4928692 Goodman et al. May 1990 A
4934372 Corenman et al. Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4942877 Sakai et al. Jul 1990 A
4945918 Abernathy Aug 1990 A
4948248 Lehman Aug 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4971062 Hasebe et al. Nov 1990 A
4974591 Awazu et al. Dec 1990 A
4994117 Fehder Feb 1991 A
4999306 Yafuso et al. Mar 1991 A
5005572 Raemer et al. Apr 1991 A
5007423 Branstetter et al. Apr 1991 A
5025791 Niwa Jun 1991 A
RE33643 Isaacson et al. Jul 1991 E
5028787 Rosenthal et al. Jul 1991 A
5035243 Muz Jul 1991 A
5040539 Schmitt et al. Aug 1991 A
5047208 Schweitzer et al. Sep 1991 A
5054488 Muz Oct 1991 A
5055671 Jones Oct 1991 A
5058588 Kaestle Oct 1991 A
5065749 Hasebe et al. Nov 1991 A
5066859 Karkar et al. Nov 1991 A
5069213 Polczynski Dec 1991 A
5078136 Stone et al. Jan 1992 A
5084327 Stengel Jan 1992 A
5088493 Giannini et al. Feb 1992 A
5090410 Saper et al. Feb 1992 A
5094239 Jaeb et al. Mar 1992 A
5094240 Muz Mar 1992 A
5099841 Heinonen et al. Mar 1992 A
5099842 Mannheimer et al. Mar 1992 A
H1039 Tripp, Jr. et al. Apr 1992 H
5104623 Miller Apr 1992 A
5109840 Daleiden May 1992 A
5109849 Goodman et al. May 1992 A
5111817 Clark et al. May 1992 A
5113861 Rother May 1992 A
5124129 Riccitelli et al. Jun 1992 A
5125403 Culp Jun 1992 A
5127406 Yamaguchi Jul 1992 A
5131391 Sakai et al. Jul 1992 A
5140989 Lewis et al. Aug 1992 A
5152296 Simons Oct 1992 A
5154175 Gunther Oct 1992 A
5154890 Mauze et al. Oct 1992 A
5156159 Lampotang et al. Oct 1992 A
5158082 Jones Oct 1992 A
5164796 Di Guiseppi et al. Nov 1992 A
5166075 Fehder Nov 1992 A
5170786 Thomas et al. Dec 1992 A
5179002 Fehder Jan 1993 A
5188108 Secker et al. Feb 1993 A
5190038 Polson et al. Mar 1993 A
5193542 Missanelli et al. Mar 1993 A
5193543 Yelderman Mar 1993 A
5197464 Babb et al. Mar 1993 A
5203329 Takatani et al. Apr 1993 A
5209230 Swedlow et al. May 1993 A
5213099 Tripp et al. May 1993 A
5216598 Branstetter et al. Jun 1993 A
5217012 Young et al. Jun 1993 A
5217013 Lewis et al. Jun 1993 A
5218962 Mannheimer et al. Jun 1993 A
5224478 Sakai et al. Jul 1993 A
5226417 Swedlow et al. Jul 1993 A
5228440 Chung et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5239185 Ito et al. Aug 1993 A
5246002 Prosser Sep 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5247932 Chung et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5253645 Friedman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5259381 Cheung et al. Nov 1993 A
5259761 Schnettler et al. Nov 1993 A
5263244 Centa et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5273036 Kronberg et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5279289 Kirk Jan 1994 A
5279295 Martens et al. Jan 1994 A
5285783 Secker Feb 1994 A
5285784 Seeker Feb 1994 A
5287853 Vester et al. Feb 1994 A
5291879 Babb et al. Mar 1994 A
5291884 Heinemann et al. Mar 1994 A
5297548 Pologe Mar 1994 A
5299120 Kaestle Mar 1994 A
5299570 Hatschek Apr 1994 A
5309908 Friedman et al. May 1994 A
5311865 Mayeux May 1994 A
5313940 Fuse et al. May 1994 A
5322612 Abe et al. Jun 1994 A
5323776 Blakeley et al. Jun 1994 A
5329922 Atlee, III Jul 1994 A
5337744 Branigan Aug 1994 A
5339810 Ivers et al. Aug 1994 A
5343818 McCarthy et al. Sep 1994 A
5343869 Pross et al. Sep 1994 A
5348003 Caro Sep 1994 A
5348004 Hollub et al. Sep 1994 A
5349519 Kaestle Sep 1994 A
5349952 McCarthy et al. Sep 1994 A
5349953 McCarthy et al. Sep 1994 A
5351685 Potratz Oct 1994 A
5353799 Chance Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5365066 Krueger, Jr. et al. Nov 1994 A
5368025 Young et al. Nov 1994 A
5368026 Swedlow et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5372136 Steuer et al. Dec 1994 A
5375592 Kirk et al. Dec 1994 A
5377675 Ruskewicz et al. Jan 1995 A
5385143 Aoyagi Jan 1995 A
5387122 Goldberger et al. Feb 1995 A
5390670 Centa et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5398680 Polson et al. Mar 1995 A
5402777 Warring et al. Apr 1995 A
5411023 Morris, Sr. et al. May 1995 A
5411024 Thomas et al. May 1995 A
5413099 Schmidt et al. May 1995 A
5413100 Barthelemy et al. May 1995 A
5413101 Sugiura May 1995 A
5413102 Schmidt et al. May 1995 A
5417207 Young et al. May 1995 A
5421329 Casciani et al. Jun 1995 A
5425360 Nelson Jun 1995 A
5425362 Siker et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5429129 Lovejoy et al. Jul 1995 A
5431159 Baker et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5437275 Amundsen et al. Aug 1995 A
5438986 Disch et al. Aug 1995 A
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
5456249 Kirk Oct 1995 A
5468451 Gedeon Nov 1995 A
5469845 DeLonzor et al. Nov 1995 A
RE35122 Corenman et al. Dec 1995 E
5472668 Mills et al. Dec 1995 A
5474065 Meathrel et al. Dec 1995 A
5480611 Mills et al. Jan 1996 A
5482034 Lewis et al. Jan 1996 A
5482036 Diab et al. Jan 1996 A
5483646 Uchikoga Jan 1996 A
5485847 Baker, Jr. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5491299 Naylor et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5494640 Simon et al. Feb 1996 A
5497771 Rosenheimer Mar 1996 A
5499627 Steuer et al. Mar 1996 A
5503148 Pologe et al. Apr 1996 A
5505199 Kim Apr 1996 A
5507286 Solenberger Apr 1996 A
5511546 Hon Apr 1996 A
5511547 Markle et al. Apr 1996 A
5517985 Kirk et al. May 1996 A
5517988 Gerhard May 1996 A
5520177 Ogawa et al. May 1996 A
5520997 Pourahmady et al. May 1996 A
5521851 Wei et al. May 1996 A
5522388 Ishikawa et al. Jun 1996 A
5524617 Mannheimer Jun 1996 A
5529064 Rall et al. Jun 1996 A
5533507 Potratz et al. Jul 1996 A
5538620 Nikolskaja Jul 1996 A
5551423 Sugiura Sep 1996 A
5551424 Morrison et al. Sep 1996 A
5553614 Chance Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5558096 Palatnik Sep 1996 A
5560355 Merchant et al. Oct 1996 A
5564417 Chance Oct 1996 A
5575284 Athan et al. Nov 1996 A
5575285 Takanashi et al. Nov 1996 A
5577500 Potratz Nov 1996 A
5582169 Oda et al. Dec 1996 A
5584296 Cui et al. Dec 1996 A
5588425 Sackner et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596986 Goldfarb Jan 1997 A
5611337 Bukta Mar 1997 A
5617852 MacGregor Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5632273 Suzuki May 1997 A
5634426 Tomlinson et al. Jun 1997 A
5634459 Gardosi Jun 1997 A
5638593 Gerhardt et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645060 Yorkey et al. Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662105 Tien Sep 1997 A
5662106 Swedlow et al. Sep 1997 A
5666952 Fuse et al. Sep 1997 A
5671529 Nelson Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5673693 Solenberger Oct 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5679884 Kirk Oct 1997 A
5680857 Pelikan et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5692505 Fouts Dec 1997 A
5709205 Bukta Jan 1998 A
5713355 Richardson et al. Feb 1998 A
5714121 Alderete et al. Feb 1998 A
5724967 Venkatachalam Mar 1998 A
5727547 Levinson et al. Mar 1998 A
5731582 West Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743260 Chung et al. Apr 1998 A
5743263 Baker, Jr. Apr 1998 A
5746206 Mannheimer May 1998 A
5746697 Swedlow et al. May 1998 A
5749358 Good et al. May 1998 A
5752914 DeLonzor et al. May 1998 A
5755226 Carim et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5766125 Aoyagi et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772587 Gratton et al. Jun 1998 A
5774213 Trebino et al. Jun 1998 A
5776058 Levinson et al. Jul 1998 A
5776059 Kaestle Jul 1998 A
5779630 Fein et al. Jul 1998 A
5779631 Chance Jul 1998 A
5782237 Casciani et al. Jul 1998 A
5782756 Mannheimer Jul 1998 A
5782757 Diab et al. Jul 1998 A
5782758 Ausec et al. Jul 1998 A
5783110 Verdicchio et al. Jul 1998 A
5786592 Hök Jul 1998 A
5790729 Pologe et al. Aug 1998 A
5792052 Isaacson et al. Aug 1998 A
5795292 Lewis et al. Aug 1998 A
5797841 DeLonzor et al. Aug 1998 A
5800348 Kaestle Sep 1998 A
5800349 Isaacson et al. Sep 1998 A
5803910 Potratz Sep 1998 A
5807246 Sakaguchi et al. Sep 1998 A
5807247 Merchant et al. Sep 1998 A
5807248 Mills Sep 1998 A
5810723 Aldrich Sep 1998 A
5810724 Gronvall Sep 1998 A
5813980 Levinson et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5817009 Rosenheimer et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5820550 Polson et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5830135 Bosque et al. Nov 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830137 Scharf Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5842979 Jarman et al. Dec 1998 A
5842981 Larsen et al. Dec 1998 A
5842982 Mannheimer Dec 1998 A
5846190 Woehrle Dec 1998 A
5846836 Mallow Dec 1998 A
5849594 Balderson et al. Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5871442 Madarasz et al. Feb 1999 A
5879294 Anderson et al. Mar 1999 A
5882936 Bentsen et al. Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891021 Dillon et al. Apr 1999 A
5891022 Pologe Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5891025 Buschmann et al. Apr 1999 A
5891026 Wang et al. Apr 1999 A
5902235 Lewis et al. May 1999 A
5910108 Solenberger Jun 1999 A
5911690 Rall Jun 1999 A
5912656 Tham et al. Jun 1999 A
5913819 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916155 Levinson et al. Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5922607 Bernreuter Jul 1999 A
5924979 Swedlow et al. Jul 1999 A
5924980 Coetzee Jul 1999 A
5924982 Chin Jul 1999 A
5924985 Jones Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5960610 Levinson et al. Oct 1999 A
5961450 Merchant et al. Oct 1999 A
5961452 Chung et al. Oct 1999 A
5964701 Asada et al. Oct 1999 A
5971930 Elghazzawi Oct 1999 A
5978691 Mills Nov 1999 A
5978693 Hamilton et al. Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995858 Kinast Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6006120 Levin Dec 1999 A
6011985 Athan et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014576 Raley et al. Jan 2000 A
6018673 Chin et al. Jan 2000 A
6018674 Aronow Jan 2000 A
6022321 Amano et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6026314 Amerov et al. Feb 2000 A
6031603 Fine et al. Feb 2000 A
6035223 Baker, Jr. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6041247 Weckstrom et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6047201 Jackson, III Apr 2000 A
6055447 Weil et al. Apr 2000 A
6058933 Good et al. May 2000 A
6061584 Lovejoy et al. May 2000 A
6064898 Aldrich May 2000 A
6064899 Fein et al. May 2000 A
6067462 Diab et al. May 2000 A
6073038 Wang et al. Jun 2000 A
6078833 Hueber Jun 2000 A
6081735 Diab et al. Jun 2000 A
6081742 Amano et al. Jun 2000 A
6083157 Noller Jul 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6104938 Huiku et al. Aug 2000 A
6112107 Hannula Aug 2000 A
6113541 Dias et al. Sep 2000 A
6115621 Chin Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6123075 Kirk Sep 2000 A
6133994 Mathews et al. Oct 2000 A
6135952 Coetzee Oct 2000 A
6144444 Haworth et al. Nov 2000 A
6144867 Walker et al. Nov 2000 A
6144868 Parker Nov 2000 A
6149481 Wang et al. Nov 2000 A
6150951 Olejniczak Nov 2000 A
6151107 Schöllerman et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6163175 Sharpe-Geisler Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6173196 Delonzor et al. Jan 2001 B1
6178343 Bindszus et al. Jan 2001 B1
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllerman et al. Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6188470 Grace Feb 2001 B1
6192260 Chance Feb 2001 B1
6195575 Levinson Feb 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6206830 Diab et al. Mar 2001 B1
6213952 Finarov et al. Apr 2001 B1
6216024 Weil et al. Apr 2001 B1
6217523 Amano et al. Apr 2001 B1
6222189 Misner et al. Apr 2001 B1
6226539 Potratz May 2001 B1
6226540 Bernreuter et al. May 2001 B1
6229856 Diab et al. May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6233470 Tsuchiya May 2001 B1
6236871 Tsuchiya May 2001 B1
6236872 Diab et al. May 2001 B1
6240305 Tsuchiya May 2001 B1
6253097 Aronow et al. Jun 2001 B1
6253098 Walker et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6256524 Walker et al. Jul 2001 B1
6261236 Grimblatov Jul 2001 B1
6263221 Chance et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6263223 Sheperd et al. Jul 2001 B1
6265221 Nilsson Jul 2001 B1
6266546 Steuer et al. Jul 2001 B1
6266547 Walker et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285807 Walt et al. Sep 2001 B1
6285894 Oppelt et al. Sep 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler et al. Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6308089 Von der Ruhr et al. Oct 2001 B1
6319723 Jeffers et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6339715 Bahr et al. Jan 2002 B1
6343223 Chin et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6353750 Kimura et al. Mar 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360113 Dettling Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6361501 Amano et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
6370408 Merchant et al. Apr 2002 B1
6370409 Chung et al. Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6377829 Al-Ali et al. Apr 2002 B1
6378522 Pagan Apr 2002 B1
6381479 Norris Apr 2002 B1
6381480 Stoddar et al. Apr 2002 B1
6385471 Mortz May 2002 B1
6385821 Modgil et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6393310 Kuenster May 2002 B1
6397091 Diab et al. May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6400971 Finarov et al. Jun 2002 B1
6400972 Fine Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411832 Guthermann Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6419671 Lemberg Jul 2002 B1
6421549 Jacques Jul 2002 B1
6427687 Kirk Aug 2002 B1
6428748 Wallach Aug 2002 B1
6430423 DeLonzor et al. Aug 2002 B2
6430513 Wang et al. Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6434408 Heckel et al. Aug 2002 B1
6436347 Cedeon Aug 2002 B1
6438399 Kurth Aug 2002 B1
6449501 Reuss Sep 2002 B1
6453183 Walker Sep 2002 B1
6453184 Hyogo et al. Sep 2002 B1
6456862 Benni Sep 2002 B2
6461305 Schnall Oct 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6466808 Chin et al. Oct 2002 B1
6466809 Riley Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470200 Walker et al. Oct 2002 B2
6480729 Stone Nov 2002 B2
6490466 Fein et al. Dec 2002 B1
6496711 Athan et al. Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6502573 Ratner Jan 2003 B1
6505060 Norris Jan 2003 B1
6505061 Larson Jan 2003 B2
6505133 Hanna et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6510331 Williams et al. Jan 2003 B1
6512937 Blank et al. Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519484 Lovejoy et al. Feb 2003 B1
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6546267 Sugiura et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553242 Sarussi Apr 2003 B1
6553243 Gurley Apr 2003 B2
6556852 Schulze et al. Apr 2003 B1
6560470 Pologe May 2003 B1
6564077 Mortara May 2003 B2
6564088 Soller et al. May 2003 B1
6571113 Fein et al. May 2003 B1
6571114 Koike et al. May 2003 B1
6574491 Elghazzawi Jun 2003 B2
6576474 Wallach Jun 2003 B2
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587703 Cheng et al. Jul 2003 B2
6587704 Fine et al. Jul 2003 B1
6589172 Williams et al. Jul 2003 B2
6591122 Schmitt Jul 2003 B2
6591123 Fein et al. Jul 2003 B2
6594511 Stone et al. Jul 2003 B2
6594512 Huang Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6597931 Cheng et al. Jul 2003 B1
6597933 Kiani et al. Jul 2003 B2
6600940 Fein et al. Jul 2003 B1
D478522 Geist Aug 2003 S
6606510 Swedlow et al. Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6606512 Muz et al. Aug 2003 B2
6615064 Aldrich Sep 2003 B1
6615065 Barrett et al. Sep 2003 B1
6618602 Levin et al. Sep 2003 B2
6622034 Gorski et al. Sep 2003 B1
6628975 Fein et al. Sep 2003 B1
6631281 Kästle Oct 2003 B1
6643530 Diab et al. Nov 2003 B2
6643531 Katarow Nov 2003 B1
6647279 Pologe Nov 2003 B2
6647280 Bahr et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6650918 Terry Nov 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654622 Eberhard et al. Nov 2003 B1
6654623 Kästle Nov 2003 B1
6654624 Diab et al. Nov 2003 B2
6658276 Pishney et al. Dec 2003 B2
6658277 Wassermann Dec 2003 B2
6662033 Casciani et al. Dec 2003 B2
6665551 Suzuki Dec 2003 B1
6668182 Hubelbank Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6671530 Chung et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6671532 Fudge et al. Dec 2003 B1
6675031 Porges et al. Jan 2004 B1
6677159 Mallow Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6681128 Steuer et al. Jan 2004 B2
6681454 Modgil et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694160 Chin Feb 2004 B2
6697653 Hanna Feb 2004 B2
6697655 Sueppel et al. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6699199 Asada et al. Mar 2004 B2
6701170 Stetson Mar 2004 B2
6702752 Dekker Mar 2004 B2
6707257 Norris Mar 2004 B2
6708049 Berson et al. Mar 2004 B1
6709402 Dekker Mar 2004 B2
6709403 Ratner Mar 2004 B1
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6714803 Mortz Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
6714805 Jeon et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719686 Coakley et al. Apr 2004 B2
6719705 Mills Apr 2004 B2
6720734 Norris Apr 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6723077 Pickup et al. Apr 2004 B2
6725074 Kästle Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6731963 Finarov et al. May 2004 B2
6731967 Turcott May 2004 B1
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748253 Norris et al. Jun 2004 B2
6748254 Chin et al. Jun 2004 B2
6754515 Pologe Jun 2004 B1
6754516 Mannheimer Jun 2004 B2
6760607 Al-All Jul 2004 B2
6760609 Jacques Jul 2004 B2
6760610 Tscupp et al. Jul 2004 B2
6763255 DeLonzor et al. Jul 2004 B2
6763256 Kimball et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773397 Kelly Aug 2004 B2
6778923 Norris et al. Aug 2004 B2
6780158 Yarita Aug 2004 B2
6791689 Weckström Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6793654 Lemberg Sep 2004 B2
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6801802 Sitzman et al. Oct 2004 B2
6802812 Walker et al. Oct 2004 B1
6805673 Dekker Oct 2004 B2
6810277 Edgar, Jr. et al. Oct 2004 B2
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6825619 Norris Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830711 Mills et al. Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6839579 Chin Jan 2005 B1
6839580 Zonios et al. Jan 2005 B2
6839582 Heckel Jan 2005 B2
6839659 Tarassenko et al. Jan 2005 B2
6842635 Parker Jan 2005 B1
6845256 Chin et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6850789 Schweitzer, Jr. et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6863652 Huang et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6879850 Kimball Apr 2005 B2
6882874 Huiku Apr 2005 B2
6889153 Dietiker May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6909912 Melker et al. Jun 2005 B2
6912413 Rantala et al. Jun 2005 B2
6916289 Schnall Jul 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6929008 Geist Aug 2005 B2
6931269 Terry Aug 2005 B2
6934570 Kiani et al. Aug 2005 B2
6939307 Dunlop Sep 2005 B1
6941162 Fudge et al. Sep 2005 B2
6947781 Asada et al. Sep 2005 B2
6950687 Al-Ali Sep 2005 B2
6963767 Rantala et al. Nov 2005 B2
6971580 Zhu et al. Dec 2005 B2
6983178 Fine et al. Jan 2006 B2
6985763 Boas et al. Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6990426 Yoon et al. Jan 2006 B2
6992751 Okita et al. Jan 2006 B2
6992772 Block et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6993372 Fine et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006855 Sarussi Feb 2006 B1
7006856 Baker, Jr. et al. Feb 2006 B2
7016715 Stetson Mar 2006 B2
7020507 Scharf et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7024235 Melker et al. Apr 2006 B2
7025728 Ito et al. Apr 2006 B2
7027849 Al-Ali et al. Apr 2006 B2
7027850 Wasserman Apr 2006 B2
7035697 Brown Apr 2006 B1
7039449 Al-Ali May 2006 B2
7043289 Fine et al. May 2006 B2
7047055 Boaz et al. May 2006 B2
7047056 Hannula et al. May 2006 B2
7060035 Wasserman et al. Jun 2006 B2
7062307 Norris et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7072701 Chen et al. Jul 2006 B2
7072702 Edgar, Jr. et al. Jul 2006 B2
7079880 Stetson Jul 2006 B2
7085597 Fein et al. Aug 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Adbul-Hafiz et al. Aug 2006 B2
7107088 Aceti Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7123950 Mannheimer Oct 2006 B2
7127278 Melker et al. Oct 2006 B2
7130671 Baker, Jr. et al. Oct 2006 B2
7132641 Schulz et al. Nov 2006 B2
7133711 Chernoguz et al. Nov 2006 B2
7139599 Terry Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7162288 Nordstrom Jan 2007 B2
7190987 Lindekugel et al. Mar 2007 B2
7198778 Achilefu et al. Apr 2007 B2
7209775 Bae et al. Apr 2007 B2
7215984 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali et al. May 2007 B2
7236811 Schmitt Jun 2007 B2
7236881 Liu et al. Jun 2007 B2
7248910 Li et al. Jul 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7263395 Chan et al. Aug 2007 B2
7272426 Scmid Sep 2007 B2
7280858 Al-Ali et al. Oct 2007 B2
7295866 Al-Ali et al. Nov 2007 B2
7305262 Brodnick et al. Dec 2007 B2
7315753 Baker, Jr. et al. Jan 2008 B2
20010021803 Blank et al. Sep 2001 A1
20010051767 Williams et al. Dec 2001 A1
20020026109 Diab et al. Feb 2002 A1
20020028990 Sheperd et al. Mar 2002 A1
20020038078 Ito Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020068859 Knopp Jun 2002 A1
20020128544 Diab et al. Sep 2002 A1
20020133067 Jackson, III Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020173706 Takatani Nov 2002 A1
20020173709 Fine et al. Nov 2002 A1
20020190863 Lynn Dec 2002 A1
20020198442 Rantala et al. Dec 2002 A1
20030003593 Wallach Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030036690 Geddes et al. Feb 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030073889 Keilbach et al. Apr 2003 A1
20030073890 Hanna Apr 2003 A1
20030100840 Sugiura et al. May 2003 A1
20030132495 Mills et al. Jul 2003 A1
20030133123 Yeh Jul 2003 A1
20030135099 Al-Ali Jul 2003 A1
20030162414 Schulz et al. Aug 2003 A1
20030171662 O'Connor et al. Sep 2003 A1
20030176776 Huiku Sep 2003 A1
20030181799 Lindekugel et al. Sep 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030195402 Fein et al. Oct 2003 A1
20030197679 Ali et al. Oct 2003 A1
20030199095 Yuyama et al. Oct 2003 A1
20030212316 Leiden et al. Nov 2003 A1
20030225323 Kiani et al. Dec 2003 A1
20030225337 Scharf et al. Dec 2003 A1
20030236452 Melker et al. Dec 2003 A1
20030236647 Yoon et al. Dec 2003 A1
20040006261 Swedlow et al. Jan 2004 A1
20040010188 Wasserman et al. Jan 2004 A1
20040024297 Chen et al. Feb 2004 A1
20040024326 Yeo et al. Feb 2004 A1
20040034293 Kimball Feb 2004 A1
20040039272 Abdul-Hafiz et al. Feb 2004 A1
20040039273 Terry Feb 2004 A1
20040054269 Rantala et al. Mar 2004 A1
20040054291 Schulz et al. Mar 2004 A1
20040059209 Al-Ali et al. Mar 2004 A1
20040059210 Stetson Mar 2004 A1
20040064020 Diab et al. Apr 2004 A1
20040065329 Geist Apr 2004 A1
20040068164 Diab et al. Apr 2004 A1
20040087846 Wasserman May 2004 A1
20040087916 Pickup et al. May 2004 A1
20040092805 Yarita May 2004 A1
20040097797 Porges et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040107065 Al-Ali et al. Jun 2004 A1
20040116788 Chernoguz et al. Jun 2004 A1
20040116789 Boaz et al. Jun 2004 A1
20040117891 Hannula et al. Jun 2004 A1
20040122300 Boas et al. Jun 2004 A1
20040122302 Mason et al. Jun 2004 A1
20040133087 Ali et al. Jul 2004 A1
20040133088 Al-Ali et al. Jul 2004 A1
20040138538 Stetson Jul 2004 A1
20040138540 Baker, Jr. et al. Jul 2004 A1
20040143172 Fudge et al. Jul 2004 A1
20040147821 Al-Ali et al. Jul 2004 A1
20040147822 Al-Ali et al. Jul 2004 A1
20040147823 Kiani et al. Jul 2004 A1
20040147824 Diab et al. Jul 2004 A1
20040152965 Diab et al. Aug 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040158135 Baker, Jr. et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040171920 Mannheimer et al. Sep 2004 A1
20040171948 Terry Sep 2004 A1
20040176671 Fine et al. Sep 2004 A1
20040181133 Al-Ali et al. Sep 2004 A1
20040181134 Baker, Jr. et al. Sep 2004 A1
20040181196 Pickup et al. Sep 2004 A1
20040184024 Katura et al. Sep 2004 A1
20040186358 Chernow et al. Sep 2004 A1
20040199063 O'Neil et al. Oct 2004 A1
20040204636 Diab et al. Oct 2004 A1
20040204637 Diab et al. Oct 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040204865 Lee et al. Oct 2004 A1
20040210146 Diab et al. Oct 2004 A1
20040215069 Mannheimer Oct 2004 A1
20040230107 Asada et al. Nov 2004 A1
20040230108 Melker et al. Nov 2004 A1
20040236196 Diab et al. Nov 2004 A1
20040242980 Kiani et al. Dec 2004 A1
20040249252 Fine et al. Dec 2004 A1
20040257557 Block et al. Dec 2004 A1
20040260161 Melker et al. Dec 2004 A1
20040267103 Li et al. Dec 2004 A1
20040267104 Hannula et al. Dec 2004 A1
20040267140 Ito et al. Dec 2004 A1
20050004479 Townsend et al. Jan 2005 A1
20050010092 Weber et al. Jan 2005 A1
20050016543 Geist Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050020894 Norris et al. Jan 2005 A1
20050033128 Ali et al. Feb 2005 A1
20050033129 Edgar, Jr. et al. Feb 2005 A1
20050039751 Pagan Feb 2005 A1
20050043599 O'Mara Feb 2005 A1
20050043600 Diab et al. Feb 2005 A1
20050049470 Terry Mar 2005 A1
20050049471 Aceti Mar 2005 A1
20050075550 Lindekugel Apr 2005 A1
20050113651 Wood et al. May 2005 A1
20050177034 Beaumont Aug 2005 A1
20050197548 Dietiker Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050277819 Kiani et al. Dec 2005 A1
20060058594 Ishizuka et al. Mar 2006 A1
20060084852 Mason et al. Apr 2006 A1
20060089547 Sarussi Apr 2006 A1
20060106294 Maser et al. May 2006 A1
20060195028 Hannula et al. Aug 2006 A1
20060224058 Mannheimer Oct 2006 A1
20060247501 Ali Nov 2006 A1
20060258921 Addison et al. Nov 2006 A1
20060276700 O'Neil et al. Dec 2006 A1
20070032710 Raridan et al. Feb 2007 A1
20070032712 Raridan et al. Feb 2007 A1
20070032715 Eghbal et al. Feb 2007 A1
20070073121 Hoarau et al. Mar 2007 A1
20070073125 Hoarau et al. Mar 2007 A1
20070073126 Raridan, Jr. Mar 2007 A1
20070073128 Hoarau et al. Mar 2007 A1
20070244378 Al-Ali et al. Oct 2007 A1
Foreign Referenced Citations (45)
Number Date Country
1007525 May 1957 DE
0451719 Oct 1991 EP
0481719 Apr 1992 EP
1153294 Apr 1992 EP
0509998 Oct 1992 EP
0307625 Apr 1994 EP
0592632 Apr 1994 EP
0257916 Jan 1995 EP
1245947 Mar 1995 EP
1266944 Jun 1996 EP
1327874 Sep 1996 EP
01022558 Jul 2000 EP
0601171 Oct 2000 EP
0943093 Oct 2002 EP
1022558 Dec 2002 EP
1039294 Jul 2003 EP
0858594 Oct 2003 EP
1043988 Dec 1997 GB
09318528 Jul 1991 JP
10073560 Dec 1995 JP
2003072857 Dec 1998 JP
07072081 Mar 2003 JP
2004177247 Mar 2004 JP
2005054048 Apr 2004 JP
08145979 Jun 2004 JP
08247997 Mar 2005 JP
WO9001695 Feb 1990 WO
WO9003819 Apr 1990 WO
WO9105252 Apr 1991 WO
WO9220404 Nov 1992 WO
WO 9315402 Aug 1993 WO
WO9320431 Oct 1993 WO
WO9400756 Jan 1994 WO
WO9619727 Jun 1996 WO
WO9624054 Aug 1996 WO
WO9710496 Mar 1997 WO
WO9712227 Apr 1997 WO
WO9826283 Jun 1998 WO
WO0029830 May 2000 WO
WO 0029832 May 2000 WO
WO0043778 Jul 2000 WO
WO0104624 Jan 2001 WO
WO0144385 Jun 2001 WO
WO2004077035 Sep 2004 WO
WO2005065540 Jul 2005 WO
Related Publications (1)
Number Date Country
20070078307 A1 Apr 2007 US