Sensor head for use with implantable devices

Information

  • Patent Grant
  • 9328371
  • Patent Number
    9,328,371
  • Date Filed
    Tuesday, July 16, 2013
    11 years ago
  • Date Issued
    Tuesday, May 3, 2016
    8 years ago
Abstract
The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.
Description
FIELD OF THE INVENTION

The present invention relates generally to novel sensor heads utilized with implantable devices, devices including these sensor heads and methods for determining analyte levels using these implantable devices. More particularly, the invention relates to sensor heads, implantable devices including these sensor heads and methods for monitoring glucose levels in a biological fluid using these devices.


BACKGROUND OF THE INVENTION

Amperometric electrochemical sensors require a counter electrode to balance the current generated by the species being measured at the working electrode. In the case of a glucose oxidase based glucose sensor, the species being measured at the working electrode is H2O2. Glucose oxidase catalyzes the conversion of oxygen and glucose to hydrogen peroxide and gluconate according to the following reaction:

Glucose+O2→Gluconate+H2O2


Because for each glucose molecule metabolized, there is a proportional change in the product H2O2, one can monitor the change in H2O2 to determine glucose concentration. Oxidation of H2O2 by the working electrode is balanced by reduction of ambient oxygen, enzyme generated H2O2, or other reducible species at the counter electrode. In vivo glucose concentration may vary from about one hundred times or more that of the oxygen concentration. Consequently, oxygen becomes a limiting reactant in the electrochemical reaction and when insufficient oxygen is provided to the sensor, the sensor will be unable to accurately measure glucose concentration. Those skilled in the art have come to interpret oxygen limitations resulting in depressed function as being a problem of availability of oxygen to the enzyme.


As shown in FIG. 1, the sensor head 10 includes a working electrode 21 (anode), counter electrode 22 (cathode), and reference electrode 20 which are affixed to the head by both brazing 26 the electrode metal to the ceramic and potting with epoxy 28. The working electrode 21 (anode) and counter-electrode 22 (cathode) of a glucose oxidase-based glucose sensor head 10 require oxygen in different capacities. Prior art teaches an enzyme-containing membrane that resides above an amperometric electrochemical sensor. In FIG. 1, region 32 includes an immobilized enzyme, i.e. glucose oxidase. Within the enzyme layer above the working electrode 21, oxygen is required for the production of H2O2 from glucose. The H2O2 produced from the glucose oxidase reaction further reacts at surface 21a of working electrode 21 and produces two electrons. The products of this reaction are two protons (2H+), two electrons (2e), and one oxygen molecule (O2) (Fraser, D. M. “An Introduction to In Vivo Biosensing: Progress and problems.” In “Biosensors and the Body,” D. M. Fraser, ed., 1997, pp. 1-56 John Wiley and Sons, New York). In theory, the oxygen concentration near the working electrode 21, which is consumed during the glucose oxidase reaction, is replenished by the second reaction at the working electrode. Therefore, the net consumption of oxygen is zero. In practice, neither all of the H2O2 produced by the enzyme diffuses to the working electrode surface nor does all of the oxygen produced at the electrode diffuse to the enzyme domain.


With further reference to FIG. 1, the counter electrode 22 utilizes oxygen as an electron acceptor. The most likely reducible species for this system are oxygen or enzyme generated peroxide (Fraser, D. M. supra). There are two main pathways by which oxygen may be consumed at the counter electrode 22. These are a four-electron pathway to produce hydroxide and a two-electron pathway to produce hydrogen peroxide. The two-electron pathway is shown in FIG. 1. Oxygen is further consumed above the counter electrode by the glucose oxidase in region 32. Due to the oxygen consumption by both the enzyme and the counter electrode, there is a net consumption of oxygen at the surface 22a of the counter electrode. Theoretically, in the domain of the working electrode there is significantly less net loss of oxygen than in the region of the counter electrode. In addition, there is a close correlation between the ability of the counter electrode to maintain current balance and sensor function. Taken together, it appears that counter electrode function becomes limited before the enzyme reaction becomes limited when oxygen concentration is lowered.


Those practicing in the field of implantable glucose oxidase sensors have focused on improving sensor function by increasing the local concentration of oxygen in the region of the working electrode. (Fraser, D. M. supra).


We have observed that in some cases, loss of glucose oxidase sensor function may not be due to a limitation of oxygen in the enzyme layer near the working electrode, but may instead be due to a limitation of oxygen at the counter electrode. In the presence of increasing glucose concentrations, a higher peroxide concentration results, thereby increasing the current at the working electrode. When this occurs, the counter electrode limitation begins to manifest itself as this electrode moves to increasingly negative voltages in the search for reducible species. When a sufficient supply of reducible species, such as oxygen, are not available, the counter electrode voltage reaches a circuitry limit of −0.6V resulting in compromised sensor function (see FIG. 3).



FIG. 3 shows simultaneous measurement of counter-electrode voltage and sensor output to glucose levels from a glucose sensor implanted subcutaneously in a canine host. It can be observed that as glucose levels increase, the counter electrode voltage decreases. When the counter electrode voltage reaches −0.6V, the signal to noise ratio increases significantly. This reduces the accuracy of the device. FIG. 4 shows a further example of another glucose sensor in which the counter-electrode reaches the circuitry limit. Again, once the counter electrode reaches −0.6V, the sensitivity and/or signal to noise ratio of the device is compromised. In both of these examples, glucose levels reached nearly 300 mg/dl. However, in FIG. 3 the sensor showed a greater than three-fold higher current output than the sensor in FIG. 4. These data suggest that there may be a limitation of reducible species at the counter electrode, which may limit the sensitivity of the device as the glucose levels increase. In contrast, FIG. 5 shows a glucose sensor in which the counter electrode voltage did not reach −0.6V. In FIG. 5 it can be observed that the sensor was able to maintain a current balance between the working and counter electrodes, thereby enabling accurate measurements throughout the course of the experiment. The results shown in FIGS. 3, 4 and 5 led the present inventors to postulate that by keeping the counter electrode from reaching the circuitry limit, one could maintain sensitivity and accuracy of the device.


Two approaches have been utilized by others to relieve the counter electrode limitation described above. The first approach involves the widening of the potential range over which the counter electrode can move in the negative direction to avoid reaching circuitry limitations. Unfortunately, this approach increases undesirable products that are produced at lower potentials. One such product, hydrogen, may form at the counter electrode, which may then diffuse back to the working electrode. This may contribute to additional current resulting in erroneously high glucose concentration readings. Additionally, at these increasingly negative potentials, the probability of passivating or poisoning the counter electrode greatly increases. This effectively reduces the counter electrode surface area requiring a higher current density at the remaining area to maintain current balance. Furthermore, increased current load increases the negative potentials eventually resulting in electrode failure.


The second approach is utilizing the metal case of the device as a counter electrode (see U.S. Pat. No. 4,671,288, Gough or U.S. Pat. No. 5,914,026, Blubaugh). This provides an initial excess in surface area which is expected to serve the current balancing needs of the device over its lifetime. However, when the counter electrode reaction is a reduction reaction, as in Blubaugh, the normally present metal oxide layer will be reduced to bare metal over time leaving the surface subject to corrosion, poisoning, and eventual cascade failure. This problem is magnified when considering the various constituents of the body fluid that the metal casing is exposed to during in vivo use. To date, there has been no demonstration of long-term performance of such a device with this counter electrode geometry.


Consequently, there is a need for a sensor that will provide accurate analyte measurements, that reduces the potential for cascade failure due to increasing negative potentials, corrosion and poisoning, and that will function effectively and efficiently in low oxygen concentration environments.


SUMMARY OF THE INVENTION

In one aspect of the present invention, a sensor head for use in a device that measures the concentration of an analyte in a biological fluid is provided that includes a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, and further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode.


In another aspect of the present invention, a sensor head for use in an implantable analyte measuring device is provided which includes the same sensor head components as those described above.


The sensor heads of the present invention include a multi-region membrane that controls the number of species that are able to reach the surface of the electrodes. In particular, such a membrane allows the passage of desired substrate molecules (e.g. oxygen and glucose) and rejects other larger molecules that may interfere with accurate detection of an analyte. The sensor heads of the present invention also provide a larger counter electrode reactive surface that balances the current between the working and counter electrodes, thereby minimizing negative potential extremes that may interfere with accurate analyte detection.


In another aspect of the present invention, an implantable device for measuring an analyte in a biological fluid is provided including at least one of the sensor heads described above. In still another aspect of the present invention, a method of monitoring glucose levels is disclosed which includes the steps of providing a host, and an implantable device as provided above and implanting the device in the host.


Further encompassed by the invention is a method of measuring glucose in a biological fluid including the steps of providing a host and a implantable device described above, which includes a sensor head capable of accurate continuous glucose sensing; and implanting the device in the host.


The sensor head, membrane architectures, devices and methods of the present invention allow for the collection of continuous information regarding desired analyte levels (e.g. glucose). Such continuous information enables the determination of trends in glucose levels, which can be extremely important in the management of diabetic patients.


DEFINITIONS

In order to facilitate an understanding of the present invention, a number of terms are defined below.


The term “sensor head” refers to the region of a monitoring device responsible for the detection of a particular analyte. The sensor head generally comprises a non-conductive body, a working electrode (anode), a reference electrode and a counter electrode (cathode) passing through and secured within the body forming an electrochemically reactive surface at one location on the body and an electronic connective means at another location on the body, and a multi-region membrane affixed to the body and covering the electrochemically reactive surface. The counter electrode has a greater electrochemically reactive surface area than the working electrode. During general operation of the sensor a biological sample (e.g., blood or interstitial fluid) or a portion thereof contacts (directly or after passage through one or more membranes or domains) an enzyme (e.g., glucose oxidase); the reaction of the biological sample (or portion thereof) results in the formation of reaction products that allow a determination of the analyte (e.g. glucose) level in the biological sample. In preferred embodiments of the present invention, the multi-region membrane further comprises an enzyme domain, and an electrolyte phase (i.e., a free-flowing liquid phase comprising an electrolyte-containing fluid described further below).


The term “analyte” refers to a substance or chemical constituent in a biological fluid (e.g., blood, interstitial fluid, cerebral spinal fluid, lymph fluid or urine) that can be analyzed. A preferred analyte for measurement by the sensor heads, devices and methods of the present invention is glucose.


The term “electrochemically reactive surface” refers to the surface of an electrode where an electrochemical reaction takes place. In the case of the working electrode, the hydrogen peroxide produced by the enzyme catalyzed reaction of the analyte being detected reacts creating a measurable electronic current (e.g. detection of glucose analyte utilizing glucose oxidase produces H2O2 peroxide as a by product, H2O2 reacts with the surface of the working electrode producing two protons (2H+), two electrons (2e) and one molecule of oxygen (O2) which produces the electronic current being detected). In the case of the counter electrode, a reducible species, e.g. O2 is reduced at the electrode surface in order to balance the current being generated by the working electrode.


The term “electronic connection” refers to any electronic connection known to those in the art that may be utilized to interface the sensor head electrodes with the electronic circuitry of a device such as mechanical (e.g., pin and socket) or soldered.


The term “domain” refers to regions of the membrane of the present invention that may be layers, uniform or non-uniform gradients (e.g. anisotropic) or provided as portions of the membrane.


The term “multi-region membrane” refers to a permeable membrane that may be comprised of two or more domains and constructed of biomaterials of a few microns thickness or more which are permeable to oxygen and may or may not be permeable to glucose. One of the membranes may be placed over the sensor body to keep host cells (e.g., macrophages) from gaining proximity to, and thereby damaging, the enzyme membrane or forming a barrier cell layer and interfering with the transport of analyte across the tissue-device interface.


The phrase “distant from” refers to the spatial relationship between various elements in comparison to a particular point of reference. For example, some embodiments of a biological fluid measuring device comprise a multi-region membrane that may be comprised of a number of domains. If the electrodes of the sensor head are deemed to be the point of reference, and one of the multi-region membrane domains is positioned farther from the electrodes, than that domain is distant from the electrodes.


The term “oxygen antenna domain” and the like refers to a domain composed of a material that has higher oxygen solubility than aqueous media so that it concentrates oxygen from the biological fluid surrounding the biointerface membrane. The domain can then act as an oxygen reservoir during times of minimal oxygen need and has the capacity to provide on demand a higher oxygen gradient to facilitate oxygen transport across the membrane. This enhances function in the enzyme reaction domain and at the counter electrode surface when glucose conversion to hydrogen peroxide in the enzyme domain consumes oxygen from the surrounding domains. Thus, this ability of the oxygen antenna domain to apply a higher flux of oxygen to critical domains when needed improves overall sensor function.


The term “solid portions” and the like refer to a material having a structure that may or may not have an open-cell configuration but in either case prohibits whole cells from traveling through or residing within the material.


The term “substantial number” refers to the number of cavities or solid portions having a particular size within a domain in which greater than 50 percent of all cavities or solid portions are of the specified size, preferably greater than 75 percent and most preferably greater than 90 percent of the cavities or solid portions have the specified size.


The term “co-continuous” and the like refers to a solid portion wherein an unbroken curved line in three dimensions exists between any two points of the solid portion.


The term “host” refers to both humans and animals.


The term “accurately” means, for example, 90% of measured glucose values are within the “A” and “B” region of a standard Clarke error grid when the sensor measurements are compared to a standard reference measurement. It is understood that like any analytical device, calibration, calibration validation and recalibration are required for the most accurate operation of the device.


The phrase “continuous glucose sensing” refers to the period in which monitoring of plasma glucose concentration is continuously performed, for example, about every 10 minutes.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 Illustration of thermodynamically favored reactions at the working electrode and counter electrode at the desired voltage potentials.



FIG. 2A depicts a cross-sectional exploded view of a sensor head of the present invention wherein the multi-region membrane comprises three regions.



FIG. 2B depicts a cross-sectional exploded view of a sensor head of the present invention wherein a portion of the second membrane region does not cover the working electrode.



FIG. 2C depicts a cross-sectional exploded view of a sensor head of the present invention which includes two distinct regions, wherein the region adjacent the electrochemically reactive surfaces includes a portion positioned over the counter electrode which corresponds to a silicone domain.



FIG. 2D depicts a cross-sectional exploded view of a sensor head of the present invention wherein an active enzyme of the immobilized enzyme domain is positioned only over the working electrode.



FIG. 2E depicts a cross-sectional exploded view of a sensor head of the present invention wherein the enzyme positioned over the counter electrode has been inactivated.



FIG. 2F depicts a cross-sectional exploded view of a sensor head of the present invention wherein the membrane region containing immobilized enzyme is positioned only over the working electrode.



FIG. 3 Illustration of an implantable glucose sensor's ability to measure glucose concentration during an infusion study in a canine when the counter electrode voltage drops to the electronic circuitry limit at approximately 0.75 hours wherein the sensor current output reaches 2.50 nA.



FIG. 4 Illustration of an implantable glucose sensor's ability to measure glucose concentration during an infusion study in a canine when the counter electrode voltage drops to the electronic circuitry limit after 0.5 hours wherein the sensor current output reaches 0.50 nA.



FIG. 5 Illustration of an implantable glucose sensor's ability to measure glucose concentration during an infusion study in a canine when the counter electrode voltage is maintained above the electronic circuitry limit.



FIG. 6A shows a schematic representation of a cylindrical analyte measuring device including a sensor head according to the present invention.



FIG. 6B is an exploded view of the sensor head of the device shown in FIG. 6A.



FIG. 7 Graphical representation of the function of a device of the present invention utilizing the multi-region membrane architecture of FIG. 2B in vitro at 400 mg/dL glucose.



FIG. 8 depicts a cross-sectional exploded view of the electrode and membrane regions of a prior sensor device where the electrochemical reactive surface of the counter electrode is substantially equal to the surface area of the working electrode.



FIG. 9 Graphical representation of the counter electrode voltage as a function of oxygen concentration at 400 mg/dL glucose for sensor devices including the membrane shown in FIG. 8.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In a preferred embodiment, the sensor heads, devices and methods of the present invention may be used to determine the level of glucose or other analytes in a host. The level of glucose is a particularly important measurement for individuals having diabetes in that effective treatment depends on the accuracy of this measurement.


The present invention increases the effectiveness of counter electrode function by a method that does not depend on increasing the local concentration of oxygen. In a preferred embodiment, the counter electrode has an electrochemical reactive surface area greater than twice the surface area of the working electrode thereby substantially increasing the electrodes ability to utilize oxygen as a substrate. Further enhancement of the counter electrode's activity may be achieved if the electrode were made of gold. In a second preferred embodiment, the counter electrode has a textured surface, with surface topography that increases the surface area of the electrode while the diameter of the electrode remains constant. In a third preferred embodiment, the proximity of the glucose oxidase enzyme to the counter electrode may be decreased. Since the enzyme depletes oxygen locally, the counter electrode would best be situated at a location distant from the enzyme. This could be achieved by depleting the enzyme from or inactivating the enzyme located in the region near and over the counter electrode by methods known to those skilled in the art such as laser ablation, or chemical ablation. Alternatively, the membrane could be covered with an additional domain where glucose is selectively blocked from the area over the counter electrode.


In particular, the present invention reduces the potential for electrode poisoning by positioning all electrodes underneath a multi-region membrane so that there is control of the species reaching the electrode surfaces. These membranes allow passage of dissolved oxygen to support the counter electrode reactions at reasonable negative potentials while rejecting larger molecules which when reduced would coat the surface of the counter electrode eventually leading to cascade failure. The positioning of the counter electrode underneath the membrane assures that all currents are passing through the same conductive media, thereby reducing voltage losses due to membrane or solution resistance. In addition, the counter electrode will be able to collect enough species for the balancing current while minimizing the need to move towards negative potential extremes.


Although the description that follows is primarily directed at glucose monitoring sensor heads, devices and methods for their use, the sensor heads, devices and methods of the present invention are not limited to glucose measurement. Rather, the devices and methods may be applied to detect and quantitate other analytes present in biological fluids (including, but not limited to, amino acids and lactate), especially those analytes that are substrates for oxidase enzymes [see, e.g., U.S. Pat. No. 4,703,756 to Gough et al., hereby incorporated by reference].


I. Nature of the Foreign Body Capsule


Devices and probes that are implanted into subcutaneous tissue will almost always elicit a foreign body capsule (FBC) as part of the body's response to the introduction of a foreign material. Therefore, implantation of a glucose sensor results in an acute inflammatory reaction followed by building of fibrotic tissue. Ultimately, a mature FBC comprising primarily a vascular fibrous tissue forms around the device (Shanker and Greisler, Inflammation and Biomaterials in Greco R S, ed. Implantation Biology: The Host Response and Biomedical Devices, pp 68-80, CRC Press (1994)).


In general, the formation of a FBC has precluded the collection of reliable, continuous information, reportedly because of poor vascularization (Updike, S. J. et al., “Principles of Long-term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from inside a Subcutaneous Foreign Body Capsule (FBC)” in “Biosensors and the Body,” D. M. Fraser, ed., 1997, pp. 117-38, John Wiley and Sons, New York). Thus, those skilled in the art have previously attempted to minimize FBC formation by, for example, using a short-lived needle geometry or sensor coatings to minimize the foreign body.


In contrast to the prior art, the teachings of the present invention recognize that FBC formation is the dominant event surrounding long-term implantation of any sensor and must be managed to support, rather than hinder or block, sensor performance. It has been observed that during the early periods following implantation of an analyte sensing device, particularly a glucose sensing device, that glucose sensors function well. However, after a few days to two or more weeks of implantation, these devices lose their function.


We have observed that this lack of sensor function is most likely due to cells (barrier cells) that associate with the outer surface of the device and physically block the transport of glucose into the device (i.e. form a barrier cell layer). Increased vascularization would not be expected to overcome this blockage. The present invention contemplates the use of particular biointerface membrane architectures that interfere with barrier cell layer formation on the membrane's surface. The present invention also contemplates the use of these membranes with a variety of implantable devices (e.g. analyte measuring devices particularly glucose measuring devices).


II. The Sensor Head


In one embodiment of the sensor head of the invention, the body is made of a non-conductive material such as ceramic, glass, or polymer.


In a preferred embodiment, the sensor head interface region may include several different layers and/or membranes that cover and protect the electrodes of an implantable analyte-measuring device. The characteristics of these layers and/or membranes are now discussed in more detail. The layers and/or membranes prevent direct contact of the biological fluid sample with the electrodes, while permitting selected substances (e.g., analytes) of the fluid to pass therethrough for reaction in an enzyme rich domain with subsequent electrochemical reaction of formed products at the electrodes.


It is well known in the art that electrode surfaces exposed to a wide range of biological molecules may suffer poisoning of catalytic activity and possible corrosion that could result in failure. However, utilizing the unique multi-region membrane architectures of the present invention, the active electrochemical surfaces of the sensor electrodes are preserved, retaining activity for extended periods of time in vivo. By limiting access to the electrochemically reactive surface of the electrodes to a small number of molecular species such as, for example, molecules having a molecular weight of about 34 Daltons (the molecular weight of peroxide) or less, only a small subset of the many molecular species present in biological fluids are permitted to contact the sensor. Use of such membranes has enabled sustained function of devices for over one year in vivo.


A. Multi-Region Membrane


The multi-region membrane is constructed of two or more regions. The multi-region membrane may be provided in a number of different architectures. In one architecture, the multi-region membrane includes a first region distant from the electrochemically reactive surfaces, a second region less distant from the electrochemically reactive surfaces and a third region adjacent to the electrochemically reactive surfaces. The first region includes a cell disruptive domain distant from the electrochemically reactive surfaces and a cell impermeable domain less distant from the electrochemically reactive surfaces. The second region is a glucose exclusion domain and the third region includes a resistance domain distant from the electrochemically reactive surfaces, an immobilized enzyme domain less distant from the electrochemically reactive surfaces, an interference domain less distant from the electrochemically reactive surfaces than the immobilized enzyme domain and a hydrogel domain adjacent to the electrochemically reactive surfaces.


In another architecture, the multi-region membrane includes a first region distant from the electrochemically reactive surfaces and a further region less distant from the electrochemically reactive surfaces. The first region includes a cell disruptive domain and a cell impermeable domain as described above. The “further region” includes a resistance domain, immobilized enzyme domain, interference domain, and hydrogel domain and serves as the equivalent of the “third region” described above. In certain embodiments of the sensor head, the multi-region membrane further includes an oxygen antenna domain. Each of these domains will now be described in further detail.


i. Cell Disruptive Domain


The domain of the multi-region membrane positioned most distal to the electrochemically reactive surfaces corresponds to the cell disruptive domain. This domain includes a material that supports tissue in-growth and may be vascularized. The cell disruptive domain prevents formation of the barrier cell layer on the surface of the membrane, which as described above, blocks the transport of glucose into the sensor device. A useful cell disruptive domain is described in a U.S. application entitled “Membrane for use with Implantable Devices” which was filed on the same day as the present application. The cell disruptive domain may be composed of an open-cell configuration having cavities and solid portions. Cells may enter into the cavities, however, they can not travel through or wholly exist within the solid portions. The cavities allow most substances to pass through, including, e.g., macrophages.


The open-cell configuration yields a co-continuous solid domain that contains greater than one cavity in three dimensions substantially throughout the entirety of the membrane. In addition, the cavities and cavity interconnections may be formed in layers having different cavity dimensions.


A linear line can be used to define a dimension across a cavity or solid portion the length of which is the distance between two points lying at the interface of the cavity and solid portion. In this way, a substantial number of the cavities are not less than 20 microns in the shortest dimension and not more than 1000 microns in the longest dimension. Preferably, a substantial number of the cavities are not less than 25 microns in the shortest dimension and not more than 500 microns in the longest dimension.


Furthermore, the solid portion has not less than 5 microns in a substantial number of the shortest dimensions and not more than 2000 microns in a substantial number of the longest dimensions. Preferably, the solid portion is not less than 10 microns in a substantial number of the shortest dimensions and not more than 1000 microns in a substantial number of the longest dimensions and most preferably, not less than 10 microns in a substantial number of the shortest dimensions and not more than 400 microns in a substantial number of the longest dimensions.


The solid portion may be made of polytetrafluoroethylene or polyethylene-co-tetrafluoroethylene, for example. Preferably, the solid portion includes polyurethanes or block copolymers and, most preferably, includes silicone.


When non-woven fibers are utilized as the solid portion of the present invention, the non-woven fibers may be greater than 5 microns in the shortest dimension. Preferably, the non-woven fibers are about 10 microns in the shortest dimension and most preferably, the non-woven fibers are greater than or equal to 10 microns in the shortest dimension.


The non-woven fibers may be constructed of polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyurethanes, cellulosic polymers, polysulfones, and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers (block copolymers are discussed in U.S. Pat. Nos. 4,803,243 and 4,686,044, hereby incorporated by reference). Preferably, the non-woven fibers are comprised of polyolefins or polyester or polycarbonates or polytetrafluoroethylene.


A subset of the cell disruptive domain is the oxygen antenna domain. This domain can act as an oxygen reservoir during times of minimal oxygen need and has the capacity to provide on demand a higher oxygen gradient to facilitate oxygen transport across the membrane. This domain may be composed of a material such as silicone, that has higher oxygen solubility than aqueous media so that it concentrates oxygen from the biological fluid surrounding the biointerface membrane. This enhances function in the enzyme reaction domain and at the counter electrode surface when glucose conversion to hydrogen peroxide in the enzyme domain consumes oxygen from the surrounding domains. Thus, this ability of the oxygen antenna domain to apply a higher flux of oxygen to critical domains when needed improves overall sensor function. Preferably, this domain is composed of silicone and has a thickness of about 100 microns.


The thickness of the cell disruptive domain is usually not less than about 20 microns and not more than about 2000 microns.


ii. Cell Impermeable Domain


The cell impermeable of the first region is positioned less distal to the electrochemically reactive surfaces than the cell disruptive domain of the same region. This domain is impermeable to host cells, such as macrophages. Cell impermeable domains are described in U.S. Pat. No. 6,001,067, herein incorporated by reference, and in copending, commonly owned U.S. application entitled “Membrane for use with Implantable Devices”, Ser. No. 09/916,386, filed on even date herewith. The inflammatory response that initiates and sustains a FBC is associated with disadvantages in the practice of sensing analytes. Inflammation is associated with invasion of inflammatory response cells (e.g. macrophages) which have the ability to overgrow at the interface and form barrier cell layers, which may block transport of glucose across the biointerface membrane. These inflammatory cells may also biodegrade many artificial biomaterials (some of which were, until recently, considered nonbiodegradable). When activated by a foreign body, tissue macrophages degranulate, releasing from their cytoplasmic myeloperoxidase system hypochlorite (bleach) and other oxidative species. Hypochlorite and other oxidative species are known to break down a variety of polymers, including ether based polyurethanes, by a phenomenon referred to as environmental stress cracking. Alternatively, polycarbonate based polyurethanes are believed to be resistant to environmental stress cracking and have been termed biodurable. In addition, because hypochlorite and other oxidizing species are short-lived chemical species in vivo, biodegradation will not occur if macrophages are kept a sufficient distance from the enzyme active membrane.


The present invention contemplates the use of cell impermeable biomaterials of a few microns thickness or more (i.e., a cell impermeable domain) in most of its membrane architectures. This domain of the biointerface membrane is permeable to oxygen and may or may not be permeable to glucose and is constructed of biodurable materials (e.g. for period of several years in vivo) that are impermeable by host cells (e.g. macrophages) such as for example polymer blends of polycarbonate based polyurethane and PVP.


The thickness of the cell impermeable domain is not less than about 10 microns and not more than about 100 microns.


iii. Glucose Exclusion Domain


The glucose exclusion domain includes a thin, hydrophobic membrane that is non-swellable and blocks diffusion of glucose while being permeable to oxygen. The glucose exclusion domain serves to allow analytes and other substances that are to be measured or utilized by the sensor to pass through, while preventing passage of other substances. Preferably, the glucose exclusion domain is constructed of a material such as, for example, silicone.


The glucose exclusion domain has a preferred thickness not less than about 130 microns, more preferably not less than about 5 and not more than about 75 microns and most preferably not less than 15 microns and not more than about 50 microns.


iv. Resistance Domain


In one embodiment of the sensor head the “third region” or “further region” of the multi-region membrane includes a resistance domain. When present, the resistance domain is located more distal to the electrochemically reactive surfaces relative to other domains in this region. As described in further detail below, the resistance domain controls the flux of oxygen and glucose to the underlying enzyme domain. There is a molar excess of glucose relative to the amount of oxygen in samples of blood. Indeed, for every free oxygen molecule in extracellular fluid, there are typically more than 100 glucose molecules present [Updike et al., Diabetes Care 5:207-21(1982)]. However, an immobilized enzyme-based sensor using oxygen (O2) as cofactor must be supplied with oxygen in non-rate-limiting excess in order to respond linearly to changes in glucose concentration, while not responding to changes in oxygen tension. More specifically, when a glucose-monitoring reaction is oxygen-limited, linearity is not achieved above minimal concentrations of glucose. Without a semipermeable membrane over the enzyme domain, linear response to glucose levels can be obtained only up to about 40 mg/dL; however, in a clinical setting, linear response to glucose levels are desirable up to at least about 500 mg/dL.


The resistance domain includes a semipermeable membrane that controls the flux of oxygen and glucose to the underlying enzyme domain (i.e., limits the flux of glucose), rendering the necessary supply of oxygen in non-rate-limiting excess. As a result, the upper limit of linearity of glucose measurement is extended to a much higher value than that which could be achieved without the resistance domain. The devices of the present invention contemplate resistance domains including polymer membranes with oxygen-to-glucose permeability ratios of approximately 200:1; as a result, one-dimensional reactant diffusion is adequate to provide excess oxygen at all reasonable glucose and oxygen concentrations found in the subcutaneous matrix [Rhodes et al., Anal. Chem., 66:1520-1529 (1994)].


In preferred embodiments, the resistance domain is constructed of a polyurethane urea/polyurethane-block-polyethylene glycol blend and has a thickness of not more than about 45 microns, more preferably not less than about 15 microns, and not more than about 40 microns and, most preferably, not less than about 20 microns, and not more than about 35 microns.


v. Immobilized Enzyme Domain


When the resistance domain is combined with the cell-impermeable domain, it is the immobilized enzyme domain which corresponds to the outermost domain of the “third region” or “further region”, i.e. it is located more distal to the electrochemically reactive surfaces as compared to the other domains in this region. In one embodiment, the enzyme domain includes glucose oxidase. In addition to glucose oxidase, the present invention contemplates the use of a domain impregnated with other oxidases, e.g., galactose oxidase or uricase, for an enzyme-based electrochemical glucose sensor to perform well, the sensor's response must neither be limited by enzyme activity nor cofactor concentration. Because enzymes, including glucose oxidase, are subject to deactivation as a function of ambient conditions, this behavior needs to be accounted for in constructing sensors for long-term use.


Preferably, the domain is constructed of aqueous dispersions of colloidal polyurethane polymers including the enzyme. Preferably, the coating has a thickness of not less than about 2.5 microns and not more than about 12.5 microns, preferably about 6.0 microns.


vi. Interference Domain


The interference domain in the “third region” or “further region” is located less distant from the electrochemically reactive surfaces than the immobilized enzyme domain in this same region. It includes a thin membrane that can limit diffusion of molecular weight species greater than 34 kD. The interference domain serves to allow analytes and other substances that are to be measured by the electrodes to pass through, while preventing passage of other substances, including potentially interfering substances. The interference domain is preferably constructed of a polyurethane.


The interference domain has a preferred thickness of not more than about 5 microns, more preferably not less than about 0.1 microns, and not more than about 5 microns and, most preferably, not less than about 0.5 microns, and not more than about 3 microns.


vii. Hydrogel Domain


The hydrogel domain is located adjacent to the electrochemically reactive surfaces. To ensure electrochemical reaction, the hydrogel domain includes a semipermeable coating that maintains hydrophilicity at the electrode region of the sensor interface. The hydrogel domain enhances the stability of the interference domain of the present invention by protecting and supporting the membrane that makes up the interference domain. Furthermore, the hydrogel domain assists in stabilizing operation of the device by overcoming electrode start-up problems and drifting problems caused by inadequate electrolyte. The buffered electrolyte solution contained in the hydrogel domain also protects against pH-mediated damage that may result from the formation of a large pH gradient between the hydrophobic interference domain and the electrode (or electrodes) due to the electrochemical activity of the electrode(s).


Preferably, the hydrogel domain includes a flexible, water-swellable, substantially solid gel-like film having a “dry film” thickness of not less than about 2.5 microns and not more than about 12.5 microns; preferably, the thickness is about 6.0 microns. “Dry film” thickness refers to the thickness of a cured film cast from a coating formulation onto the surface of the membrane by standard coating techniques


Suitable hydrogel domains are formed of a curable copolymer of a urethane polymer and a hydrophilic film-forming polymer. Particularly preferred coatings are formed of a polyurethane polymer having anionic carboxylate functional groups and non-ionic hydrophilic polyether segments, which is crosslinked in the present of polyvinylpyrrolidone and cured at a moderate temperature of about 50° C.


B. Electrolyte Phase


The electrolyte phase is a free-fluid phase including a solution containing at least one compound, usually a soluble chloride salt, that conducts electric current. The electrolyte phase flows over the electrodes and is in contact with the hydrogel domain. The devices of the present invention contemplate the use of any suitable electrolyte solution, including standard, commercially available solutions.


Generally speaking, the electrolyte phase should have the same or less osmotic pressure than the sample being analyzed. In preferred embodiments of the present invention, the electrolyte phase includes normal saline.


C. Membrane Architectures


Prior art teaches that an enzyme containing membrane that resides above an amperometric electrochemical sensor can possess the same architecture throughout the electrode surfaces. However, the function of converting glucose into hydrogen peroxide by glucose oxidase may only by necessary above the working electrode. In fact, it may be beneficial to limit the conversion of glucose into hydrogen peroxide above the counter electrode. Therefore, the present invention contemplates a number of membrane architectures that include a multi-region membrane wherein the regions include at least one domain.


Referring now to FIG. 2A, which shows one desired embodiment of the general architecture of a three region membrane, first region 33 is permeable to oxygen and glucose and includes a cell disruptive domain distant from the electrodes and a cell impermeable domain less distant from the electrodes. The second region 31 is permeable to oxygen and includes a glucose exclusion domain and region three 32 includes a resistance domain, distant from the electrochemically reactive surfaces, an immobilized enzyme domain less distant from the electrochemically reactive surfaces, an interference domain less distant from the electrochemically reactive surfaces than the immobilized enzyme and a hydrogel domain adjacent to the electrochemically reactive surfaces. The multi-region membrane is positioned over the sensor interface 30 of the non-conductive body 10, covering the working electrode 21, the reference electrode 20 and the counter electrode 22. The electrodes are brazed to the sensor head and back filled with epoxy 28.


In FIG. 2B, the glucose exclusion domain has been positioned over the electrochemically reactive surfaces such that it does not cover the working electrode 21. To illustrate this, a hole 35 has been created in the second region 31 and positioned directly above the working electrode 21. In this way, glucose is blocked from entering the underlying enzyme membrane above the counter electrode 22 and O2 is conserved above the counter electrode because it is not being consumed by the glucose oxidation reaction. The glucose-blocking domain is made of a material that allows sufficient O2 to pass to the counter electrode. The glucose-blocking domain may be made of a variety of materials such as silicone or silicone containing copolymers. Preferably, the glucose-blocking domain is made of silicone.


In FIG. 2C, the multi-region membrane is shown as being constructed of two regions: a first region 33 which includes a cell disruptive domain and a cell impermeable domain; and a further region 32. Region 32 is defined herein as including an enzyme immobilized domain, interference domain, and hydrogel domain and may also include a resistance domain. Region 32 is referred to as the “third region” in embodiments where the multi-region membrane includes three regions. In the embodiment shown, a silicone domain plug 36 positioned over the counter electrode 22 in order to eliminate the consumption of O2 above the counter electrode by the oxidation of glucose with glucose oxidase. The enzyme immobilized domain can be fabricated as previously described, then a hole punched into the domain. The silicone domain plug 36 may be cut to fit the hole, and then adhered into place, for example, with silicone adhesive (e.g., MED-1511, NuSil, Carpinteria, Calif.).


In FIG. 2D, the immobilized enzyme domain of the multi-region membrane can be fabricated such that active enzyme 37 is positioned only above the working electrode 21. In this architecture, the immobilized enzyme domain may be prepared so that the glucose oxidase only exists above the working electrode 21. During the preparation of the multi-region membrane, the immobilized enzyme domain coating solution can be applied as a circular region similar to the diameter of the working electrode. This fabrication can be accomplished in a variety of ways such as screen printing or pad printing. Preferably, the enzyme domain is pad printed during the enzyme membrane fabrication with equipment as available from Pad Print Machinery of Vermont (Manchester, Vt.). These architectures eliminate the consumption of O2 above the counter electrode 22 by the oxidation of glucose with glucose oxidase.


In FIG. 2E, the immobilized enzyme of the multi-region membrane in region 32 may be deactivated 38 except for the area covering the working electrode 21. In some of the previous membrane architectures, the glucose oxidase is distributed homogeneously throughout the immobilized enzyme domain. However, the active enzyme need only reside above the working electrode. Therefore, the enzyme may be deactivated 38 above the counter 22 and reference 20 electrodes by irradiation. A mask that covers the working electrode 21, such as those used for photolithography can be placed above the membrane. In this way, exposure of the masked membrane to ultraviolet light deactivates the glucose oxidase in all regions except that covered by the mask.



FIG. 2F shows an architecture in which the third region 32 which includes immobilized enzyme only resides over the working electrode 21. In this architecture, consumption of O2 above the counter electrode 22 by the oxidation of glucose with glucose oxidase is eliminated.


D. The Electrode Assembly


The electrode assembly of this invention comprises a non-conductive body and three electrodes affixed within the body having electrochemically reactive surfaces at one location on the body and an electronic connection means at another location on the body and may be used in the manner commonly employed in the making of amperometric measurements. A sample of the fluid being analyzed is placed in contact with a reference electrode, e.g., silver/silver-chloride, a working electrode which is preferably formed of platinum, and a counter electrode which is preferably formed of gold or platinum. The electrodes are connected to a galvanometer or polarographic instrument and the current is read or recorded upon application of the desired D.C. bias voltage between the electrodes.


The ability of the present device electrode assembly to accurately measure the concentration of substances such as glucose over a broad range of concentrations in fluids including undiluted whole blood samples enables the rapid and accurate determination of the concentration of those substances. That information can be employed in the study and control of metabolic disorders including diabetes.


The present invention contemplates several structural architectures that effectively increase the electrochemically reactive surface of the counter electrode. In one embodiment, the diameter of wire used to create the counter electrode is at least twice the diameter of the working electrode. In this architecture, it is preferable that the electrochemically reactive surface of the counter electrode be not less than about 2 and not more than about 100 times the surface area of the working electrode. More preferably, the electrochemically reactive surface of the counter electrode is not less than about 2 and not more than about 50, not less than about 2 and not more than about 25 or not less than about 2 and not more than about 10 times the surface area of the working electrode. In another embodiment, the electrochemically reactive surface is larger that the wire connecting this surface to the sensor head. In this architecture, the electrode could have a cross-sectional view that resembles a “T”. The present invention contemplates a variety of configurations of the electrode head that would provide a large reactive surface, while maintaining a relatively narrow connecting wire. Such configurations could be prepared by micromachining with techniques such as reactive ion etching, wet chemical etching and focused ion beam machining as available from Norsam Technologies (Santa Fe, N. Mex.).


In another embodiment, the diameter of the counter electrode is substantially similar to the working electrode; however, the surface of the counter electrode has been modified to increase the surface area such that it has at least twice the surface area of the working electrode. More specifically the counter electrodes surface may be textured, effectively increasing its surface area without significantly increasing its diameter. This may be accomplished by a variety of methods known to those skilled in the art including, such as acid etching. The electrochemically reactive surface may be provided in a variety of shapes and sizes (e.g. round, triangular, square or free form) provided that it is at least twice the surface area of the working electrode.


In all of the architectures described, the electrodes are prepared from a 0.020″ diameter wire having the desired modified reactive surface. The electrodes are secured inside the non-conductive body by brazing. The counter electrode is preferably made of gold or platinum.


III. Analyte Measuring Device


A preferred embodiment of an analyte measuring device including a sensor head according to the present invention is shown in FIG. 6A. In this embodiment, a ceramic body 1 and ceramic head 10 houses the sensor electronics that include a circuit board 2, a microprocessor 3, a battery 4, and an antenna 5. Furthermore, the ceramic body 1 and head 10 possess a matching taper joint 6 that is sealed with epoxy. The electrodes are subsequently connected to the circuit board via a socket 8.


As indicated in detail in FIG. 6B, three electrodes protrude through the ceramic head 10, a platinum working electrode 21, a platinum counter electrode 22 and a silver/silver chloride reference electrode 20. Each of these is hermetically brazed 26 to the ceramic head 10 and further secured with epoxy 28. The sensing region 24 is covered with a multi-region membrane described above and the ceramic head 10 contains a groove 29 so that the membrane may be affixed into place with an o-ring.


IV. Experimental


The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof


In the preceding description and the experimental disclosure which follows, the following abbreviations apply: Eq and Eqs (equivalents); mEq (milliequivalents); M (molar); mM (millimolar) μM (micromolar); N (Normal); mol (moles); mmol (millimoles); μmol (micromoles); nmol (nanomoles); g (grams); mg (milligrams); μg (micrograms); Kg (kilograms); L (liters); mL (milliliters); dL (deciliters); μL (microliters); cm (centimeters); mm (millimeters); μm (micrometers); nm (nanometers); h and hr (hours); min. (minutes); s and sec. (seconds); ° C. (degrees Centigrade); Astor Wax (Titusville, Pa.); BASF Wyandotte Corporation (Parsippany, N.J.); Data Sciences, Inc. (St. Paul, Minn.); DuPont (DuPont Co., Wilmington, Del.); Exxon Chemical (Houston, Tex.); GAF Corporation (New York, N.Y.); Markwell Medical (Racine, Wis.); Meadox Medical, Inc. (Oakland, N.J.); Mobay (Mobay Corporation, Pittsburgh, Pa.); NuSil Technologies (Carpenteria, Calif.) Sandoz (East Hanover, N.J.); and Union Carbide (Union Carbide Corporation; Chicago, Ill.).


EXAMPLE 1
Preparation of the Multi-Region Membrane

A. Preparation of the First Region


The cell disruptive domain may be an ePTFE filtration membrane and the cell impermeable domain may then be coated on this domain layer. The cell impermeable domain was prepared by placing approximately 706 gm of dimethylacetamide (DMAC) into a 3 L stainless steel bowl to which a polycarbonateurethane solution (1325 g, Chronoflex AR 25% solids in DMAC and 5100 cp) and polyvinylpyrrolidone (125 g, Plasdone K-90 D) are added. The bowl was then fitted to a planetary mixer with a paddle type blade and the contents were stirred for 1 hour at room temperature. This solution was then coated on the cell disruptive domain by knife edge drawn at a gap of 0.006″ and dried at 60° C. for 24 hours.


Alternatively, the polyurethane polyvinylpyrrolidone solution prepared above can be coated onto a PET release liner using a knife over roll coating machine. This material is then dried at 305° F. for approximately 2 minutes. Next the ePTFE membrane is immersed in 50:50 (w/v) mixture of THF/DMAC and then placed atop the coated polyurethane polyvinylpyrrolidone material. Light pressure atop the assembly intimately embeds the ePTFE into the polyurethane polyvinylpyrrolidone. The membrane is then dried at 60° C. for 24 hours.


B. Preparation of the Glucose Exclusion Domain


An oxime cured silicone dispersion (NuSil Technologies, MED-6607) was cast onto a polypropylene sheet and cured at 40° C. for three days.


C. Preparation of the Third Region


The “third region” or “further region” includes a resistance domain, an immobilized enzyme domain, an interference domain and a hydrogel domain. The resistance domain was prepared by placing approximately 281 gm of dimethylacetamide into a 3 L stainless steel bowl to which a solution of polyetherurethaneurea (344 gm of Chronothane H, 29,750 cp at 25% solids in DMAC). To this mixture was added another polyetherurethaneurea (312 gm, Chronothane 1020, 6275 cp at 25% solids in DMAC.) The bowl was fitted to a planetary mixer with a paddle type blade and the contents were stirred for 30 minutes at room temperature. The resistance domain coating solutions produced is coated onto a PET release liner (Douglas Hansen Co., Inc. Minneapolis, Minn.) using a knife over roll set at a 0.012″ gap. This film is then dried at 305° F. The final film is approximately 0.0015″ thick.


The immobilized enzyme domain was prepared by placing 304 gm polyurethane latex (Bayhydrol 140 AQ, Bayer, Pittsburgh, Pa.) into a 3 L stainless steel bowl to which 51 gm of pyrogen free water and 5.85 gm of glucose oxidase (Sigma type VII from Aspergillus niger) is added. The bowl was then fitted to a planetary mixer with a whisk type blade and the mixture was stirred for 15 minutes. Approximately 24 hr prior to coating a solution of glutaraldehyde (15.4 mL of a 2.5% solution in pyrogen free water) and 14 mL of pyrogen free water was added to the mixture. The solution was mixed by inverting a capped glass bottle by hand for about 3 minutes at room temperature. This mixture was then coated over the resistance domain with a #10 Mayer rod and dried above room temperature preferably at about 50° C.


The interference domain was prepared by placing 187 gm of tetrahydrofuran into a 500 mL glass bottle to which an 18.7 gm aliphatic polyetherurethane (Tecoflex SG-85A, Thermedics Inc., Woburn, Mass.) was added. The bottle was placed onto a roller at approximately 3 rpm within an oven set at 37° C. The mixture was allowed to roll for 24 hr. This mixture was coated over the dried enzyme domain using a flexible knife and dried above room temperature preferably at about 50° C.


The hydrogel domain was prepared by placing 388 gm of polyurethane latex (Bayhydrol 123, Bayer, Pittsburgh, Pa. in a 3 L stainless steel bowl to which 125 gm of pyrogen free water and 12.5 gm polyvinylpyrrolidone (Plasdone K-90D) was added. The bowl was then fitted to a planetary mixer with a paddle type blade and stirred for 1 hr at room temperature. Within 30 minutes of coating approximately 13.1 mL of carbodiimide (UCARLNK) was added and the solution was mixed by inverting a capped polyethylene jar by hand for about 3 min at room temperature. This mixture was coated over the dried interference domain with a #10 Mayer rod and dried above room temperature preferably at about 50° C.


In order to affix this multi-region membrane to a sensor head, it is first placed into buffer for about 2 minutes. It is then stretched over the nonconductive body of sensor head and affixed into place with an o-ring.


EXAMPLE 2
In Vitro Evaluation of Sensor Devices

This example describes experiments directed at sensor function of several sensor devices contemplated by the present invention.


In vitro testing of the sensor devices was accomplished in a manner similar to that previously described. [Gilligan et al., Diabetes Care 17:882-887 (1994)]. Briefly, devices were powered on and placed into a polyethylene container containing phosphate buffer (450 ml, pH 7.30) at 37° C. The container was placed onto a shaker (Lab Line Rotator, model 1314) set to speed 2. The sensors were allowed to equilibrate for at least 30 minutes and their output value recorded. After this time, a glucose solution (9.2 ml of 100 mg/ml glucose in buffer) was added in order to raise the glucose concentration to 200 mg/dl within the container. The sensors were allowed to equilibrate for at least 30 minutes and their output value recorded. Again, a glucose solution (9.4 ml of 100 mg/ml glucose in buffer) was added in order to raise the glucose concentration to 400 mg/dl within the container. The sensors were allowed to equilibrate for at least 30 minutes and their output value recorded. In this way, the sensitivity of the sensor to glucose is given as the slope of sensor output versus glucose concentration. The container was then fitted with an O2 meter (WTW, model Oxi-340) and a gas purge. A mixture of compressed air and nitrogen was used to decrease the O2 concentration. Sensor output was recorded at an ambient O2 level, then sensor output was recorded for the following O2 concentrations; 1 mg/L, 0.85 to 0.75 mg/L, 0.65 to 0.55 mg/L and 0.40 to 0.30 mg/L. In this way, the function of the sensor could be compared to its function at ambient O2.


Sensor devices like the one shown in FIGS. 6A and 6B, which included inventive sensor heads having a multi-region membrane with the architecture shown in FIG. 2B, were tested in vitro. Eight of these devices were fitted with membranes that possessed a 0.020″ diameter hole, four with a 0.0015″ thick polyurethane (Chronoflex AR, CardioTech International Inc.) and four with a 0.032″ thick silicone (MED-1511, NuSil Technologies Inc.). The hole was positioned above the working electrode and both membranes were secured to the device with an o-ring. Four control devices were also tested which were fitted with a multi-region membrane which lacked region 31 shown in FIB. 2B.


As discussed above, for oxygen to be consumed in the sensing region 32 above the electrodes, glucose is required. By placing region 31 shown in FIG. 2B, which includes a glucose blocking domain, above all areas other than above the working electrode 21, oxygen consumption in areas other than working electrode areas is limited. In contrast, by eliminating region 31 in the control devices, less overall oxygen becomes available to electrode surfaces due to the increased availability of glucose.


The devices were activated, placed into a 500 ml-polyethylene container with sodium phosphate buffered solution (300 ml, pH 7.3) and allowed to equilibrate. Each device's baseline value was recorded. Then 12 ml of glucose solution (100 mg/ml in sodium phosphate buffer) was added to the container so that the total glucose concentration became 400 mg/dL. After this, the container was covered and fitted with an oxygen sensor and a source of nitrogen and compressed air. In this way, the oxygen concentration was controlled with a gas sparge. A glucose value was recorded for each device at decreasing oxygen concentrations from ambient to approximately 0.1 mg/L.



FIG. 7 graphically represents the formation of a device of the present invention utilizing the multi-region membrane architecture in FIG. 2B in vitro. The data is expressed in percent Device Function at 400 mg/dL glucose vs. oxygen concentration. The percent function of the device is simply the device output at any given oxygen concentration divided by that device's output at ambient oxygen. The results from FIG. 7 indicate that inventive sensor devices containing the silicone membrane have better function at lower oxygen concentrations relative to both the control devices and the devices containing the polyurethane membrane. For example, at an oxygen concentration of about 0.5 mg/L, devices containing the silicone membrane are providing 100% output as compared to 80% output for the control devices.


EXAMPLE 3
The Effect of Varying the Size and Material of the Counter Electrode on Sensor Response and Accuracy

An in vitro testing procedure used in this example was similar to that described in Example 2. Six devices similar to the one shown in FIGS. 6A and 6B were fitted with the multi-region membrane described herein. Two of these tested devices were comparative devices that possessed Pt counter electrodes having a 0.020″ diameter; this diameter provided for an electrochemically reactive surface of the counter electrode which was substantially equal to the surface area of the working electrode, as schematically shown in FIG. 8. In FIG. 8, the electrode-membrane region includes two distinct regions, the compositions and functions of which have already been described. Region 32 includes an immobilized enzyme. Region 33 includes a cell disruptive domain and a cell impermeable domain. The top ends of electrodes 21 (working), 20 (reference) and 22 (counter) are in contact with an electrolyte phase 30, a free-flowing phase. Two other tested devices possessed Pt counter electrodes having a 0.060″ diameter. Finally, two additional devices possessed Au counter electrodes having a 0.060″ diameter. The 0.006″ diameter devices provided for an electrochemically reactive surface of the counter electrode which was approximately six times the surface area of the working electrode. Each of the devices including counter electrodes of 0.060″ diameter include a multi-region membrane above the electrode region which is similar to that shown in FIG. 8.


The devices were activated, placed into a 500 ml-polyethylene container with sodium phosphate buffered solution (300 ml, pH 7.3) and allowed to equilibrate. Each device's baseline value was recorded. Then 12 ml of glucose solution (100 mg/ml in sodium phosphate buffer) was added to the container so that the total glucose concentration became 400 mg/dL. After this, the container was covered and fitted with an oxygen sensor and a source of nitrogen and compressed air. In this way, the oxygen concentration was controlled with a gas sparge. A counter electrode voltage was recorded for each device at decreasing oxygen concentrations from ambient to approximately 0.1 mg/L.



FIG. 9 graphically presents the counter electrode voltage as a function of oxygen concentration and 400 mg/dL glucose. This figure demonstrates that both the large Pt and Au counter electrode devices do not begin to reach the circuitry limits at low oxygen concentrations. Therefore, increased performance and accuracy can be obtained from a counter electrode that has an electrochemical reactive surface greater than the surface area of the working electrode.


The description and experimental materials presented above are intended to be illustrative of the present invention while not limiting the scope thereof. It will be apparent to those skilled in the art that variations and modifications can be made without departing from the spirit and scope of the present invention.

Claims
  • 1. An implantable continuous glucose sensor system configured for implantation in a host, the system comprising: an electrode comprising an electroactive surface, wherein the electrode is configured for implantation and is configured to generate in vivo a signal indicative of glucose concentration in a host;a membrane comprising: a first domain configured to reduce a flux of glucose therethrough;a second domain comprising an enzyme configured to react with glucose to produce a measured species, wherein the second domain is located less distant to the electroactive surface than the first domain; anda third domain comprising an architecture that permits access to the electroactive surface only for species that have a molecular weight less than or about equal to a molecular weight of the measured species, wherein the third domain is located less distant to the electroactive surface than the second domain; andsensor electronics operably connected to the electrode and configured to measure the signal from the electrode.
  • 2. The implantable continuous glucose sensor of claim 1, wherein the molecular weight of the architecture limits diffusion of species that have a molecular weight more than 34 Daltons.
  • 3. The glucose sensor of claim 1, wherein the first domain comprises a polyurethane.
  • 4. The glucose sensor of claim 1, wherein the first domain is an outermost domain of the membrane.
  • 5. The glucose sensor of claim 1, wherein the first domain is configured to interface with biological fluid.
  • 6. The glucose sensor of claim 1, wherein the electrode is a working electrode, wherein the system further comprises a reference electrode and a counter electrode.
  • 7. The glucose sensor of claim 1, wherein the counter electrode comprises an electroactive surface, wherein the counter electrode electroactive surface has a larger area than an area of the working electrode electroactive surface.
INCORPORATION BY REFERENCE TO RELATED APPLICATIONS

Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57. This application is a continuation of U.S. application Ser. No. 12/260,017, filed on Oct. 28, 2008, which is a division of U.S. application Ser. No. 11/021,162, filed Dec. 22, 2004, now U.S. Pat. No. 7,471,972, which is a continuation of U.S. application Ser. No. 09/916,711, filed Jul. 27, 2001, now abandoned. Each of the aforementioned applications is incorporated by reference herein in its entirety, and each is hereby expressly made a part of this specification.

US Referenced Citations (1015)
Number Name Date Kind
1564641 St. James Dec 1925 A
2402306 Turkel Jun 1946 A
2719797 Rosenblatt et al. Oct 1955 A
2830020 Christmann et al. Apr 1958 A
3210578 Sherer Oct 1965 A
3220960 Drahoslav Lim et al. Nov 1965 A
3381371 Russell May 1968 A
3562352 Nyilas Feb 1971 A
3607329 Manjikian Sep 1971 A
3652475 Wada et al. Mar 1972 A
3746588 Brown, Jr. Jul 1973 A
3775182 Patton et al. Nov 1973 A
3791871 Rowley Feb 1974 A
3826244 Salcman et al. Jul 1974 A
3838033 Mindt et al. Sep 1974 A
3898984 Mandel et al. Aug 1975 A
3929971 Roy Dec 1975 A
3933593 Sternberg Jan 1976 A
3943918 Lewis Mar 1976 A
3957613 Macur May 1976 A
3964974 Banauch et al. Jun 1976 A
3966580 Janata et al. Jun 1976 A
3979274 Newman Sep 1976 A
3982530 Storch Sep 1976 A
4024312 Korpman May 1977 A
4037563 Pflueger et al. Jul 1977 A
4040908 Clark, Jr. Aug 1977 A
4052754 Homsy Oct 1977 A
4067322 Johnson Jan 1978 A
4073713 Newman Feb 1978 A
4076656 White et al. Feb 1978 A
4136250 Mueller et al. Jan 1979 A
4172770 Semersky et al. Oct 1979 A
4197840 Beck et al. Apr 1980 A
4215703 Willson Aug 1980 A
4240889 Yoda et al. Dec 1980 A
4253469 Aslan Mar 1981 A
4255500 Hooke Mar 1981 A
4256561 Schindler et al. Mar 1981 A
4259540 Sabia Mar 1981 A
4260725 Keogh et al. Apr 1981 A
4267145 Wysong May 1981 A
4292423 Kaufmann et al. Sep 1981 A
4324257 Albarda et al. Apr 1982 A
4353888 Sefton Oct 1982 A
4374013 Enfors Feb 1983 A
4378016 Loeb Mar 1983 A
4388166 Suzuki et al. Jun 1983 A
4402694 Ash et al. Sep 1983 A
4403847 Chrestensen Sep 1983 A
4403984 Ash et al. Sep 1983 A
4415666 D'Orazio et al. Nov 1983 A
4418148 Oberhardt Nov 1983 A
4419535 O'hara Dec 1983 A
4431004 Bessman et al. Feb 1984 A
4431507 Nankai et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4442841 Uehara et al. Apr 1984 A
4453537 Spitzer Jun 1984 A
4454295 Wittmann et al. Jun 1984 A
4477314 Richter et al. Oct 1984 A
4482666 Reeves Nov 1984 A
4484987 Gough Nov 1984 A
4493714 Ueda et al. Jan 1985 A
4494950 Fischell Jan 1985 A
4506680 Stokes Mar 1985 A
RE31916 Oswin et al. Jun 1985 E
4527999 Lee Jul 1985 A
4534355 Potter Aug 1985 A
4545382 Higgins et al. Oct 1985 A
4554927 Fussell Nov 1985 A
4571292 Liu et al. Feb 1986 A
4577642 Stokes Mar 1986 A
4578215 Bradley Mar 1986 A
4583976 Ferguson Apr 1986 A
4602922 Cabasso et al. Jul 1986 A
4632968 Yokota et al. Dec 1986 A
4644046 Yamada Feb 1987 A
4647643 Zdrahala et al. Mar 1987 A
4650547 Gough Mar 1987 A
4655880 Liu Apr 1987 A
4663824 Kenmochi May 1987 A
4671288 Gough Jun 1987 A
4672970 Uchida et al. Jun 1987 A
4680268 Clark, Jr. Jul 1987 A
4684538 Klemarczyk Aug 1987 A
4685463 Williams Aug 1987 A
4686044 Behnke et al. Aug 1987 A
4686137 Ward, Jr. et al. Aug 1987 A
4689149 Kanno et al. Aug 1987 A
4689309 Jones Aug 1987 A
4702732 Powers et al. Oct 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins Dec 1987 A
4711251 Stokes Dec 1987 A
4721677 Clark, Jr. Jan 1988 A
4726381 Jones Feb 1988 A
4731726 Allen Mar 1988 A
4739380 Lauks et al. Apr 1988 A
4750496 Reinhart et al. Jun 1988 A
4753652 Langer et al. Jun 1988 A
4757022 Shults et al. Jul 1988 A
4759828 Young et al. Jul 1988 A
4763658 Jones Aug 1988 A
4776944 Janata et al. Oct 1988 A
4781733 Babcock et al. Nov 1988 A
4781798 Gough Nov 1988 A
4786657 Hammar et al. Nov 1988 A
4787398 Garcia et al. Nov 1988 A
4793555 Lee et al. Dec 1988 A
4795542 Ross et al. Jan 1989 A
4803243 Fujimoto et al. Feb 1989 A
4805624 Yao et al. Feb 1989 A
4805625 Wyler Feb 1989 A
4810470 Burkhardt et al. Mar 1989 A
4813424 Wilkins Mar 1989 A
4822336 DiTraglia Apr 1989 A
4823808 Clegg et al. Apr 1989 A
4832034 Pizziconi May 1989 A
4852573 Kennedy Aug 1989 A
4858615 Meinema Aug 1989 A
4861830 Ward, Jr. Aug 1989 A
4871440 Nagata et al. Oct 1989 A
4880883 Grasel et al. Nov 1989 A
4883057 Broderick Nov 1989 A
4886740 Vadgama Dec 1989 A
4889744 Quaid Dec 1989 A
4890620 Gough Jan 1990 A
4890621 Hakky Jan 1990 A
4902294 Gosserez Feb 1990 A
4908208 Lee et al. Mar 1990 A
4909908 Ross et al. Mar 1990 A
4919141 Zier et al. Apr 1990 A
4927407 Dorman May 1990 A
4935345 Guilbeau et al. Jun 1990 A
4938860 Wogoman Jul 1990 A
4951657 Pfister et al. Aug 1990 A
4952618 Olsen Aug 1990 A
4953552 DeMarzo Sep 1990 A
4954381 Cabasso et al. Sep 1990 A
4955861 Enegren et al. Sep 1990 A
4958148 Olson Sep 1990 A
4960594 Honeycutt Oct 1990 A
4961954 Goldberg et al. Oct 1990 A
4963595 Ward et al. Oct 1990 A
4970145 Bennetto et al. Nov 1990 A
4973320 Brenner et al. Nov 1990 A
4974929 Curry Dec 1990 A
4975175 Karube et al. Dec 1990 A
4984929 Rock et al. Jan 1991 A
4986671 Sun et al. Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4988758 Fukuda et al. Jan 1991 A
4992794 Brouwers Feb 1991 A
4994167 Shults et al. Feb 1991 A
5002572 Picha Mar 1991 A
5002590 Friesen et al. Mar 1991 A
5007929 Quaid Apr 1991 A
5010141 Mueller Apr 1991 A
5034112 Murase et al. Jul 1991 A
5034461 Lai et al. Jul 1991 A
5045601 Capelli et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5059654 Hou et al. Oct 1991 A
5063081 Cozzette et al. Nov 1991 A
5067491 Taylor, II et al. Nov 1991 A
5070169 Robertson et al. Dec 1991 A
5071452 Avrillon et al. Dec 1991 A
5089112 Skotheim et al. Feb 1992 A
5094876 Goldberg et al. Mar 1992 A
5100689 Goldberg et al. Mar 1992 A
5101814 Palti Apr 1992 A
5108819 Heller et al. Apr 1992 A
5113871 Viljanto et al. May 1992 A
5115056 Mueller et al. May 1992 A
5120813 Ward, Jr. Jun 1992 A
5128408 Tanaka et al. Jul 1992 A
5135297 Valint et al. Aug 1992 A
5137028 Nishimura Aug 1992 A
5147725 Pinchuk Sep 1992 A
5155149 Atwater et al. Oct 1992 A
5160418 Mullen Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5169906 Cray et al. Dec 1992 A
5171689 Kawaguri et al. Dec 1992 A
5183549 Joseph et al. Feb 1993 A
5190041 Palti Mar 1993 A
5200051 Cozzette et al. Apr 1993 A
5202261 Musho et al. Apr 1993 A
5208313 Krishnan May 1993 A
5212050 Mier et al. May 1993 A
5219965 Valint et al. Jun 1993 A
5221724 Li et al. Jun 1993 A
5235003 Ward et al. Aug 1993 A
5242835 Jensen Sep 1993 A
5243696 Carr et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5250439 Musho et al. Oct 1993 A
5264104 Gregg et al. Nov 1993 A
5266179 Nankai et al. Nov 1993 A
5269891 Colin Dec 1993 A
5271736 Picha Dec 1993 A
5281319 Kaneko et al. Jan 1994 A
5282848 Schmitt Feb 1994 A
5284140 Allen et al. Feb 1994 A
5285513 Kaufman et al. Feb 1994 A
5286364 Yacynych et al. Feb 1994 A
5296144 Sternina et al. Mar 1994 A
5298144 Spokane Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5304468 Phillips et al. Apr 1994 A
5307263 Brown Apr 1994 A
5310469 Cunningham et al. May 1994 A
5312361 Zadini et al. May 1994 A
5314471 Brauker et al. May 1994 A
5316008 Suga et al. May 1994 A
5321414 Alden et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5324322 Grill et al. Jun 1994 A
5326356 Della Valle et al. Jul 1994 A
5330521 Cohen Jul 1994 A
5330634 Wong et al. Jul 1994 A
5331555 Hashimoto et al. Jul 1994 A
5334681 Mueller et al. Aug 1994 A
5337747 Neftel Aug 1994 A
5340352 Nakanishi et al. Aug 1994 A
5342409 Mullett Aug 1994 A
5342693 Winters et al. Aug 1994 A
5343869 Pross et al. Sep 1994 A
5344454 Clarke et al. Sep 1994 A
5348788 White Sep 1994 A
5352348 Young et al. Oct 1994 A
5352351 White Oct 1994 A
5354449 Band et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5372133 Hogen Esch Dec 1994 A
5376400 Goldberg et al. Dec 1994 A
5380536 Hubbell et al. Jan 1995 A
5384028 Ito Jan 1995 A
5387327 Khan Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5397451 Senda et al. Mar 1995 A
5397848 Yang et al. Mar 1995 A
5411647 Johnson et al. May 1995 A
5411866 Luong May 1995 A
5417395 Fowler et al. May 1995 A
5421923 Clarke et al. Jun 1995 A
5425717 Mohiuddin Jun 1995 A
5426158 Mueller et al. Jun 1995 A
5428123 Ward et al. Jun 1995 A
5429735 Johnson et al. Jul 1995 A
5431160 Wilkins Jul 1995 A
5438984 Schoendorfer Aug 1995 A
5453278 Chan et al. Sep 1995 A
5462051 Oka et al. Oct 1995 A
5462064 D'Angelo et al. Oct 1995 A
5462645 Albery et al. Oct 1995 A
5466356 Schneider et al. Nov 1995 A
5466575 Cozzette et al. Nov 1995 A
5469846 Khan Nov 1995 A
5474552 Palti Dec 1995 A
5476094 Allen et al. Dec 1995 A
5476776 Wilkins Dec 1995 A
5482008 Stafford et al. Jan 1996 A
5482473 Lord et al. Jan 1996 A
5484404 Schulman et al. Jan 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5502396 Desarzens et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5508509 Yafuso et al. Apr 1996 A
5513636 Palti May 1996 A
5518601 Foos et al. May 1996 A
5521273 Yilgor et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5538511 Van Antwerp Jul 1996 A
5540828 Yacynych Jul 1996 A
5541305 Yokota et al. Jul 1996 A
5545220 Andrews et al. Aug 1996 A
5545223 Neuenfeldt et al. Aug 1996 A
5549675 Neuenfeldt et al. Aug 1996 A
5552112 Schiffmann Sep 1996 A
5554339 Cozzette Sep 1996 A
5564439 Picha Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5569462 Martinson et al. Oct 1996 A
5571395 Park et al. Nov 1996 A
5575930 Tietje-Girault et al. Nov 1996 A
5578463 Berka et al. Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5584876 Bruchman et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5588560 Benedict et al. Dec 1996 A
5589133 Suzuki Dec 1996 A
5589563 Ward et al. Dec 1996 A
5590651 Shaffer et al. Jan 1997 A
5593440 Brauker et al. Jan 1997 A
5593852 Heller et al. Jan 1997 A
5607565 Azarnia et al. Mar 1997 A
5611900 Worden Mar 1997 A
5624537 Turner et al. Apr 1997 A
5628890 Carter et al. May 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5653756 Clarke et al. Aug 1997 A
5653863 Genshaw et al. Aug 1997 A
5658330 Carlisle et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665222 Heller et al. Sep 1997 A
5670097 Duan et al. Sep 1997 A
5676820 Wang et al. Oct 1997 A
5682884 Hill Nov 1997 A
5683562 Schaffar et al. Nov 1997 A
5686829 Girault Nov 1997 A
5695623 Michel et al. Dec 1997 A
5700559 Sheu et al. Dec 1997 A
5703359 Wampler, III Dec 1997 A
5704354 Priedel et al. Jan 1998 A
5706807 Picha Jan 1998 A
5707502 McCaffrey et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5713888 Neuenfeldt et al. Feb 1998 A
5733336 Neuenfeldt et al. Mar 1998 A
5735273 Kurnik et al. Apr 1998 A
5738902 Forrestal et al. Apr 1998 A
5741330 Brauker et al. Apr 1998 A
5741634 Nozoe et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5746898 Priedel May 1998 A
5749832 Vadgama et al. May 1998 A
5756632 Ward et al. May 1998 A
5760155 Mowrer et al. Jun 1998 A
5766151 Valley et al. Jun 1998 A
5766839 Johnson et al. Jun 1998 A
5776324 Usala Jul 1998 A
5777060 Van Antwerp Jul 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5782912 Brauker et al. Jul 1998 A
5783054 Raguse et al. Jul 1998 A
5786439 Van Antwerp et al. Jul 1998 A
5787900 Butler et al. Aug 1998 A
5791344 Schulman et al. Aug 1998 A
5795453 Gilmartin Aug 1998 A
5795774 Matsumoto et al. Aug 1998 A
5798065 Picha Aug 1998 A
5800420 Gross Sep 1998 A
5800529 Brauker et al. Sep 1998 A
5804048 Wong et al. Sep 1998 A
5807375 Gross Sep 1998 A
5807406 Brauker et al. Sep 1998 A
5807636 Sheu et al. Sep 1998 A
5811487 Schulz, Jr. et al. Sep 1998 A
5820570 Erickson Oct 1998 A
5820622 Gross et al. Oct 1998 A
5823802 Bartley Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5834583 Hancock et al. Nov 1998 A
5837377 Sheu et al. Nov 1998 A
5837454 Cozzette et al. Nov 1998 A
5837661 Evans et al. Nov 1998 A
5837728 Purcell Nov 1998 A
5840148 Campbell et al. Nov 1998 A
5840240 Stenoien et al. Nov 1998 A
5843069 Butler et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5861019 Sun et al. Jan 1999 A
5863400 Drummond et al. Jan 1999 A
5863972 Beckelmann et al. Jan 1999 A
5871514 Wiklund et al. Feb 1999 A
5879373 Roper et al. Mar 1999 A
5882354 Brauker et al. Mar 1999 A
5882494 Van Antwerp Mar 1999 A
5885566 Goldberg Mar 1999 A
5895235 Droz Apr 1999 A
5897578 Wiklund et al. Apr 1999 A
5897955 Drumheller Apr 1999 A
5904708 Goedeke May 1999 A
5910554 Kempe et al. Jun 1999 A
5913998 Butler et al. Jun 1999 A
5914026 Blubaugh, Jr. et al. Jun 1999 A
5914182 Drumheller Jun 1999 A
5917346 Gord Jun 1999 A
5919215 Wiklund et al. Jul 1999 A
5928130 Schmidt Jul 1999 A
5931814 Alex et al. Aug 1999 A
5932299 Katoot Aug 1999 A
5944661 Swette et al. Aug 1999 A
5945498 Hopken et al. Aug 1999 A
5947127 Tsugaya et al. Sep 1999 A
5954643 VanAntwerp et al. Sep 1999 A
5954954 Houck et al. Sep 1999 A
5955066 Sako et al. Sep 1999 A
5957854 Besson et al. Sep 1999 A
5957903 Mirzaee et al. Sep 1999 A
5959191 Lewis et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5963132 Yoakum Oct 1999 A
5964261 Neuenfeldt et al. Oct 1999 A
5964804 Brauker et al. Oct 1999 A
5964993 Blubaugh et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5969076 Lai et al. Oct 1999 A
5972199 Heller Oct 1999 A
5976085 Kimball et al. Nov 1999 A
5977241 Koloski et al. Nov 1999 A
5985129 Gough et al. Nov 1999 A
5989409 Kurnik et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6001471 Bries et al. Dec 1999 A
6002954 Van Antwerp et al. Dec 1999 A
6007845 Domb Dec 1999 A
6011984 Van Antwerp et al. Jan 2000 A
6013113 Mika Jan 2000 A
6016448 Busacker et al. Jan 2000 A
6018013 Yoshida et al. Jan 2000 A
6018033 Chen et al. Jan 2000 A
6022463 Leader et al. Feb 2000 A
6030827 Davis et al. Feb 2000 A
6039913 Hirt et al. Mar 2000 A
6043328 Domschke et al. Mar 2000 A
6049727 Crothall Apr 2000 A
6051389 Ahl et al. Apr 2000 A
6059946 Yukawa et al. May 2000 A
6063637 Arnold et al. May 2000 A
6066083 Slater et al. May 2000 A
6066448 Wohlstadter et al. May 2000 A
6071406 Tsou Jun 2000 A
6074775 Gartstein et al. Jun 2000 A
6081736 Colvin et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6093156 Cunningham et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6103033 Say Aug 2000 A
6115634 Donders et al. Sep 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6122536 Sun et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6135978 Houben et al. Oct 2000 A
6144869 Berner et al. Nov 2000 A
6144871 Saito et al. Nov 2000 A
6162611 Heller et al. Dec 2000 A
6167614 Tuttle et al. Jan 2001 B1
6169155 Alvarez et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6180416 Kurnik et al. Jan 2001 B1
6187062 Oweis et al. Feb 2001 B1
6189536 Martinez et al. Feb 2001 B1
6200772 Vadgama et al. Mar 2001 B1
6201980 Darrow et al. Mar 2001 B1
6206856 Mahurkar Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6212417 Ikeda et al. Apr 2001 B1
6214185 Offenbacher et al. Apr 2001 B1
6223083 Rosar Apr 2001 B1
6230059 Duffin May 2001 B1
6231879 Li et al. May 2001 B1
6233471 Berner et al. May 2001 B1
6241863 Monbouquette Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254586 Mann et al. Jul 2001 B1
6255592 Pennington et al. Jul 2001 B1
6256522 Schultz Jul 2001 B1
6259937 Schulman et al. Jul 2001 B1
6264825 Blackburn et al. Jul 2001 B1
6268161 Han et al. Jul 2001 B1
6271332 Lohmann et al. Aug 2001 B1
6272364 Kurnik Aug 2001 B1
6272382 Faltys et al. Aug 2001 B1
6274285 Gries et al. Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6284478 Heller et al. Sep 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6294281 Heller Sep 2001 B1
6299578 Kurnik et al. Oct 2001 B1
6300002 Webb et al. Oct 2001 B1
6303670 Fujino et al. Oct 2001 B1
6306594 Cozzette Oct 2001 B1
6309351 Kurnik et al. Oct 2001 B1
6309384 Harrington et al. Oct 2001 B1
6309526 Fujiwara et al. Oct 2001 B1
6312706 Lai et al. Nov 2001 B1
6325978 Labuda et al. Dec 2001 B1
6325979 Hahn et al. Dec 2001 B1
6326160 Dunn et al. Dec 2001 B1
6329161 Heller et al. Dec 2001 B1
6329488 Terry et al. Dec 2001 B1
6330464 Colvin, Jr. et al. Dec 2001 B1
6343225 Clark, Jr. Jan 2002 B1
6358557 Wang et al. Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6365670 Fry Apr 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368141 VanAntwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6372244 Antanavich et al. Apr 2002 B1
6387379 Goldberg et al. May 2002 B1
6400974 Lesho Jun 2002 B1
6405066 Essenpreis et al. Jun 2002 B1
6406066 Uegane Jun 2002 B1
6407195 Sherman et al. Jun 2002 B2
6409674 Brockway et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6442413 Silver Aug 2002 B1
6447448 Ishikawa et al. Sep 2002 B1
6447542 Weadock Sep 2002 B1
6454710 Ballerstadt et al. Sep 2002 B1
6459917 Gowda et al. Oct 2002 B1
6461496 Feldman et al. Oct 2002 B1
6466810 Ward et al. Oct 2002 B1
6471689 Joseph et al. Oct 2002 B1
6475750 Han et al. Nov 2002 B1
6477392 Honigs et al. Nov 2002 B1
6477395 Schulman et al. Nov 2002 B2
6481440 Gielen et al. Nov 2002 B2
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6498043 Schulman et al. Dec 2002 B1
6498941 Jackson Dec 2002 B1
6510329 Heckel Jan 2003 B2
6512939 Colvin et al. Jan 2003 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6520997 Pekkarinen et al. Feb 2003 B1
6527729 Turcott Mar 2003 B1
6528584 Kennedy et al. Mar 2003 B2
6534711 Pollack Mar 2003 B1
6537318 Ita et al. Mar 2003 B1
6541107 Zhong et al. Apr 2003 B1
6545085 Kilgour et al. Apr 2003 B2
6546268 Ishikawa et al. Apr 2003 B1
6547839 Zhang et al. Apr 2003 B2
6551496 Moles et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6554982 Shin et al. Apr 2003 B1
6558320 Causey May 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6565509 Plante et al. May 2003 B1
6569309 Otsuka et al. May 2003 B2
6569521 Sheridan et al. May 2003 B1
6579498 Eglise Jun 2003 B1
6584335 Haar et al. Jun 2003 B1
6585763 Keilman et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6596294 Lai et al. Jul 2003 B2
6607509 Bobroff et al. Aug 2003 B2
6612984 Kerr Sep 2003 B1
6613379 Ward et al. Sep 2003 B2
6615078 Burson et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6633772 Ford et al. Oct 2003 B2
6642015 Vachon et al. Nov 2003 B2
6645181 Lavi et al. Nov 2003 B1
6648821 Lebel et al. Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6666821 Keimel Dec 2003 B2
6670115 Zhang Dec 2003 B1
6683535 Utke Jan 2004 B1
6689265 Heller et al. Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6699218 Flaherty et al. Mar 2004 B2
6699383 Lemire et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6702972 Markle Mar 2004 B1
6721587 Gough Apr 2004 B2
6730200 Stewart et al. May 2004 B1
6731976 Penn et al. May 2004 B2
6733655 Davies et al. May 2004 B1
6737158 Thompson May 2004 B1
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6743635 Neel et al. Jun 2004 B2
6773565 Kunimoto et al. Aug 2004 B2
6784274 van Antwerp et al. Aug 2004 B2
6789634 Denton Sep 2004 B1
6793789 Choi et al. Sep 2004 B2
6793802 Lee et al. Sep 2004 B2
6801041 Karinka et al. Oct 2004 B2
6802957 Jung et al. Oct 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6858218 Lai et al. Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6867262 Angel et al. Mar 2005 B1
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6893552 Wang et al. May 2005 B1
6895263 Shin et al. May 2005 B2
6895265 Silver May 2005 B2
6908681 Terry et al. Jun 2005 B2
6932894 Mao et al. Aug 2005 B2
6952604 DeNuzzio et al. Oct 2005 B2
6965791 Hitchcock et al. Nov 2005 B1
6969451 Shin et al. Nov 2005 B2
6972080 Tomioka et al. Dec 2005 B1
6973706 Say et al. Dec 2005 B2
7003336 Holker et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7008979 Schottman et al. Mar 2006 B2
7014948 Lee et al. Mar 2006 B2
7033322 Silver Apr 2006 B2
7052131 McCabe et al. May 2006 B2
7058437 Buse et al. Jun 2006 B2
7060059 Keith et al. Jun 2006 B2
7070580 Nielsen Jul 2006 B2
7074307 Simpson et al. Jul 2006 B2
7078582 Stebbings et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7115884 Walt et al. Oct 2006 B1
7118667 Lee Oct 2006 B2
7120483 Russell et al. Oct 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7153265 Vachon Dec 2006 B2
7166074 Reghabit et al. Jan 2007 B2
7169289 Schulein et al. Jan 2007 B2
7172075 Ji Feb 2007 B1
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7207974 Safabash et al. Apr 2007 B2
7225535 Feldman et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7229471 Gale et al. Jun 2007 B2
7241586 Gulati Jul 2007 B2
7248906 Dirac et al. Jul 2007 B2
7267665 Steil et al. Sep 2007 B2
7279174 Pacetti et al. Oct 2007 B2
7310544 Brister et al. Dec 2007 B2
7335286 Abel et al. Feb 2008 B2
7336984 Gough et al. Feb 2008 B2
7344499 Prausnitz et al. Mar 2008 B1
7357793 Pacetti Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7399277 Saidara et al. Jul 2008 B2
7417164 Suri Aug 2008 B2
7423074 Lai et al. Sep 2008 B2
7424318 Brister et al. Sep 2008 B2
7426408 DeNuzzio et al. Sep 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7470488 Lee et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7687586 Ward et al. Mar 2010 B2
7771352 Shults et al. Aug 2010 B2
7881763 Brauker et al. Feb 2011 B2
7899511 Shults et al. Mar 2011 B2
7901354 Shults et al. Mar 2011 B2
8050731 Tapsak et al. Nov 2011 B2
8053018 Tapsak et al. Nov 2011 B2
8509871 Rhodes et al. Aug 2013 B2
20020016535 Martin et al. Feb 2002 A1
20020018843 Van Antwerp et al. Feb 2002 A1
20020022883 Burg Feb 2002 A1
20020023852 McIvor et al. Feb 2002 A1
20020025580 Vadgama et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020042561 Schulman et al. Apr 2002 A1
20020055673 Van Antwerp et al. May 2002 A1
20020084196 Liamos et al. Jul 2002 A1
20020099997 Piret Jul 2002 A1
20020119711 Van Antwerp et al. Aug 2002 A1
20020120186 Keimel et al. Aug 2002 A1
20020123087 Vachon et al. Sep 2002 A1
20020128546 Silver Sep 2002 A1
20020151796 Koulik Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020169369 Ward et al. Nov 2002 A1
20020177763 Burns et al. Nov 2002 A1
20020182241 Boerenstein et al. Dec 2002 A1
20020185384 Leong et al. Dec 2002 A1
20020188185 Sohrab Dec 2002 A1
20020193885 Legeay et al. Dec 2002 A1
20030004457 Andersson Jan 2003 A1
20030006669 Pei et al. Jan 2003 A1
20030009093 Silver Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030036773 Whitehurst et al. Feb 2003 A1
20030036803 McGhan et al. Feb 2003 A1
20030059631 Al-Lamee Mar 2003 A1
20030065254 Schulman et al. Apr 2003 A1
20030069383 Van Antwerp et al. Apr 2003 A1
20030070548 Clausen Apr 2003 A1
20030076082 Morgan et al. Apr 2003 A1
20030078481 McIvor et al. Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030088166 Say et al. May 2003 A1
20030091433 Tam et al. May 2003 A1
20030096424 Mao et al. May 2003 A1
20030097082 Purdy et al. May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030104273 Lee et al. Jun 2003 A1
20030125498 McCabe et al. Jul 2003 A1
20030125613 Enegren et al. Jul 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030132227 Geisler Jul 2003 A1
20030134100 Mao et al. Jul 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030138674 Zeikus et al. Jul 2003 A1
20030157409 Huang et al. Aug 2003 A1
20030181794 Rini et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030188427 Say et al. Oct 2003 A1
20030199744 Buse et al. Oct 2003 A1
20030199745 Burson et al. Oct 2003 A1
20030199878 Pohjonen Oct 2003 A1
20030203498 Neel et al. Oct 2003 A1
20030203991 Schottman et al. Oct 2003 A1
20030211050 Majeti et al. Nov 2003 A1
20030211625 Cohan Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225324 Anderson et al. Dec 2003 A1
20030225361 Sabra Dec 2003 A1
20030225367 Sabra Dec 2003 A1
20030225437 Ferguson Dec 2003 A1
20030228681 Ritts et al. Dec 2003 A1
20030235817 Bartkowiak et al. Dec 2003 A1
20040006263 Anderson et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040015063 DeNuzzio et al. Jan 2004 A1
20040015134 Lavi et al. Jan 2004 A1
20040018486 Dunn et al. Jan 2004 A1
20040030285 Lavi et al. Feb 2004 A1
20040030294 Mahurkar Feb 2004 A1
20040039406 Jessen Feb 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040063167 Kaastrup et al. Apr 2004 A1
20040068230 Estes et al. Apr 2004 A1
20040074785 Holker Apr 2004 A1
20040077075 Jensen et al. Apr 2004 A1
20040078219 Kaylor Apr 2004 A1
20040084306 Shin et al. May 2004 A1
20040106741 Kriesel et al. Jun 2004 A1
20040106857 Gough Jun 2004 A1
20040111017 Say et al. Jun 2004 A1
20040111144 Lawin et al. Jun 2004 A1
20040120848 Teodorczyk Jun 2004 A1
20040133131 Kuhn et al. Jul 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040138543 Russell et al. Jul 2004 A1
20040143173 Reghabi et al. Jul 2004 A1
20040146909 Duong et al. Jul 2004 A1
20040158138 Kilcoyne et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040173472 Jung et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040180391 Gratzl et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Morgensen Oct 2004 A1
20040213985 Lee et al. Oct 2004 A1
20040219664 Heller et al. Nov 2004 A1
20040224001 Pacetti et al. Nov 2004 A1
20040228902 Benz Nov 2004 A1
20040234575 Horres et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040242982 Sakata et al. Dec 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20050006122 Burnette Jan 2005 A1
20050013842 Qiu et al. Jan 2005 A1
20050027182 Siddiqui et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050032246 Brennan et al. Feb 2005 A1
20050033132 Shults et al. Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050044088 Lindsay et al. Feb 2005 A1
20050051427 Brauker et al. Mar 2005 A1
20050054909 Petisce et al. Mar 2005 A1
20050056551 White et al. Mar 2005 A1
20050056552 Simpson et al. Mar 2005 A1
20050070770 Dirac et al. Mar 2005 A1
20050077584 Uhland et al. Apr 2005 A1
20050079200 Rathenow et al. Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096519 DeNuzzio et al. May 2005 A1
20050107677 Ward et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050112172 Pacetti May 2005 A1
20050112358 Potyrailo et al. May 2005 A1
20050118344 Pacetti Jun 2005 A1
20050119720 Gale et al. Jun 2005 A1
20050121322 Say Jun 2005 A1
20050124873 Shults et al. Jun 2005 A1
20050133368 Davies et al. Jun 2005 A1
20050139489 Davies et al. Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050143675 Neel et al. Jun 2005 A1
20050154272 Dirac et al. Jul 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050176678 Horres et al. Aug 2005 A1
20050177036 Shults et al. Aug 2005 A1
20050181012 Saint et al. Aug 2005 A1
20050182451 Griffin et al. Aug 2005 A1
20050183954 Hitchcock et al. Aug 2005 A1
20050184641 Armitage et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050196747 Stiene Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050209665 Hunter et al. Sep 2005 A1
20050211571 Schulein et al. Sep 2005 A1
20050215871 Feldman et al. Sep 2005 A1
20050233407 Pamidi et al. Oct 2005 A1
20050239154 Feldman et al. Oct 2005 A1
20050242479 Petisce et al. Nov 2005 A1
20050245795 Goode et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050258037 Hajizadeh et al. Nov 2005 A1
20050261563 Zhou et al. Nov 2005 A1
20050266582 Modlin et al. Dec 2005 A1
20050271546 Gerber et al. Dec 2005 A1
20050272989 Shah et al. Dec 2005 A1
20050274665 Heilmann et al. Dec 2005 A1
20050282997 Ward Dec 2005 A1
20060003398 Heller et al. Jan 2006 A1
20060007391 McCabe et al. Jan 2006 A1
20060008370 Massaro et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060047095 Pacetti Mar 2006 A1
20060058868 Gale et al. Mar 2006 A1
20060065527 Samproni Mar 2006 A1
20060067908 Ding Mar 2006 A1
20060068208 Tapsak et al. Mar 2006 A1
20060078908 Pitner et al. Apr 2006 A1
20060079740 Silver et al. Apr 2006 A1
20060086624 Tapsak et al. Apr 2006 A1
20060134165 Pacetti Jun 2006 A1
20060142524 Lai et al. Jun 2006 A1
20060142525 Lai et al. Jun 2006 A1
20060142526 Lai et al. Jun 2006 A1
20060142651 Brister et al. Jun 2006 A1
20060148985 Karthauser Jul 2006 A1
20060155180 Brister et al. Jul 2006 A1
20060159718 Rathenow et al. Jul 2006 A1
20060171980 Helmus et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060177379 Asgari Aug 2006 A1
20060183178 Gulati Aug 2006 A1
20060183871 Ward et al. Aug 2006 A1
20060183984 Dobbles et al. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060189856 Petisce et al. Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060198864 Shults et al. Sep 2006 A1
20060200019 Petisce et al. Sep 2006 A1
20060200020 Brister et al. Sep 2006 A1
20060200022 Brauker et al. Sep 2006 A1
20060200970 Brister et al. Sep 2006 A1
20060204536 Shults et al. Sep 2006 A1
20060211921 Brauker et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224108 Brauker et al. Oct 2006 A1
20060229512 Petisce et al. Oct 2006 A1
20060235285 Brister et al. Oct 2006 A1
20060249381 Petisce et al. Nov 2006 A1
20060249446 Yeager Nov 2006 A1
20060249447 Yeager Nov 2006 A1
20060252027 Petisce et al. Nov 2006 A1
20060253012 Petisce et al. Nov 2006 A1
20060258761 Boock et al. Nov 2006 A1
20060258929 Goode et al. Nov 2006 A1
20060263673 Kim et al. Nov 2006 A1
20060263839 Ward et al. Nov 2006 A1
20060269586 Pacetti Nov 2006 A1
20060270922 Brauker et al. Nov 2006 A1
20060270923 Brauker et al. Nov 2006 A1
20060275857 Kjaer et al. Dec 2006 A1
20060275859 Kjaer Dec 2006 A1
20060289307 Yu et al. Dec 2006 A1
20060293487 Gaymans et al. Dec 2006 A1
20070003588 Chinn et al. Jan 2007 A1
20070007133 Mang et al. Jan 2007 A1
20070017805 Hodges et al. Jan 2007 A1
20070032718 Shults et al. Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070045902 Brauker et al. Mar 2007 A1
20070059196 Brister et al. Mar 2007 A1
20070123963 Krulevitch May 2007 A1
20070129524 Sunkara Jun 2007 A1
20070135698 Shah et al. Jun 2007 A1
20070142584 Schorzman et al. Jun 2007 A1
20070155851 Alli et al. Jul 2007 A1
20070161769 Schorzman et al. Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070166343 Goerne et al. Jul 2007 A1
20070166364 Beier et al. Jul 2007 A1
20070173709 Petisce et al. Jul 2007 A1
20070173710 Petisce et al. Jul 2007 A1
20070173711 Shah et al. Jul 2007 A1
20070197889 Brister et al. Aug 2007 A1
20070197890 Boock et al. Aug 2007 A1
20070200254 Curry Aug 2007 A1
20070200267 Tsai Aug 2007 A1
20070202562 Curry Aug 2007 A1
20070202672 Curry Aug 2007 A1
20070203568 Gale et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070208246 Brauker et al. Sep 2007 A1
20070213611 Simpson et al. Sep 2007 A1
20070215491 Heller et al. Sep 2007 A1
20070218097 Heller et al. Sep 2007 A1
20070227907 Shah et al. Oct 2007 A1
20070229757 McCabe et al. Oct 2007 A1
20070232879 Brister et al. Oct 2007 A1
20070233013 Schoenberg Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070242215 Schorzman et al. Oct 2007 A1
20070244379 Boock et al. Oct 2007 A1
20070259217 Logan Nov 2007 A1
20070275193 DeSimone et al. Nov 2007 A1
20070299385 Santini et al. Dec 2007 A1
20070299409 Whibourne et al. Dec 2007 A1
20080001318 Schorzman et al. Jan 2008 A1
20080021008 Pacetti et al. Jan 2008 A1
20080021666 Goode et al. Jan 2008 A1
20080027301 Ward et al. Jan 2008 A1
20080031918 Lawin et al. Feb 2008 A1
20080033269 Zhang Feb 2008 A1
20080034972 Gough et al. Feb 2008 A1
20080038307 Hoffmann Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080071027 Pacetti Mar 2008 A1
20080076897 Kunzler et al. Mar 2008 A1
20080081184 Kubo et al. Apr 2008 A1
20080113207 Pacetti et al. May 2008 A1
20080138497 Pacetti et al. Jun 2008 A1
20080138498 Pacetti et al. Jun 2008 A1
20080143014 Tang Jun 2008 A1
20080154101 Jain et al. Jun 2008 A1
20080187655 Markle et al. Aug 2008 A1
20080188722 Markle et al. Aug 2008 A1
20080188725 Markle et al. Aug 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080213460 Benter et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080262334 Dunn et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080305009 Gamsey et al. Dec 2008 A1
20080305506 Suri Dec 2008 A1
20080306368 Goode et al. Dec 2008 A1
20080312397 Lai et al. Dec 2008 A1
20090004243 Pacetti et al. Jan 2009 A1
20090012205 Nakada et al. Jan 2009 A1
20090012379 Goode et al. Jan 2009 A1
20090018418 Markle et al. Jan 2009 A1
20090018426 Markle et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090061528 Suri Mar 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090076356 Simpson Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090081803 Gamsey et al. Mar 2009 A1
20090099434 Liu et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090124879 Brister et al. May 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090177143 Markle et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090264719 Markle et al. Oct 2009 A1
20110124992 Brauker et al. May 2011 A1
20110144465 Shults et al. Jun 2011 A1
20110147300 Xiao et al. Jun 2011 A1
20110253533 Shults et al. Oct 2011 A1
Foreign Referenced Citations (113)
Number Date Country
0 098 592 Jan 1984 EP
0 107 634 May 1984 EP
0 127 958 Dec 1984 EP
0 284 518 Sep 1988 EP
0 286 118 Oct 1988 EP
0 291 130 Nov 1988 EP
0 313 951 May 1989 EP
0 320 109 Jun 1989 EP
0 353 328 Feb 1990 EP
0 362 145 Apr 1990 EP
0 390 390 Oct 1990 EP
0 396 788 Nov 1990 EP
0 476 980 Mar 1992 EP
0 534 074 Mar 1993 EP
0 535 898 Apr 1993 EP
0 539 625 May 1993 EP
0 563 795 Oct 1993 EP
0 647 849 Apr 1995 EP
0 776 628 Jun 1997 EP
0 817 809 Jan 1998 EP
0 838 230 Apr 1998 EP
0 862 648 Sep 1998 EP
0 885 932 Dec 1998 EP
0 967 788 Dec 1999 EP
0 995 805 Apr 2000 EP
1 804 650 Jul 2007 EP
2656423 Jun 1991 FR
2760962 Sep 1998 FR
1 442 303 Jul 1976 GB
2149918 Jun 1985 GB
2209836 May 1989 GB
57156004 Sep 1982 JP
57156005 Sep 1982 JP
58163402 Sep 1983 JP
58163403 Sep 1983 JP
59029693 Feb 1984 JP
59049803 Mar 1984 JP
59049805 Mar 1984 JP
59059221 Apr 1984 JP
59087004 May 1984 JP
59-211459 Nov 1984 JP
59209608 Nov 1984 JP
59209609 Nov 1984 JP
59209610 Nov 1984 JP
60245623 Dec 1985 JP
61238319 Oct 1986 JP
62074406 Apr 1987 JP
62083649 Apr 1987 JP
62083849 Apr 1987 JP
62102815 May 1987 JP
62227423 Oct 1987 JP
63130661 Jun 1988 JP
01018404 Jan 1989 JP
01018405 Jan 1989 JP
02002913 Jan 1990 JP
3-293556 Dec 1991 JP
05279447 Oct 1993 JP
8196626 Aug 1996 JP
2002-189015 Jul 2002 JP
WO 8902720 Apr 1989 WO
WO 9000738 Jan 1990 WO
WO 9007575 Jul 1990 WO
WO 9109302 Jun 1991 WO
WO 9207525 May 1992 WO
WO 9213271 Aug 1992 WO
WO 9314185 Jul 1993 WO
WO 9314693 Aug 1993 WO
WO 9319701 Oct 1993 WO
WO 9323744 Nov 1993 WO
WO 9408236 Apr 1994 WO
WO 9422367 Oct 1994 WO
WO 9625089 Feb 1995 WO
WO 9507109 Mar 1995 WO
WO 9601611 Jan 1996 WO
WO 9614026 May 1996 WO
WO 9630431 Oct 1996 WO
WO 9632076 Oct 1996 WO
WO 9636296 Nov 1996 WO
WO 9701986 Jan 1997 WO
WO 9706727 Feb 1997 WO
WO 9711067 Mar 1997 WO
WO 9743633 Nov 1997 WO
WO 9819159 May 1998 WO
WO 9824358 Jun 1998 WO
WO 9838906 Sep 1998 WO
WO 9956613 Apr 1999 WO
WO 0013003 Mar 2000 WO
WO 0019887 Apr 2000 WO
WO 0032098 Jun 2000 WO
WO 0033065 Jun 2000 WO
WO 0049940 Aug 2000 WO
WO 0059373 Oct 2000 WO
WO 0074753 Dec 2000 WO
WO 0112158 Feb 2001 WO
WO 0120019 Mar 2001 WO
WO 0120334 Mar 2001 WO
WO 0143660 Jun 2001 WO
WO 0158348 Aug 2001 WO
WO 0168901 Sep 2001 WO
WO 0169222 Sep 2001 WO
WO 0188524 Nov 2001 WO
WO 0188534 Nov 2001 WO
WO 02053764 Jul 2002 WO
WO 02058537 Aug 2002 WO
WO 03063700 Aug 2003 WO
WO 03082091 Sep 2003 WO
WO 03101862 Dec 2003 WO
WO 2005045394 May 2005 WO
WO 2005026689 Oct 2005 WO
WO 2006017358 Feb 2006 WO
WO 2006018425 Feb 2006 WO
WO 2006105146 Oct 2006 WO
WO 2007114943 Oct 2007 WO
Non-Patent Literature Citations (357)
Entry
Gross, Todd (2001), Diabetes Technology and Therapeutics 3(1):130-131. Letters to the Editor re Diabetes Technology & Therapeutics 2000 2:49-56.
Kerner, W. (2001): Implantable glucose sensors: present status and future developments. Exp. Clin. Endocrinol. Diabetes 109(Suppl 2):S341-346 (2001).
Worsley et al. (2008): Measurement of glucose in blood with a phenylboronic acid optical sensor. J. Diab. Sci. Tech. 2(2):213-220 (Mar. 2008).
Wright et al. (1999): Bioelectrichemical dehalogenations via direct electrochemistry of poly(ethylene oxide)-modified myoglobin, Electrochemistry Comm 1:603-611 (1999).
Yamasaki et al. (1989): Direct measurement of whole blood glucose by a needle-type sensor. Clinica Chimica Acta 93:93-98 (1989).
Yamasaki, Yoshimitsu (1984): The development of a needle-type glucose sensor for wearable artificial endocrine pancreas. Med. J. Osaka University 35(1-2):35-34 (1984).
Yang et al. (2004): A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate / Nafion composite membranes. J. Membrane Sci 237:145-161.
Ye et al. (1993): High current density wire quinoprotein glucose dehydrogenase electrode. Anal. Chem. 65:238-241 (1993)
Zamzow et al. (1990): Development and evaluation of a wearable blood monitor. ASAIO Transactions 36:M588-M591 (1990).
Zethelius et al. (2008): Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. NEJM 358:2107-2116 (2008).
Zhang et al. (1994): Elimination of the acetaminophen interference in an implantable glucose sensor. Anal. Chem. 66(7):1183-1188 (1994).
Zhu et al. (2002): Planar amperometrtic glucose sensor based on glucose oxidase immobilized by chitosan film on prussian blue layer. Sensors 2:127-136 (2002).
US 7,530,950, 05/12/2009, Brister et al. (withdrawn).
Aalders et al. 1991. Development of a wearable glucose sensor; studies in healthy volunteers and in diabetic patients. The International Journal of Artificial Organs 14(2):102-108.
Abe et al. 1992. Characterization of glucose microsensors for intracellular measurements. Alan. Chem. 64(18):2160-2163.
Abel et al. 1984. Experience with an implantable glucose sensor as a prerequisite of an artifical beta cell, Biomed. Biochim. Acta 43(5):577-584.
Abel et al. 2002. Biosensors for in vivo glucose measurement: can we cross the experimental stage. Biosens Bioelectron 17:1059-1070.
Alcock & Turner. 1994. Continuous Analyte Monitoring to Aid Clinical Practice. IEEE Engineering in Med. & Biol. Mag. 13:319-325.
American Heritage Dictionary, 4th Edition. 2000. Houghton Mifflin Company, p. 82.
Amin et al. 2003. Hypoglycemia prevalence in prepubertal children with type 1 diabetes on standard insulin regimen: Use of continuous glucose monitoring system. Diabetes Care 26(3):662-667.
Answers.com. “xenogenic.” The American Heritage Stedman's Medical Dictionary. Houghton Mifflin Company, 2002.Answers.com Nov. 7, 2006 http://www. Answers.com/topic/xenogenic.
Armour et al. Dec. 1990. Application of Chronic Intravascular Blood Glucose Sensor in Dogs. Diabetes 39:1519-1526.
Atanasov et al. 1994. Biosensor for continuous glucose monitoring. Biotechnology and Bioengineering 43:262-266.
Atanasov et al. 1997. Implantation of a refillable glucose monitoring-telemetry device. Biosens Bioelectron 12:669-680.
Aussedat et al. 1997. A user-friendly method for calibrating a subcutaneous glucose sensor-based hypoglycaemic alarm. Biosensors & Bioelectronics 12(11):1061-1071.
Bailey et al. 2007. Reduction in hemoglobin A1c with real-time continuous glucose monitoring: results from a 12-week observational study. Diabetes Technology & Therapeutics 9(3):203-210.
Baker et al. 1993. Dynamic concentration challenges for biosensor characterization. Biosensors & Bioelectronics 8:433-441.
Bani Amer, M. M. 2002. An accurate amperometric glucose sensor based glucometer with eliminated cross-sensitivity. J Med Eng Technol 26(5):208-213.
Bard et al. 1980. Electrochemical Methods. John Wiley & Sons, pp. 173-175.
Beach et al. 1999. Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring. IEEE Transactions on Instrumentation and Measurement 48(6):1239-1245.
Bellucci et al. Jan. 1986. Electrochemical behaviour of graphite-epoxy composite materials (GECM) in aqueous salt solutions, Journal of Applied Electrochemistry, 16(1):15-22.
Bessman et al., Progress toward a glucose sensor for the artificial pancreas, Proceedings of a Workshop on Ion-Selective Microelectrodes, Jun. 4-5, 1973, Boston, MA, 189-197.
Biermann et al. 2008. How would patients behave if they were continually informed of their blood glucose levels? A simulation study using a “virtual” patient. Diab. Thechnol. & Therapeut., 10:178-187.
Bindra et al. 1989. Pulsed amperometric detection of glucose in biological fluids at a surface-modified gold electrode. Anal Chem 61:2566-2570.
Bindra et al. 1991. Design and In Vitro Studies of a Needle-Type Glucose Senso for Subcutaneous Monitoring. Anal. Chem 63:1692-96.
Bisenberger et al. 1995. A triple-step potential waveform at enzyme multisensors with thick-film gold electrodes for detection of glucose and sucrose. Sensors and Actuators, B 28:181-189.
Bland et al. 1990. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput. Biol. Med. 20(5):337-340.
Bobbioni-Harsch et al. 1993. Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats, J. Biomed. Eng. 15:457-463.
Bode et al. 1999. Continuous glucose monitoring used to adjust diabetes therapy improves glycosylated hemoglobin: A pilot study. Diabetes Research and Clinical Practice 46:183-190.
Bode et al. 2000. Using the continuous glucose monitoring system to improve the management of type 1 diabetes. Diabetes Technology & Therapeutics, 2(Suppl 1):S43-48.
Bode, B. W. 2000. Clinical utility of the continuous glucose monitoring system. Diabetes Technol Ther, 2(Suppl 1):S35-41.
Boedeker Plastics, Inc. 2009. Polyethylene Specifications Data Sheet, http://www.boedeker.com/polye—p.htm [Aug. 19, 2009 3:36:33 PM].
Boland et al. 2001. Limitations of conventional methods of self-monitoring of blood glucose. Diabetes Care 24(11):1858-1862.
Bott, A. W. 1997. A Comparison of Cyclic Voltammetry and Cyclic Staircase Voltammetry Current Separations 16:1, 23-26.
Bowman, L.; Meindl, J. D. 1986. The packaging of implantable integrated sensors. IEEE Trans Biomed Eng BME33(2):248-255.
Brauker et al. 1995. Neovascularization of synthetic membranes directed by membrane Microarchitecture. J. Biomed Mater Res 29:1517-1524.
Brauker et al. 1998. Sustained expression of high levels of human factor IX from human cells implanted within an immunoisolation device into athymic rodents. Hum Gene Ther 9:879-888.
Brauker et al. 2001. Unraveling Mysteries at the Biointerface: Molecular Mediator of Inhibition of Blood vessel Formation in the Foreign Body Capsule Revealed. Surfacts Biomaterials 6. 1;5.
Brauker et al. Jun. 27, 1996. Local Inflammatory Response Around Diffusion Chambers Containing Xenografts Transplantation 61(12):1671-1677.
Braunwald, 2008. Biomarkers in heart failure. N. Engl. J. Med., 358: 2148-2159.
Bremer et al. 2001. Benchmark data from the literature for evaluation of new glucose sensing technologies. Diabetes Technology & Therapeutics 3(3):409-418.
Brooks et al. “Development of an on-line glucose sensor for fermentation monitoring,” Biosensors, 3:45-56 (1987/88).
Bruckel et al. 1989. In vivo measurement of subcutaneous glucose concentrations with an enzymatic glucose sensor and a wick method. Klin Wochenschr 67:491-495.
Brunner et al. 1998. Validation of home blood glucose meters with respect to clinical and analytical approaches. Diabetes Care 21(4):585-590.
Cai et al. 2004. A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Anal Chem 76(4):4038-4043.
Campanella et al. 1993. Biosensor for direct determination of glucose and lactate in undiluted biological fluids. Biosensors & Bioelectronics 8:307-314.
Candas et al (1994). “An adaptive plasma glucose controller basedon on a nonlinear insulin/glucose model.” IEEE Transactions on Biomedical Engineering, 41(2): 116-124.
Cass et al. “Ferrocene-mediated enzyme electrodes for amperometric determination of glucose,” Anal. Chem., 36:667-71 (1984).
Cassidy et al., Apr. 1993. Novel electrochemical device for the detection of cholesterol or glucose, Analyst, 118:415-418.
Chase et al. 2001. Continuous subcutaneous glucose monitoring in children with type 1 diabetes. Pediatrics 107:222-226.
Chatterjee et al. 1997. Poly(ether Urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity, Journal of Membrane Science 135:99-106.
Chia et al. 2004. Glucose sensors: toward closed loop insulin delivery. Endocrinol Metab Clin North Am 33:175-95.
Ciba® Irgacure® 2959 Photoinitiator, Product Description. Apr. 2, 1998. Ciba Specialty Chemicals Inc., Basel, Switzerland. 3 pages.
Claremont et al. 1986. Subcutaneous implantation of a ferrocene-mediated glucose sensor in pigs. Diabetologia 29:817-821.
Claremont et al. Jul. 1986. Potentially-implntable, ferrocene-mediated glucose sensor. J. Biomed. Eng. 8:272-274.
Clark et al. 1987. Configurational cyclic voltammetry: increasing the specificity and reliablity of implanted electrodes, IEEE/Ninth Annual Conference of the Engineering in Medicine and Biollogy Society, pp. 0782-0783.
Clark et al. 1988. Long-term stability of electroenzymatic glucose sensors implanted in mice. Trans Am Soc Artif Intern Organs 34:259-265.
Clark et al., 1981. One-minute electrochemical enzymic assay for cholesterol in biological materials, Clin. Chem. 27(12):1978-1982.
CLSI. Performance metrics for continuous interstitial glucose monitoring; approved guideline, CLSI document POCT05-A. Wayne, PA: Clinical and Laboratory Standards Institute: 2008 28(33), 72 pp.
Colangelo et al. 1967. Corrosion rate measurements in vivo, Journal of Biomedical Materials Research, 1:405-414.
Colowick et al. 1976. Methods in Enzymlology, vol. XLIV, Immobilized Enzymes. New York: Academic Press.
Cox et al. 1985. Accuracy of perceiving blood glucose in IDDM. Diabetes Care 8(6):529-536.
Csoregi et al., 1994. Design, characterization, and one-point in vivo calibration of a subcutaneously implanted glucose electrode. Anal Chem. 66(19):3131-3138.
Danielsson et al. 1988. Enzyme thermistors, Methods in Enzymology, 137:181-197.
D'Arrigo et al. 2003. Porous-Si based bioreactors for glucose monitoring and drugs production. Proc. of SPIE 4982:178-184.
Dassau et al., In silico evaluation platform for artifical pancreatic β-cell development—a dynamic simulator for closed loop control with hardware-in-the-loop, Diabetes Technology & Therapeutics, 11(3):1-8, 2009.
Davies, et al. 1992. Polymer membranes in clinical sensor applications. I. An overview of membrane function, Biomaterials, 13(14):971-978.
Davis et al. 1983. Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase. Enzyme Microb. Technol., vol. 5, September, 383-388.
Direct 30/30® Blood Glucose Sensor, (Markwell Medical) Catalog, ©1990, ELCO Diagnostics Company. 1 page.
Dixon et al. 2002. Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. Journal of Neuroscience Methods 119:135-142.
DuPont1 Dimension AR®. 1998. The chemistry analyzer that makes the most of your time, money and effort. Catalog. Dade International, Chemistry Systems. Newark, DE. 18 pages.
Durliat et al. 1976. Spectrophotometric and electrochemical determinations of L(+)-lactate in blood by use of lactate dehydrogenase from yeast, Clin. Chem. 22(11):1802-1805.
Edwards Lifesciences. Accuracy for your and your patients. Marketing materials, 4 pp. 2002.
El Deheigy et al. 1986. Optimization of an implantable coated wire glucose sensor. J. Biomed Eng. 8: 121-129.
Electronic File History for U.S. Appl. No. 09/916,711, filed Jul. 27, 2001 (Abandoned) containing Office Action(s) dated Sep. 24, 2003, Feb. 11, 2004, Jul. 23, 2004, Dec. 23, 2004, Jul. 1, 2005, Sep. 23, 2005 and Feb. 14, 2006 and Applicant(s) Response(s) filed Nov. 24, 2003, Apr. 26, 2004, Oct. 18, 2004, Nov. 22, 2004, Mar. 25, 2005, Sep. 7, 2005, Sep. 30, 2005 and Jun. 15, 2006.
Electronic File History U.S. Appl. No. 11/021,162, filed Dec. 22, 2004 (U.S. Pat. No. 7,471,972, issued Dec. 30, 2008) containing Office Action(s) dated Jun. 19, 2008 and Sep. 24, 2008 and Applicant(s) Response(s) filed Jan. 16, 2007 and Sep. 15, 2008.
El-Khatib et al. 2007. Adaptive closed-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion in diabetic swine, Journal of Diabetes Science and Technology, 1(2):181-192.
El-Sa'ad et al. 1990. Moisture Absorption by Epoxy Resins: the Reverse Thermal Effect. Journal of Materials Science 25:3577-3582.
Ernst et al. 2002. Reliable glucose monitoring through the use of microsystem technology. Anal. Bioanal. Chem. 373:758-761.
Fahy et al., An analysis: hyperglycemic intensive care patients need continuous glocuse monitoring—easier said than done, Journal of Diabetese Science and Technology, 2(2):201-204, Mar. 2008.
Fare et al. 1998. Functional characterization of a conducting polymer-based immunoassay system. Biosensors & Bioelectronics 13(3-4):459-470.
Feldman et al. 2003. A continuous glucose sensor based on wired enzyme technology—results from a 3-day trial in patients with type 1 diabetes. Diabetes Technol Ther 5(5):769-779.
Fischer et al. 1987. Assessment of subcutaneous glucose concentration: validation of the wick technique as a reference for implanted electrochemical sensors in normal and diabetic dogs, Diabetologia 30:940-945.
Fischer et al. 1989. Oxygen Tension at the Subcutaneous Implantation Site of Glucose Sensors. Biomed. Biochem 11/12:965-972.
Fischer et al. 1995. Hypoglycaemia-warning by means of subcutaneous electrochemical glucose sensors: an animal study, Horm. Metab. Rese. 27:53.
Freedman et al. 1991. Statistics, Second Edition, W.W. Norton & Company, p. 74.
Frohnauer et al. 2001. Graphical human insulin time-activity profiles using standardized definitions. Diabetes Technology & Therapeutics 3(3):419-429.
Frost et al. 2002. Implantable chemical sensors for real-time clinical monitoring: Progress and challenges. Current Opinion in Chemical Biology 6:633-641.
Gabbay et al. 2008. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes. Diab. Thechnol. & Therapeut., 10:188-193.
Ganesan et al., Gold layer-based dual crosslinking procedure of glucose oxidase with ferrocene monocarboxylic acid provides a stable biosensor, Analytical Biochemistry 343:188-191, 2005.
Ganesh et al., Evaluation of the VIA® blood chemistry monitor for glucose in healthy and diabetic volunteers, Journal of Diabetese Science and Technology, 2(2):182-193, Mar. 2008.
Gao et al. 1989. Determination of Interfacial parameters of cellulose acetate membrane materials by HPLC, J. Liquid Chromatography, VI. 12, n. 11, 2083-2092.
Garg et al. 2004. Improved Glucose Excursions Using an Implantable Real-Time continuous Glucose Sensor in Adults with Type I Diabetes. Diabetes Care 27:734-738.
Geller et al. 1997. Use of an immunoisolation device for cell transplantation and tumor immunotherapy. Ann NY Acad Sci 831:438-451.
Gerritsen et al. 1999. Performance of subcutaneously implanted glucose sensors for continuous monitoring. The Netherlands Journal of Medicine 54:167-179.
Gerritsen et al. 2001. Influence of inflammatory cells and serum on the performance of implantable glucose sensors. J Biomed Mater Res 54:69-75.
Gerritsen, M. 2000. Problems associated with subcutaneously implanted glucose sensors. Diabetes Care 23(2):143-145.
Gilligan et al. 1994. Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model. Diabetes Care 17(8):882-887.
Gilligan et al. 2004, Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans. Diabetes Technol Ther 6:378-386.
Godsland et al. 2001. Maximizing the Success Rate of Minimal Model Insulin Sensitivity Measurement in Humans: The Importance of Basal Glucose Levels. The Biochemical Society and the Medical Research Society, 1-9.
Gouda et al., Jul. 4, 2003. Thermal inactiviation of glucose oxidase, The Journal of Biological Chemistry, 278(27):24324-24333.
Gough et al. 2000. Immobilized glucose oxidase in implantable glucose sensor technology. Diabetes Technology & Therapeutics 2(3):377-380.
Gough et al. 2003. Frequency characterization of blood glucose dynamics. Annals of Biomedical Engineering 31:91-97.
Gross et al. 2000. Efficacy and reliability of the continuous glucose monitoring system. Diabetes Technology & Therapeutics, 2(Suppl 1):S19-26.
Gross et al. 2000. Performance evaluation of the MiniMed® continuous glucose monitoring system during patient home use. Diabetes Technology & Therapeutics 2(1):49-56.
Guerci et al., Clinical performance of CGMS in type 1 diabetic patents treated by continuous subcutaneous insulin infusion using insulin analogs, Diabetes Care, 26:582-589, 2003.
Guo et al., Modification of cellulose acetate ultrafiltration membrane by gamma ray radiation, Shuichuli Jishi Bianji Weiyuanhui, 23(6):315-318, 1998 (Abstract only).
Hall et al. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part I: An adsorption-controlled mechanism. Electrochimica Acta, 43(5-6):579-588.
Hall et al. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: Effect of potential. Electrochimica Acta 43(14-15):2015-2024.
Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature. Electrochimica Acta, 44:2455-2462.
Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: Phosphate buffer dependence. Electrochimica Acta, 44:4573-4582.
Hall et al. 2000. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: Inhibition by chloride. Electrochimica Acta, 45:3573-3579.
Hamilton Syringe Selection Guide. 2006. Syringe Selection. www.hamiltoncompany.com.
Harrison et al. 1988. Characterization of perfluorosulfonic acid polymer coated enzyme electrodes and a miniaturized integrated potentiostat for glucose analysis in whole blood. Anal. Chem. 60:2002-2007.
Hashiguchi et al. (1994). “Development of a miniaturized glucose monitoring system by combining a needle-type glucose sensor with microdialysis sampling method: Long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients,” Diabetes Care, 17(5): 387-396.
Heller, “Electrical wiring of redox enzymes,” Acc. Chem. Res., 23:128-134 (1990).
Heller, A. 1992. Electrical Connection of Enzyme Redox Centers to Electrodes. J. Phys. Chem. 96:3579-3587.
Heller, A. 1999. Implanted electrochemical glucose sensors for the management of diabetes. Annu Rev Biomed Eng 1:153-175.
Heller, A. 2003. Plugging metal connectors into enzymes. Nat Biotechnol 21:631-2.
Hicks, 1985. In Situ Monitoring, Clinical Chemistry, 31(12):1931-1935.
Hitchman, M. L. 1978. Measurement of Dissolved Oxygen. In Elving et al. (Eds.). Chemical Analysis, vol. 49, Chap. 3, pp. 34-49, 59-123. New York: John Wiley & Sons.
Hoel, Paul G. 1976. Elementary Statistics, Fourth Edition. John Wiley & Sons, Inc.. pp. 113-114.
Hrapovic et al. 2003. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: preparation and characterization. Anal Chem 75:3308-3315.
http://www.merriam-webster.com/dictionary, definition for “aberrant,” Aug. 19, 2008, p. 1.
Hu, et al. 1993. A needle-type enzyme-based lactate sensor for in vivo monitoring, Analytica Chimica Acta, 281:503-511.
Huang et al. Aug. 1975. Electrochemical Generation of Oxygen. 1: The Effects of Anions and Cations on Hydrogen Chemisorption and Aniodic Oxide Film Formation on Platinum Electrode. 2: The Effects of Anions and Cations on Oxygen Generation on Platinum Electrode, pp. 1-116.
Huang et al., Sep. 1997, A 0.5mW Passive Telemetry IC for Biomedical Applications, Proceedings of the 23rd European Solid-State Circuits Conference (ESSCIRC '97), pp. 172-175, Southampton, UK.
Hunter et al. Mar. 31, 2000. Minimally Invasive Glucose Sensor and Insulin Delivery System. MIT Home Automation and Healthcare Consortium. Progress Report No. 2-5. 17 pages.
IPER dated Apr. 18, 2005 for PCT/US02/23903 filed Jul. 26, 2002.
Ishikawa et al. 1998. Initial evaluation of a 290-mm diameter subcutaneous glucose sensor: Glucose monitoring with a biocompatible, flexible-wire, enzyme-based amperometric microsensor in diabetic and nondiabetic humans. Journal of Diabetes and Its Complications, 12:295-301.
ISR dated Feb. 27, 2003 for PCT/US02/23903 filed Jul. 26, 2002.
Jaffari et al. 1995. Recent advances in amperometric glucose biosensors for in vivo monitoring, Physiol. Meas. 16: 1-15.
Jensen et al. 1997. Fast wave forms for pulsed electrochemical detection of glucose by incorporation of reductive desorption of oxidation products. Analytical Chemistry 69(9):1776-1781.
Jeutter, D. C. 1982. A transcutaneous implanted battery-recharging and biotelemeter power switching system. IEEE Trans Biomed Eng 29:314-321.
Jobst et al., (1996) Thin-Film Microbiosensors for Glucose-Lactate Monitoring, Anal Chem. 8(18): 3173-3179.
Johnson (1991). “Reproducible electrodeposition of biomolecules for the fabrication of miniature electroenzymatic biosensors,” Sensors and Actuators B, 5:85-89.
Johnson et al. 1992. In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. Biosensors & Bioelectronics, 7:709-714.
Jovanovic et al. 1997. The Thermogravimetric analysis of some polysiloxanes. Polym Degrad Stability 61: 87-93.
Jovanovic, L. 2000. The role of continuous glucose monitoring in gestational diabetes mellitus. Diabetes Technology & Therapeutics, 2 Suppl 1, S67-71.
Kacaniklic May-Jun. 1994. Electroanalysis, 6(5-6):381-390.
Kamath et al. Calibration of a continuous glucose monitor: effect of glucose rate of change, Eighth Annual Diabetes Technology Meeting, Nov. 13-15 2008, p. A88.
Kang et al. 2003. In vitro and short-term in vivo characteristics of a Kel-F thin film modified glucose sensor. Anal Sci 19:1481-1486.
Kargol et al. 2001. Studies on the structural properties of porous membranes: measurement of linear dimensions of solutes. Biophys Chem 91:263-271.
Kaufman et al. 2001. A pilot study of the continuous glucose monitoring system. Diabetes Care 24(12):2030-2034.
Kaufman. 2000. Role of the continuous glucose monitoring system in pediatric patients. Diabetes Technology & Therapeutics 2(1):S-49-S-52.
Kawagoe et al. 1991. Enzyme-modified organic conducting salt microelectrode, Anal. Chem. 63:2961-2965.
Keedy et al. 1991. Determination of urate in undiluted whole blood by enzyme electrode. Biosensors & Bioelectronics, 6: 491-499.
Kerner et al. “The function of a hydrogen peroxide-detecting electroenzymatic glucose electrode is markedly impaired in human sub-cutaneous tissue and plasma,” Biosensors & Bioelectronics, 8:473-482 (1993).
Kerner et al. 1988. A potentially implantable enzyme electrode for amperometric measurement of glucose, Horm Metab Res Suppl. 20:8-13.
Kiechle, F.L. 2001. The impact of continuous glucose monitoring on hospital point-of-care testing programs. Diabetes Technol Ther 3:647-649.
Klueh et al. 2003. Use of Vascular Endothelia Cell Growth Factor Gene Transfer to Enhance Implantable Sensor Function in Vivo, Biosensor Function and Vegf-Gene Transfer, pp. 1072-1086.
Ko, Wen H. 1985. Implantable Sensors for Closed-Loop Prosthetic Systems, Futura Pub. Co., Inc., Mt. Kisco, NY, Chapter 15:197-210.
Kondo et al. 1982. A miniature glucose sensor, implantable in the blood stream. Diabetes Care. 5(3):218-221.
Koschinsky et al. 1998. New approach to technical and clinical evaluation of devices for self-monitoring of blood glucose. Diabetes Care 11(8): 619-619.
Koschinsky et al. 2001. Sensors for glucose monitoring: Technical and clinical aspects. Diabetes Metab. Res. Rev. 17:113-123.
Kost et al. 1985. Glucose-sensitive membranes containing glucose oxidase: activitiy, swelling, and permeability studies, Journal of Biomedical Materials Research 19:1117-1133.
Koudelka et al. 1989. In vivo response of microfabricated glucose sensors to glycemia changes in normal rats. Biomed Biochim Acta 48(11-12):953-956.
Koudelka et al. 1991. In-vivo behaviour of hypodermically implanted microfabricated glucose sensors. Biosensors & Bioelectronics 6:31-36.
Kraver et al. 2001. A mixed-signal sensor interface microinstrument. Sensors and Actuators A 91:266-277.
Kruger et al. 2000. Psychological motivation and patient education: A role for continuous glucose monitoring. Diabetes Technology & Therapeutics, 2(Suppl 1):S93-97.
Kulys et al., 1994. Carbon-paste biosensors array for long-term glucose measurement, Biosensors& Beioelectronics, 9:491-500.
Kunjan et al., Automated blood sampling and glocuse sensing in critical care settings, Journal of Diabetes Science and Technology 2(3):194-200, Mar. 2008.
Kurtz et al. 2005. Recommendations for blood pressure measurement in humans and experimental animals, Part 2: Blood pressure measurement in experimental animals, A statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45:299-310.
Kusano, H. Glucose enzyme electrode with percutaneous interface which operates independently of dissolved oxygen. Clin Phys Physiol Meas. 1989. 10(1): 1-9.
Ladd et al., Structure Determination by X-ray Crystallography, 3rd ed. Plenum, 1996, Ch. 1, pp. xxi-xxiv and 1-58.
Lee et al. 1999. Effects of pore size, void volume, and pore connectivity on tissue responses. Society for Biomaterials 25th Annual Meeting, 171.
Lehmann et al. May 1994. Retrospective valication of a physiological model of glucose-iunsulin interaaction in tyhpe 1 diabetes mellitus, Med. Eng. Phys. 16:193-202.
Lerner et al. 1984. An implantable electrochemical glucose sensor. Ann. N. Y. Acad. Sci. 428:263-278.
Lewandowski et al. 1988. Evaluation of a miniature blood glucose sensor. Trans Am Soc Artif Intern Organs 34:255-258.
Leypoldt et al. 1984. Model of a two-substrate enzyme electrode for glucose. Anal. Chem. 56:2896-2904.
Linke et al. 1994. Amperometric biosensor for in vivo glucose sensing based on glucose oxidase immobilized in a redox hydrogel. Biosensors & Bioelectronics 9:151-158.
Lowe, 1984. Biosensors, Trends in Biotechnology, 2(3):59-65.
Luong et al. 2004. Solubilization of Multiwall Carbon Nanotubes by 3-Aminopropyltriethoxysilane Towards the Fabrication of Electrochemical Biosensors with Promoted Electron Transfer. Electronanalysis 16(1-2):132-139.
Lyandres et al. (2008). Progress toward an in vivo surface-enhanced raman spectroscopy glucose sensor. Diabetes Technology & Therapeutics, 10(4): 257-265.
Lyman D. 1960. Polyurethanes. I. The Solution Polymerization of Diisocyanates with Ethylene Glycol. J. Polymer Sci XLV:45:49.
Maidan et al. 1992. Elimination of Electrooxidizable Interferent-Produced Currents in Amperometric Biosensors, Analytical Chemistry, 64:2889-2896.
Makale et al. 2003. Tissue window chamber system for validation of implanted oxygen sensors. Am. J. Physiol. Heart Circ. Physiol. 284:H2288-2294.
Malin et al. 1999. Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy. Clinical Chemistry 45:9, 1651-1658.
Maran et al. 2002. Continuous subcutaneous glucose monitoring in diabetic patients: A multicenter analysis. Diabetes Care 25(2):347-352.
March, W. F. 2002. Dealing with the delay. Diabetes Technol Ther 4(1):49-50.
Marena et al. 1993. The artifical endocrine pancreas in clinical practice and research. Panminerva Medica 35(2):67-74.
Mascini et al. 1989. Glucose electrochemical probe with extended linearity for whole blood. J Pharm Biomed Anal 7(12): 1507-1512.
Mastrototaro et al. “An electroenzymatic glucose sensor fabricated on a flexible substrate,” Sensors and Actuators B, 5:139-44 (1991).
Mastrototaro et al. 2003. Reproducibility of the continuous glucose monitoring system matches previous reports and the intended use of the product. Diabetes Care 26:256; author reply p. 257.
Mastrototaro, J. J. 2000. The MiniMed continuous glucose monitoring system. Diabetes Technol Ther 2(Suppl 1):513-8.
Matsumoto et al. 1998. A micro-planar amperometeric glucose sensor unsusceptible to interference species. Sensors and Actuators B 49:68-72.
Matsumoto et al. 2001. A long-term lifetime amperometric glucose sensor with a perfluorocarbon polymer coating. Biosens Bioelectron 16:271-276.
Matthews et al. 1988. An amperometric needle-type glucose sensor testing in rats and man. Diabetic Medicine 5:248-252.
Mazze et al. 2008. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diab. Thechnol. & Therapeut., 10:149-159.
McCartney et al. 2001. Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. Anal Biochem 292:216-221.
McGrath et al. 1995. The use of differential measurements with a glucose biosensor for interference compensation during glucose determinations by flow injection analysis. Biosens Bioelectron 10:937-943.
McKean, et al. Jul. 7, 1988. A Telemetry Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors. Transactions on Biomedical Engineering 35:526-532.
Memoli et al. 2002. A comparison between different immobilised glucoseoxidase-based electrodes. J Pharm Biomed Anal 29:1045-1052.
Merriam-Webster Online Dictionary. Apr. 23, 2007. Definition of “nominal”. http://www.merriam-webster.com/dictionary/nominal.
Merriam-Webster Online Dictionary. Definition of “acceleration”. http://www.merriam-webster.com/dictionary/Acceleration Jan. 11, 2010.
Merriam-Webster Online Dictionary. Definition of “system”. http://www.merriam-webster.com/dictionary/System Jan. 11, 2010.
Meyerhoff et al. 1992. On line continuous monitoring of subcutaneous tissue glucose in men by combining portable glucosensor with microdialysis. Diabetologia 35:1087-1092.
Miller et al. 1989. In vitro stimulation of fibroblast activity by factors generated from human monocytes activated by biomedical polymers. Journal of J Biomed Mater Res 23:911-930.
Miller et al. 1989. Generation of IL1-like activity in response to biomedical polymer implants: a comparison of in vitro and in vivo models. J Biomed Mater Res 23:1007-1026.
Miller, A. 1988. Human monocyte/macrophage activation and interleukin 1 generation by biomedical polymers. J Biomed Mater Res 23:713-731.
Moatti-Sirat et al. 1992. Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue. Diabetologia 35:224-230.
Moatti-Sirat et al., Reduction of acetaminophen interference in glucose sensors by a composite Nafion membrane: demonstration in rats and man, Diabetologia 37(6):610-616, Jun. 1994.
Moatti-Sirat, D et al. 1992. Evaluating in vitro and in vivo the interference of ascorbate and acetaminophen on glucose detection by a needle-type glucose sensor. Biosensors and Bioelectronics 7:345-352.
Morff et al. 1990. Microfabrication of reproducible, economical, electroenzymatic glucose sensors, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 12(2):0483-0484.
Mosbach et al. 1975. Determination of heat changes in the proximity of immobilized enzymes with an enzyme termistor and its use for the assay of metobolites, Biochim. Biophys. Acta. (Enzymology), 403:256-265.
Motonaka et al. 1993. Determination of cholesteral and cholesteral ester with novel enzyme microsensors, Anal. Chem. 65:3258-3261.
Moussy et al. 2000. Biomaterials community examines biosensor biocompatibility Diabetes Technol Ther 2:473-477.
Moussy et al. 1993. Performance of subcutaneously implanted needle-type glucose sensors employing a novel trilayer coating, Anal Chem. 85: 2072-2077.
Moussy, Francis (Nov. 2002) Implantable Glucose Sensor: Progress and Problems, Sensors, 1:270-273.
Mowery et al. 2000. Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release. Biomaterials 21:9-21.
Murphy, et al. 1992. Polymer membranes in clinical sensor applications. II. The design and fabrication of permselective hydrogels for electrochemical devices, Biomaterials, 13(14):979-990.
Muslu. 1991. Trickling filter performance. Apllied Biochemistry and Biotechnology 37:211-224.
Myler et al. 2002. Ultra-thin-polysiloxane-film-composite membranes for the optimisation of amperometric oxidase enzyme electrodes. Biosens Bioelectron 17:35-43.
Nafion® 117 Solution Product Description, Product No. 70160, Sigma-Aldrich Corp., St. Louis, Mo. Downloaded from https://www.signaaldrich.com/cgi-bin/hsrun/Suite7/Suite/HAHTpage/Suite.HsExternal Prod . . . on Apr. 7, 2005.
Nam et al. 2000. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res 53:1-7.
Ohara et al. 1994. “Wired” enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal Chem 66:2451-2457.
Ohara, et al. Dec. 1993. Glucose electrodes based on cross-linked bis(2,2′-bipyridine)chloroosmium(+/2+) complexed poly(1-vinylimidazole) films, Analytical Chemistry, 65:3512-3517.
Okuda et al. 1971. Mutarotase effect on micro determinations of D-glucose and its anomers with β-D-glucose oxidase. Anal Biochem 43:312-315.
Oxford English Dictionary Online. Definition of “impending”. http://www.askoxford.com/results/?view=dev dict&field-12668446 Impending&branch= Jan. 11, 2010.
Palmisano et al. 2000. Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosensors & Bioelectronics 15:531-539.
Park et al. 2002. Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes, J. Membrane Science, 204: 257-269.
Patel et al. 2003. Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems—a preliminary report. Biosens Bioelectron 18:1073-6.
Peacock et al. 2008. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med., 358: 2117-2126.
Pegoraro et al. 1995. Gas transport properties of siloxane polyurethanes, Journal of Applied Polymer Science, 57:421-429.
Pfeiffer et al. 1992. On line continuous monitoring of subcutaneous tissue glucose is feasible by combining portable glucosensor with microdialysis. Horm. Metab. Res. 25:121-124.
Pfeiffer, E.F. 1990. The glucose sensor: the missing link in diabetes therapy, Horm Metab Res Suppl. 24:154-164.
Phillips and Smith. 1988. Bromedical Applications of Polyurethanes: Implications of Failure Mechanisms. J. Biomat. Appl. 3:202-227.
Pichert et al. 2000. Issues for the coming age of continuous glucose monitoring Diabetes Educ 26(6):969-980.
Pickup et al. “Implantable glucose sensors: choosing the appropriate sensor strategy,” Biosensors, 3:335-346 (1987/88).
Pickup et al. “In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer,” Diabetologia, 32:213-217 (1989).
Pickup et al. 1989. Potentially-implantable, amperometric glucose sensors with mediated electron transfer: improving the operating stability. Biosensors 4:109-119.
Pickup et al. 1993. Developing glucose sensors for in vivo use. Elsevier Science Publishers Ltd (UK), TIBTECH vol. 11: 285-291.
Pinner et al., Cross-linking of cellulose acetate by ionizing radiation, Nature, vol. 184, 1303-1304, Oct. 24, 1959.
Pishko et al. “Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels,” Anal. Chem., 63:2268-72 (1991).
Pitzer et al. 2001. Detection of hypoglycemia with the GlucoWatch biographer. Diabetes Care 24(5):881-885.
Poitout et al. 1993. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit. Diabetologia 36:658-663.
Poitout et al. 1994. Development of a glucose sensor for glucose monitoring in man: the disposable implant concept. Clinical Materials 15:241-246.
Poitout, et al. 1991. In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor, ASAIO Transactions, 37:M298-M300.
Postlethwaite et al. 1996. Interdigitated array electrode as an alternative to the rotated ring-disk electrode for determination of the reaction products of dioxygen reduction. Analytical Chemistry 68:2951-2958.
Prabhu et al. 1981. Electrochemical studies of hydrogen peroxide at a platinum disc electrode, Electrochimica Acta 26(6):725-729.
Quinn et al. 1995. Kinetics of glucose delivery to subcutaneous tissue in rats measured with 0.3-mm amperometric microsensors. The American Physiological Society E155-E161.
Quinn et al. 1997. Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors. Biomaterials 18:1665-1670.
Rabah et al., 1991. Electrochemical wear of graphite anodes during electrolysis of brine, Carbon, 29(2):165-171.
Ratner, B.D. 2002. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Control Release 78:211-218.
Reach et al. 1986. A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors. Biosensors 2:211-220.
Reach et al. 1992. Can continuous glucose monitoring be used for the treatment of diabetes? Analytical Chemistry 64(5):381-386.
Reach, G. 2001. Which threshold to detect hypoglycemia? Value of receiver-operator curve analysis to find a compromise between sensitivity and specificity. Diabetes Care 24(5):803-804.
Reach, Gerard. 2001. Letters to the Editor Re: Diabetes Technology & Therapeutics, 2000;2:49-56. Diabetes Technology & Therapeutics 3(1):129-130.
Rebrin et al. “Automated feedback control of subcutaneous glucose concentration in diabetic dogs,” Diabetologia, 32:573-76 (1989).
Rebrin et al. 1992. Subcutaenous glucose monitoring by means of electrochemical sensors: fiction or reality? J. Biomed. Eng. 14:33-40.
Reusch. 2004. Chemical Reactivity. Organometallic Compounds. Virtual Textbook of Organic Chem. pp. 1-16, http://www.cem.msu.edu/˜reusch/VirtualText/orgmetal.htm.
Rhodes et al. 1994. Prediction of pocket-portable and implantable glucose enzyme electrode performance from combined species permeability and digital simulation analysis. Analytical Chemistry 66(9):1520-1529.
Rigla et al. 2008. Real-time continuous glucose monitoring together with telemedical assitance improves glycemic control and glucose stability in pump-treated patients. Diab. Technol. & Therapeut., 10:194-199.
Rivers et al., Central venous oxygen saturation monitoring in the critically ill patient, Current in Critical Care, 7:204-211, 2001.
Sakakida et al. 1992. Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations. Artif. Organs Today 2(2):145-158.
Sakakida et al. 1993. Ferrocene-Mediated Needle Type Glucose Sensor Covered with Newly Designed Biocompatible Membran, Sensors and Actuators B 13-14:319-322.
Salardi et al. 2002. The glucose area under the profiles obtained with continuous glucose monitoring system relationships with HbA1c in pediatric type 1 diabetic patients. Diabetes Care 25(10):1840-1844.
Samuels, M.P. 2004. The effects of flight and altitude. Arch Dis Child. 89: 448-455.
San Diego Plastics, Inc. 2009. Polyethylene Data Sheet, http://www.sdplastics.com/polyeth.html.
Sansen et al. 1985. “Glucose sensor with telemetry system.” In Ko, W. H. (Ed.). Implantable Sensors for Closed Loop Prosthetic Systems. Chap. 12, pp. 167-175, Mount Kisco, NY: Futura Publishing Co.
Sansen et al. 1990. A smart sensor for the voltammetric measurement of oxygen or glucose concentrations. Sensors and Actuators B 1:298-302.
Schmidt et al. 1993. Glucose concentration in subcutaneous extracellular space. Diabetes Care 16(5):695-700.
Schmidtke et al., Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin. Proc Natl Acad Sci U S A 1998, 95, 294-299.
Schoemaker et al. 2003. The SCGM1 system: Subcutaneous continuous glucose monitoring based on microdialysis technique. Diabetes Technology & Therapeutics 5(4):599-608.
Schoonen et al. 1990 Development of a potentially wearable glucose sensor for patients with diabetes mellitus: design and in-vitro evaluation. Biosensors & Bioelectronics 5:37-46.
Schuler et al. 1999. Modified gas-permeable silicone rubber membranes for covalent immobilisation of enzymes and their use in biosensor development. Analyst 124:1181-1184.
Selam, J. L. 1997. Management of diabetes with glucose sensors and implantable insulin pumps. From the dream of the 60s to the realities of the 90s. ASAIO J, 43:137-142.
Service et al. 1970. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes, 19: 644-655.
Service et al. 1987. Measurements of glucose control. Diabetes Care, 10: 225-237.
Service, R. F. 2002. Can sensors make a home in the body? Science 297:962-3.
Sharkawy et al. 1996. Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties, J Biomed Mater Res, 37:401-412.
Shaw et al. “In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients,” Biosensors & Bioelectronics, 6:401-406 (1991).
Shichiri et al. 1982. Wearable artificial endocrine pancrease with needle-type glucose sensor. Lancet 2:1129-1131.
Shichiri et al. 1986. Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals. Diabetes Care, Inc. 9(3):298-301.
Shichiri et al. 1983. Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas. Diabetologia 24:179-184.
Shichiri et al. 1985. Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas in Implantable Sensors 197-210.
Shichiri et al. 1989. Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor. Diab. Nutr. Metab. 2:309-313.
Shults et al. 1994. A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Transactions on Biomedical Engineering 41(10):937-942.
Sieminski et al. 2000. Biomaterial-microvasculature interactions. Biomaterials 21:2233-2241.
Skyler, J. S. 2000. The economic burden of diabetes and the benefits of improved glycemic control: the potential role of a continuous glucose monitoring system. Diabetes Technology & Therapeutics 2 Suppl 1:S7-12.
Slater-Maclean et al. 2008. Accuracy of glycemic measurements in the critically ill. Diab. Thechnol. & Therapeut., 10:169-177.
Sokol et al. 1980, Immobilized-enzyme rate-determination method for glucose analysis, Clin. Chem. 26(1):89-92.
Sriyudthsak et al. 1996. Enzyme-epoxy membrane based glucose analyzing system and medical applications. Biosens Bioelectron 11:735-742.
Steil et al. 2003. Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor. Diabetes Technology & Therapeutics 5(1):27-31.
Stern et al., 1957. Electrochemical polarization: 1. A theoretical analysis of the shape of polarization curves, Journal of the Electrochemical Society, 104(1):56-63.
Sternberg et al. 1988. Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors. Biosensors 4:27-40.
Sternberg et al. 1988. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Anal. Chem. 60: 2781-2786.
Stokes. 1988. Polyether Polyurethanes: Biostable or Not? J. Biomat. Appl. 3:228-259.
Sumino T. et al. 1998. Preliminary study of continuous glucose monitoring with a microdialysis technique. Proceedings of the IEEE, 20(4):1775-1778.
Takegami et al. 1992. Pervaporation of ethanol water mixtures using novel hydrophobic membranes containing polydimethylsiloxane, Journal of Membrance Science, 75(93-105).
Tanenberg et al. 2000. Continuous glucose monitoring system: A new approach to the diagnosis of diabetic gastroparesis. Diabetes Technology & Therapeutics, 2 Suppl 1:S73-80.
Tang et al. 1993. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med 178:2147-2156.
Tang et al. 1995. Inflammatory responses to biomaterials. Am J Clin Pathol 103:466-471.
Tang et al. 1996. Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest 97:1329-1334.
Tang et al. 1998. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci U S A 95:8841-8846.
Tatsuma et al. 1991. Oxidase/peroxidase bilayer-modified electrodes as sensors for lactate, pyruvate, cholesteral and uric acid, Analytica Chimica Acta, 242:85-89.
Thome et al. 1995. Can the decrease in subcutaneous glucose concentration precede the decrease in blood glucose level? Proposition for a push-pull kinetics hypothesis, Norm. Metab. Res. 27:53.
Thomé-Duret et al. 1996. Modification of the sensitivity of glucose sensor implanted into subcutaneous tissue. Diabetes Metabolism, 22:174-178.
Thome-Duret et al. 1996. Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood, Anal. Chem. 68:3822-3826.
Thomé-Duret et al. 1998. Continuous glucose monitoring in the free-moving rat. Metabolism, 47:799-803.
Thompson et al., In Vivo Probes: Problems and Perspectives, Department of Chemistry, University of Toronto, Canada, pp. 255-261, 1986.
Tibell et al. 2001. Survival of macroencapsulated allogeneic parathyroid tissue one year after transplantation in nonimmunosuppressed humans. Cell Transplant 10:591-9.
Tierney et al. 2000. Effect of acetaminophen on the accuracy of glucose measurements obtained with the GlucoWatch biographer. Diabetes Technol Ther 2:199-207.
Tierney et al. 2000. The GlucoWatch® biographer: A frequent, automatic and noninvasive glucose monitor. Ann. Med. 32:632-641.
Torjman et al., Glucose monitoring in acute care: technologies on the horizon, Journal of Deabetes Science and Technology, 2(2):178-181, Mar. 2008.
Trecroci, D. 2002. A Glimpse into the Future—Continuous Monitoring of Glucose with a Microfiber. Diabetes Interview 42-43.
Tse and Gough. 1987. Time-Dependent Inactivation of Immobilized Glucose Oxidase and Catalase. Biotechnol. Bioeng. 29:705-713.
Turner and Pickup, “Diabetes mellitus: biosensors for research and management,” Biosensors, 1:85-115 (1985).
Turner et al. 1984. Carbon Monoxide: Acceptor Oxidoreductase from Pseudomonas Thermocarboxydovorans Strain C2 and its use in a Carbon Monoxide Sensor. Analytica Chimica Acta, 163: 161-174.
Unger et al. 2004. Glucose control in the hospitalized patient. Emerg Med 36(9):12-18.
Updike et al. 1967. The enzyme electrode. Nature, 214:986-988.
Updike et al. 1979. Continuous glucose monitor based on an immobilized enzyme electrode detector. J Lab Clin Med, 93(4):518-527.
Updike et al. 1982. Implanting the glucose enzyme electrode: Problems, progress, and alternative solutions. Diabetes Care, 5(3):207-212.
Updike et al. 1988. Laboratory Evaluation of New Reusable Blood Glucose Sensor. Diabetes Care, 11:801-807.
Updike et al. 1994. Enzymatic glucose sensor: Improved long-term performance in vitro and in vivo. ASAIO Journal, 40(2):157-163.
Updike et al. 1997. Principles of long-term fully impleated sensors with emphasis on radiotelemetric monitoring of blood glucose form inside a subcutaneous foreign body capsule (FBC). In Fraser, ed., Biosensors in the Body. New York. John Wiley & Sons, pp. 117-137.
Updike et al. 2000. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration. Diabetes Care 23(2):208-214.
Utah Medical Products Inc., Blood Pressure Tranducers product specifications. 6 pp. 2003-2006, 2003.
Vadgama, P. Nov. 1981. Enzyme electrodes as practical biosensors. Journal of Medical Engineering & Technology 5(6):293-298.
Vadgama. 1988. Diffusion limited enzyme electrodes. NATO ASI Series: Series C, Math and Phys. Sci. 226:359-377.
Van den Berghe 2004. Tight blood glucose control with insulin in “real-life” intensive care. Mayo Clin Proc 79(8):977-978.
Velho et al. 1989. In vitro and in vivo stability of electrode potentials in needle-type glucose sensors. Influence of needle material. Diabetes 38:164-171.
Velho et al. 1989. Strategies for calibrating a subcutaneous glucose sensor. Biomed Biochim Acta 48(11/12):957-964.
von Woedtke et al. 1989. In situ calibration of implanted electrochemical glucose sensors. Biomed Biochim. Acta 48(11/12):943-952.
Wagner et al. 1998. Continuous amperometric monitoring of glucose in a brittle diabetic chimpanzee with a miniature subcutaneous electrode. Proc. Natl. Acad. Sci. A, 95:6379-6382.
Wang et al. 1994. Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor. Anal. Chem. 66:3600-3603.
Wang et al. 1997. Improved ruggedness for membrane-based amperometric sensors using a pulsed amperometric method. Anal Chem 69:4482-4489.
Ward et al. 1999. Assessment of chronically implanted subcutaneous glucose sensors in dogs: the effect of surrounding fluid masses. ASAIO Journal, 45:555-561.
Ward et al. 2004. A wire-based dual-analyte sensor for Glucose and Lactate: In Vitro and In Vivo Evaluation, Diab Tech Therapeut. 6(3): 389-401.
Ward et al. 2000. Understanding Spontaneous Output Fluctuations of an Amperometric Glucose Sensor: Effect of Inhalation Anesthesia and e of a Nonenzyme Containing Electrode. ASAIO Journal 540-546.
Ward et al. 2000. Rise in background current over time in a subcutaneous glucose sensor in the rabbit: Relevance to calibration and accuracy. Biosensors & Bioelectronics, 15:53-61.
Ward et al. 2002. A new amperometric glucose microsensor: In vitro and short-term in vivo evaluation. Biosensors & Bioelectronics, 17:181-189.
Wientjes, K. J. C. 2000. Development of a glucose sensor for diabetic patients (Ph.D. Thesis).
Wikipedia 2006. “Intravenous therapy,” http://en.wikipedia.org/wiki/Intravenous—therapy, Aug. 15, 2006, 6 pp.
Wiley Electrical and Electronics Engineering Dictionary. 2004. John Wiley & Sons, Inc. pp. 141, 142, 548, 549.
Wilkins et al. 1988. The coated wire electrode glucose sensor, Horm Metab Res Suppl., 20:50-55.
Wilkins et al. 1995. Glucose monitoring: state of the art and future possibilities. Med Eng Phys 18:273-288.
Wilkins et al. 1995. Integrated implantable device for long-term glucose monitoring. Biosens. Bioelectron 10:485-494.
Wilson et al. 1992. Progress toward the development of an implantable sensor for glucose. Clin. Chem. 38(9):1613-1617.
Wilson et al. 2000. Enzyme-based biosensors for in vivo measurements. Chem. Rev., 100:2693-2704.
Wood, W. et al. Mar. 1990. Hermetic Sealing with Epoxy. Mechanical Engineering 1-3.
Woodward. 1982. How Fibroblasts and Giant Cells Encapsulate Implants: Considerations in Design of Glucose Sensor. Diabetes Care 5:278-281.
Wu et al. 1999. In site electrochemical oxygen generation with an immunoisolation device. Annals New York Academy of Sciences, pp. 105-125.
Yang et al (1996). “A glucose biosensor based on an oxygen electrode: In-vitro performances in a model buffer solution and in blood plasma,” Biomedical Instrumentation & Technology, 30:55-61.
Yang et al. 1998. Development of needle-type glucose sensor with high selectivity. Science and Actuators B 46:249-256.
Zhang et al (1993). Electrochemical oxidation of H2O2 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H2O2-based biosensors. J. Electroanal. Chem., 345:253-271.
Zhu et al. (1994). “Fabrication and characterization of glucose sensors based on a microarray H202 electrode.” Biosensors & Bioelectronics, 9: 295-300.
Related Publications (1)
Number Date Country
20130299350 A1 Nov 2013 US
Divisions (1)
Number Date Country
Parent 11021162 Dec 2004 US
Child 12260017 US
Continuations (2)
Number Date Country
Parent 12260017 Oct 2008 US
Child 13943622 US
Parent 09916711 Jul 2001 US
Child 11021162 US