This invention generally relates to the field of welding, including manual, automated, and robotic particularly the invention is directed to a sensor system for weld wire supply drums used with welding machines and/or at welding stations. The invention monitors the level of weld wire in the drum utilizing one or more sensors mounted to the exterior of the drum.
The system includes a light operatively connected to the sensor which illuminates to indicate the level of wire in the drum. For example, a green light indicates a sufficient supply of weld wire to proceed with the welding operation, and a red light indicates a low or depleted supply of weld wire, which precludes the weld operation from proceeding. The system can also send a signal to a remote operator to notify the operator of a low or depleted supply of weld wire.
Manual, automated, and robotic welding is well known for many applications and in many industries. A conventional weld station typically includes a drum or container for holding the weld wire to be used in the welding operation. In prior art welding stations, the drum must be periodically manually inspected to check the level of the weld wire. When the weld wire is depleted, the operation must be stopped until a new supply of weld wire is provided in the drum. Such down time interrupts and slows productively, which is undesirable. If an automated or robotic machine continues without wire, the weld will not be complete, and the process will have to be reset after wire is added to the drum. Such operation can lead to incomplete weld beads or overlapping beads, neither of which is desirable.
Therefore, there is a need in the industry for a means and method of notifying an operator or personnel when the weld wire supply in the drum becomes low or depleted.
Accordingly, a primary objective of the present invention is the provision of a sensor system for a weld wire supply drum which automatically provides a visual indication of the level of weld wire in the drum.
Another objective of the present invention is the provision of a sensor system which can be retrofit to an existing weld wire supply drum.
Another objective of the present invention is the provision of a weld wire supply drum sensor system which automatically notifies an operator of the level of the weld wire in the supply drum.
Still another objective of the present invention is a provision of a sensor system for a weld wire supply drum which eliminates the need to manually check the level of weld wire in the drum.
A further objective of the present invention is the provision of a weld wire sensor system which can notify a remote operation when the weld wire level becomes low.
Still another objective of the present invention is the provision of a sensor system which can be retrofit to an existing weld wire supply drum to sense the wire level in the drum.
Yet another objective of the present invention is the provision of a weld wire sensor systems which automatically stops the welding machine when the weld wire reaches a pre-determined level in the supply drum.
Another objective of the present invention is the provision of a weld wire sensor system which is easy to install, and simple and accurate in use.
These and other objectives have become apparent from the following description of the invention.
The sensor system of the present invention is generally designated by the reference numeral 10 in the drawings, and is configured or adapted for use with manual, automated, and robotic welding operations. The sensor system 10 is mounted on a weld wire supply drum 12 of a welding machine or station. Typically, the side wall of the drum 12 is made of cardboard. The drum 12 has a removable cover or lid 16 to allow weld wire 18 to be loaded into the drum 12.
The sensor system 10 includes a housing 20 which is mounted to the drum side wall 14 in any convenient manner, such as strafes, adhesive, or fasteners. The housing 10 has an upper sensor 22 and a lower sensor 24. In the preferred embodiment, the sensors 22, 24 are inductive proximity sensors. One example of the sensors 22, 24 is Model No. IME30-38NPSZC0S sold by SICK, Inc.
Sensors 22, 24 are electrically coupled to a light 26 on the top of a post 28 extending upwardly from the housing 20. Preferably, the light 26 is a color-changing LED.
In operation, the sensor system 10 provides a visual indication of the level of weld wire 18 in the drum 12. For example, when there is a sufficient supply of wire 18 in the drum 12 to perform the welding operations, both sensors 22, 24 detect the presence of the wire in the drum, and send a signal to the light 26, which may be illuminated green, indicating that it is okay to proceed or continue the welding operation. As the welding operation uses the weld wire, the level of wire 18 in the drum 12 drops below the upper sensor 22, as shown in
As an alternative or in addition to the light 26, the sensor system 10 may include an audible indicia. For example, an alarm or other sound can be emitted from a speaker to indicate a low or exhausted supply of weld wire.
The sensor system 10 provides multiple functions. First, the system 10 provides a visual indication of the wire level in the drum, with a color of the light indicating whether the level is good, low, or out. The sensor system 10 provides a quick and simple visual indicia to an operator as to the level or status of weld wire 18 in the drum 12. When the level becomes low or exhausted, the operator can change the empty drum out with a new full drum, thereby minimizing down time for the welding operation and maximizing proactivity.
Secondly, the sensor system 10 can be connected to the controls of the automated/robotic welding machine so as to automatically stop the machine or prevent start of the operation when the weld wire level in the drum is low or out, as sensed by the sensors 22, 24. This function prevents the welding operation from proceeding if there is insufficient weld wire to complete the operation.
Thirdly, the system 10 can be connected to the welding machine controls and monitoring software to send notifications to personnel in a remote location or who otherwise cannot see the color of the light 26, and thereby allow someone to reload the drum with additional wire before the wire is completely depleted.
The invention has been shown and described above with the preferred embodiments, and it is understood that many modifications, substitutions, and additions may be made which are within the intended spirit and scope of the invention. From the foregoing, it can be seen that the present invention accomplishes at least all of its stated objectives.