W. Cui, “Photon Diffusion Theory and Noninvasive Tissue Optical Property Measurement,” PhD. Thesis, Biomedical Engineering Department, Rensselaer Polytechnic Institute (1990). |
J.P. Payne and J.W. Severinghaus, Eds., Pulse Oximetry, Chapters 1 and 2 (©1986). |
John D. Bower and Thomas G. Coleman, “Circulatory Function During Chronic Hemodialysis,” vol. XV Trans. Amer. Soc. Artif. Int. Organs, 1969, 373-377. |
Larry Reynolds, C. Johnson, A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Sep. 1976, vol. 15, No. 9, Applied Optics, pp. 2059-2067. |
R.N. Greenwood, C, Aldridge, L. Goldstein, L.R.I. Baker and W.R. Cattell, “Assessment of arteriovenous fistulae from pressure and thermal dilution studies: clinical experience in forearm fistulae,” Clinical Nephrology, vol. 23, NO. 4-1985, pp. 189-197. |
R.N. Greenwood, C. Aldridge and W.R. Cattell, “Serial blood water estimations and in-line blood viscometry: the continuous measurement of blood volume during dialysis procedures,” Clinical Science (1984)66, pp. 575-583. |
C. Aldridge, R.N. Greenwood, W.R. Cattell and R.V. Barrett, “The assessment of arteriovenous fistulae created for haemodialysis from pressure and thermal dilution measurements,” Journal of Medical Engineering & Technology, vol. 8, No. 3, (May/Jun.), pp. 118-124. |
L. Goldstein, L. Pavitt, R.N. Greenwood, C. Aldridge, L.R.I. Baker and W.R. Cattell, “The Assessment of Areteriovenous Fistulae From Pressure and Recirculation Studies,” ProcEDTNA-ERCA (1985) vol. 14, pp. 207-215. |
R.N. Greenwood, C. Aldridge, L. Goldstein, L.R.I. Baker and W.R. Cattell, “Assessment of Arteriovenous Fistulas From Pressure and Recirculation Studies: Clinical Experience In 215 Upper Limb Fistulas,” ProcEDTA-ERA (1985), vol. 22, pp. 296-302. |
Joseph M. Schmitt, James D. Meindl and Frederick G. Mihm, “An Integrated Circuit-Based Optical Sensor for In Vivo Measurement of Blood Oxygenation,” IEEE Transactions On Biomedical Engineering, vol. BME-33, No. 21, Feb. 1986, pp. 98-107. |
Joseph M. Schmitt, Fred G. Mihm and James Meindl, New Methods for Whole Blood Oximetry, Annals of Biomedical Engineering, vol., 14, pp. 35-52, 1986. |
Mark R. Arnfield, J. Tulip and Malcolm McPhee, “Optical Propagation in Tissue With Anisotropic Scattering,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 5, May 1988, pp. 372-381. |
N.M. Krivitski, “Theory and validation of access flow measurements by dilution technique during hemodialysis,” Kidney Int 48:244-250, 1995. |
N.M. Krivitski, “Novel method to measure access flow during hemodialysis by ultrasound velocity dilution technique,” ASAIO J 41:M741-M745, 1995. |
T.A. Depner and N.M. Krivitski, “Clinical measurement of blood flow in hemodialysis access fistulae and grafts by ultrasound dilution,” ASAIO J 41:M745-M749, 1995). |
D. Yarar et al., “Ultrafiltration method for measuring vascular access flow rates during hemodialysis,” Kidney Int., 56: 1129-1135 (1999). |
N.M. Krivitski et al., “Saline Release Method to Measure Access Flow (AF) by Ultrasound Dilution during Hemodialysis,” JASN Abstracts, 8:164A, 1997. |
W. Cui et al., “Experimental Study of Migration Depth for the Photons Measured at Sample Surface,” SPIE, vol. 1431, pp 180-191 (1991). |
S. Feng et al., “Monte Carlo Simulations of Photon Migration Path Distributions in Multiple Scattering Media,” SPIE, vol. 1888, pp 78-89 (1993). |