Field of the Invention
The present invention relates to daylight sensors for determining the ambient (i.e., total) light level in a space, and more particularly, to a daylight sensor having a rotatable enclosure for easily directing a lens of the daylight sensor towards a window.
Description of the Related Art
Many rooms in both residential and commercial buildings are illuminated by both artificial light from a lighting load, such as an incandescent lamp or a fluorescent lamp, and daylight (i.e., sunlight) shining through a window. Daylight sensors (i.e., photosensors) are often used to measure the total light level in a space in order to adjust the light intensity of the lighting load to thus adjust the total light level in the space. For example, the light intensity of the lighting load may be decreased as the daylight level increases (and vice versa), so as to maintain the total light level in the space approximately constant. A daylight sensor typically comprises a lens for directing the light in the space towards an internal photodetector (such as a photodiode) for measuring the total light level in the space. Daylight sensors are typically mounted to a ceiling in the space at a distance from the window. The lens of the daylight sensor must be positioned such that the field of view of the daylight sensor is directed towards the window. Therefore, there is a need for a daylight sensor that may easily be mounted such that the lens is directed towards a window in a space.
As described herein, a sensor adapted to be mounted to a surface may comprise a rotatable enclosure for directing, for example, a lens of the sensor towards a window. The sensor may further comprise a photosensitive circuit for measuring a light intensity, a cover portion, and a base portion adapted to be mounted to the surface. The base portion may have a rear surface and a cylindrical wall configured to be connected to the rear surface. The wall may have a channel located adjacent to the rear surface and formed by a plurality of tabs on the cylindrical wall surrounding a circumference of the base portion with gaps formed between the tabs. The cover portion may be configured to be connected to the base portion and may comprise at least one snap captured in the channel and configured to move angularly through the channel to allow for rotation of the cover portion with respect to the base portion. The sensor may further comprise a post configured to be received in at least one of a plurality of detents, which are configured to hold the post to maintain the cover portion in position and to allow for rotation of the cover portion to a plurality of discrete positions. The post may extend perpendicularly towards the base portion. The detents may be formed in each of the tabs of the base portion. The cover portion may be rotatable with respect to the base portion, for example, to allow the lens to be directed towards the window after the base portion is mounted to the surface.
Other features and advantages of the present invention will become apparent from the following description of the invention that refers to the accompanying drawings.
The foregoing summary, as well as the following detailed description of the preferred embodiments, is better understood when read in conjunction with the appended drawings. For the purposes of illustrating the invention, there is shown in the drawings an embodiment that is presently preferred, in which like numerals represent similar parts throughout the several views of the drawings, it being understood, however, that the invention is not limited to the specific methods and instrumentalities disclosed.
The daylight sensor 120 is mounted such that the daylight sensor is operable to measure a total light level LTOT in the vicinity of (i.e., a space around) the lighting load 104 controlled by the dimmer switch 110. The daylight sensor 120 includes an internal photosensitive circuit, e.g., a photosensitive diode 125 (
During a setup procedure of the RF lighting control system 100, the dimmer switch 110 may be assigned to (i.e., associated with) the daylight sensor 120. The daylight sensor 120 transmits digital messages wirelessly via the RF signals 106 to the dimmer switch 110 in response to the total lighting intensity LTOT in the space. A digital message transmitted by the daylight sensor 120 includes, for example, identifying information, such as, a serial number (i.e., a unique identifier) associated with the daylight sensor. The dimmer switch 110 is responsive to messages containing the serial numbers of the daylight sensor 120 to which the dimmer switch is assigned. Each digital message may further comprise the measured total lighting intensity LTOT in the space. Accordingly, the dimmer switch 110 controls the intensity of the lighting load 104 to the new lighting intensity LNEW in response to receiving from the daylight sensor 120 a digital message with the measured total lighting intensity LTOT in the space. Alternatively, the digital messages could comprise a command, such as a specific new lighting intensity LNEW for the lighting load 104. The operation of the RF lighting control system 100 is described in greater detail in commonly-assigned U.S. patent application Ser. No. 12/727,956, filed Mar. 19, 2010, entitled WIRELESS BATTERY-POWERED DAYLIGHT SENSOR, the entire disclosure of which is hereby incorporated by reference.
According to the present invention, the enclosure 122 of the daylight sensor 120 comprises a rotatable enclosure, which allows the lens 128 to be easily directed towards the window 134 after the daylight sensor is mounted to the ceiling 132 (or other surface in the room 130), such that more natural light than artificial light shines through the lens 128 onto the internal photosensitive diode 125. In addition, since the enclosure 122 is rotatable, the lens 128 may be repositioned to be directed in a different direction, for example, after an adjustment to the layout of the furniture or walls in the room 130.
Since the light intensity of the reflected light shining on the daylight sensor 120 is less than the light intensity of the light shining directly on the task surface 136, the daylight sensor is characterized by a gain, which is representative of the difference between the light intensity at the daylight sensor and at the task surface and may be stored a memory or the dimmer switch. The dimmer switch 110 uses the gain to attempt to control the illuminance (i.e., the light intensity) on the task surface 136 to a desired light intensity LSP (i.e., a setpoint) in response to the measured total lighting intensity LTOT in the space (as transmitted by the daylight sensor 120). Alternatively, the gain could be stored in a memory of the daylight sensor 120, for example, if the digital messages transmitted by the daylight sensor comprise command for the dimmer switch 110 to control the lighting load 104 to new lighting intensities LNEW. The gain may be set during a calibration procedure, an example of which is described in commonly-assigned U.S. patent application Ser. No. 12/727,923, filed Mar. 19, 2010, entitled METHOD OF CALIBRATING A DAYLIGHT SENSOR, the entire disclosure of which is hereby incorporated by reference.
The cover portion 124 is mechanically connected to a battery holder structure 154 for housing the battery V1. When received in the battery holder structure 154, the battery V1 is electrically connected to the PCB 150 via electrical contacts 156, 158. The battery holder structure 154 is mechanically connected to the cover portion 124. The battery holder structure 154 comprises snaps 160, which are adapted to be received by tabs 162 on a cylindrical wall 164 of the base portion 126 to couple the cover portion 124 to the base portion. The base portion 126 comprises a rear surface 165 that is connected to the cylindrical wall 164. The rear surface 165 has a groove 166 for receiving a mounting structure (not shown) that extends through openings in the rear surface 165 and allows the daylight sensor 120 to be releasably be attached to a mounting surface, such as a drop ceiling panel. An example of the mounting structure is described in greater detail in U.S. patent application Ser. No. 12/371,027, filed Feb. 13, 2009, entitled METHOD AND APPARATUS FOR CONFIGURING A WIRELESS SENSOR, the entire disclosure of which is hereby incorporated by reference. Alternatively, the daylight sensor 120 could be attached to the mounting surface using, for example, an adhesive (e.g., double-sided tape) or a screw received through a screw hole 167.
As previously mentioned, the enclosure 122 of the daylight sensor 120 comprises a rotatable enclosure. The tabs 162 surround the circumference of the base portion 126 with only small gaps 168 between adjacent tabs, such that a channel 169 is formed between the tabs and the rear surface 165 of the base portion. When the cover portion 124 is connected to the base portion 126, the snaps 160 are each captured in the channel 169 adjacent the rear surface 165 of the base portion. The width WSNAP of each snap 160 (i.e., in the angular direction as shown in
The battery holder structure 154 further comprises two posts 170 that extend towards the cylindrical wall 164 of the base portion 126. The tabs 162 of the base portion 126 each have two parallel extensions 172 forming detents 174. The posts 170 of the battery holder structure 154 are received in the detents 174. The two posts 170 are located on the battery holder structure 154 with respect to each other such that one post is received in one of the detents 174 of the tabs 162 and the other post is received in one of the gaps 168 between the adjacent tabs 162 (when the cover portion 124 is not being rotated with respect to the base portion 126). The posts 170 and the detents 174 allow the cover portion 124 to be rotated to a plurality of discrete positions (rather than being continuously variable). The detents 174 are sized so as to firmly hold the received post 170 in place, such that the lens 128 of the daylight sensor 120 is maintained in position directed toward the window 134. The gaps 168 formed between the adjacent tabs 162 are larger than the size of the detents and do not function to hold the posts in place. Alternatively, the detents 174 could be provided in the battery holder structure 124 connected to the cover portion 124, and the posts 170 could extend inwardly from the cylindrical wall 164 of the base portion 126.
The cover portion 124 may be removed from the base portion 126 by simply pulling the cover portion away from the base portion. Removal of the cover portion 124 from the base portion 126 allows for replacement of the battery V1 in the battery holder structure 154. When the cover portion 124 is pulled away from the base portion 126, the snaps 160 of the battery holder structure 154 flex inwards (i.e., towards the battery V1) and move past the tabs 162, such that the snaps are no longer held in the channel 169. The cover portion 124 may be re-installed on the base portion 126 by forcing the cover portion towards the base portion, such that the snaps 160 are once again received in the channel 169.
The present invention has been described with reference to the daylight sensor 120 for measuring the total light level LTOT in the room 130. However, the concepts of the present invention can also be other types circular control devices, such as, for example, ceiling-mounted occupancy sensors, vacancy sensors, and temperature sensors. In addition, even though the present invention has been described with reference to the dimmer switch 110 for controlling the intensity of the lighting load 104, the concepts of the present invention could be applied to load control systems comprising other types of load control devices, such as, for example, electronic switches for toggling electrical loads on and off, electronic dimming ballasts for fluorescent loads, and drivers for light-emitting diodes (LEDs). Additionally, the concepts of the present invention could be used to control other types of electrical loads, such as, for example, fan motors or motorized window treatments. Examples of load control systems including other types of electrical loads, load control devices, and sensors are described in greater detail in U.S. patent application Ser. No. 12/845,016, filed Jul. 28, 2010, entitled LOAD CONTROL SYSTEM HAVING AN ENERGY SAVINGS MODE, the entire disclosure of which is hereby incorporated by reference.
Lighting control systems including wired daylight sensors (i.e., wired photosensors) are described in greater detail in U.S. Pat. No. 7,111,952, issued Sep. 26, 2006, entitled SYSTEM TO CONTROL DAYLIGHT AND ARTIFICIAL ILLUMINATION AND SUN GLARE IN A SPACE, and U.S. Pat. No. 7,369,060, issued May 6, 2008, entitled DISTRIBUTED INTELLIGENCE BALLAST SYSTEM AND EXTENDED LIGHTING CONTROL PROTOCOL, the entire disclosures of which are hereby incorporated by reference. Examples of other RF lighting control systems are described in greater detail in U.S. patent application Ser. No. 12/033,223, filed Feb. 19, 2008, entitled COMMUNICATION PROTOCOL FOR A RADIO-FREQUENCY LOAD CONTROL SYSTEM, and U.S. patent application Ser. No. 12/203,518, filed Sep. 3, 2008, entitled RADIO-FREQUENCY LIGHTING CONTROL SYSTEM WITH OCCUPANCY SENSING, the entire disclosures of which are hereby incorporated by reference.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
This application is a continuation application of commonly-assigned U.S. patent application Ser. No. 12/957,443, filed Dec. 1, 2010, now U.S. Pat. No. 8,917,024, issued Dec. 23, 2014, entitled DAYLIGHT SENSOR HAVING A ROTATABLE ENCLOSURE, which is a non-provisional application of U.S. Provisional Application Ser. No. 61/285,691, filed Dec. 11, 2009, entitled DAYLIGHT SENSOR HAVING A ROTATABLE ENCLOSURE, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4023035 | Rodriguez | May 1977 | A |
4074341 | Niederost | Feb 1978 | A |
4768020 | Chen | Aug 1988 | A |
5258899 | Chen | Nov 1993 | A |
5381323 | Osteen et al. | Jan 1995 | A |
5442532 | Boulos et al. | Aug 1995 | A |
5590953 | Haslam et al. | Jan 1997 | A |
5649761 | Sandell et al. | Jul 1997 | A |
5744913 | Martich et al. | Apr 1998 | A |
5757004 | Sandell et al. | May 1998 | A |
6091200 | Lenz | Jul 2000 | A |
6098943 | Howard et al. | Aug 2000 | A |
6160487 | DeLuca | Dec 2000 | A |
6323488 | McCavit et al. | Nov 2001 | B1 |
6479823 | Strang et al. | Nov 2002 | B1 |
6583573 | Bierman | Jun 2003 | B2 |
6781129 | Leen | Aug 2004 | B2 |
6943687 | Lee et al. | Sep 2005 | B2 |
6948831 | Naqvi | Sep 2005 | B1 |
7175315 | Eaton | Feb 2007 | B2 |
7234841 | Nash | Jun 2007 | B2 |
7364329 | Murray et al. | Apr 2008 | B2 |
7375313 | Lee et al. | May 2008 | B2 |
7438438 | Sandell | Oct 2008 | B2 |
7490960 | Fiorino et al. | Feb 2009 | B1 |
7543958 | Chi et al. | Jun 2009 | B2 |
7635846 | Chi et al. | Dec 2009 | B2 |
7800049 | Bandringa et al. | Sep 2010 | B2 |
8917024 | Sloan et al. | Dec 2014 | B2 |
20060091822 | Bierman et al. | May 2006 | A1 |
20090088021 | Kauffman | Apr 2009 | A1 |
20090141499 | Fabbri et al. | Jun 2009 | A1 |
20100052574 | Blakeley et al. | Mar 2010 | A1 |
20100052576 | Steiner | Mar 2010 | A1 |
20100052894 | Steiner et al. | Mar 2010 | A1 |
20100073172 | Lax | Mar 2010 | A1 |
20100244706 | Steiner et al. | Sep 2010 | A1 |
20100244709 | Steiner et al. | Sep 2010 | A1 |
Entry |
---|
Kidde, Wireless Smoke Alarm User's Guide, 2005, 19 pages. |
Number | Date | Country | |
---|---|---|---|
20150069221 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61285691 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12957443 | Dec 2010 | US |
Child | 14540357 | US |