Sensor inserter assembly

Information

  • Patent Grant
  • 11116430
  • Patent Number
    11,116,430
  • Date Filed
    Monday, January 11, 2021
    4 years ago
  • Date Issued
    Tuesday, September 14, 2021
    3 years ago
Abstract
An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte, such as blood glucose. An inserter having a retractable introducer is provided for subcutaneously implanting the sensor in a predictable and reliable fashion.
Description
BACKGROUND

The monitoring of the level of glucose or other analytes, such as lactate or oxygen, in certain individuals is vitally important to their health. High or low levels of glucose or other analytes may have detrimental effects. The monitoring of glucose is particularly important to individuals with diabetes, as they must determine when insulin is needed to reduce glucose levels in their bodies or when additional glucose is needed to raise the level of glucose in their bodies.


A conventional technique used by many diabetics for personally monitoring their blood glucose level includes the periodic drawing of blood, the application of that blood to a test strip, and the determination of the blood glucose level using colorimetric, electrochemical, or photometric detection. This technique does not permit continuous or automatic monitoring of glucose levels in the body, but typically must be performed manually on a periodic basis. Unfortunately, the consistency with which the level of glucose is checked varies widely among individuals. Many diabetics find the periodic testing inconvenient and they sometimes forget to test their glucose level or do not have time for a proper test. In addition, some individuals wish to avoid the pain associated with the test. These situations may result in hyperglycemic or hypoglycemic episodes. An in vivo glucose sensor that continuously or automatically monitors the individual's glucose level would enable individuals to more easily monitor their glucose, or other analyte, levels.


A variety of devices have been developed for continuous or automatic monitoring of analytes, such as glucose, in the blood stream or interstitial fluid. A number of these devices use electrochemical sensors which are directly implanted into a blood vessel or in the subcutaneous tissue of a patient. However, these devices are often difficult to reproducibly and inexpensively manufacture in large numbers. In addition, these devices are typically large, bulky, and/or inflexible, and many cannot be used effectively outside of a controlled medical facility, such as a hospital or a doctor's office, unless the patient is restricted in his activities.


Some devices include a sensor guide which rests on or near the skin of the patient and may be attached to the patient to hold the sensor in place. These sensor guides are typically bulky and do not allow for freedom of movement. In addition, the sensor guides or the sensors include cables or wires for connecting the sensor to other equipment to direct the signals from the sensors to an analyzer. The size of the sensor guides and presence of cables and wires hinders the convenient use of these devices for everyday applications. The patient's comfort and the range of activities that can be performed while the sensor is implanted are important considerations in designing extended-use sensors for continuous or automatic in vivo monitoring of the level of an analyte, such as glucose. There is a need for a small, comfortable device which can continuously monitor the level of an analyte, such as glucose, while still permitting the patient to engage in normal activities. Continuous and/or automatic monitoring of the analyte can provide a warning to the patient when the level of the analyte is at or near a threshold level. For example, if glucose is the analyte, then the monitoring device might be configured to warn the patient of current or impending hyperglycemia or hypoglycemia. The patient can then take appropriate actions.


SUMMARY

The present invention is, in general, directed to devices and methods for the in vivo monitoring of an analyte, such as glucose or lactate, using a sensor to provide information to a patient about the level of the analyte. More particularly, the present invention relates to devices and methods for inserting a subcutaneously implantable electrochemical sensor in a patient for such monitoring.


Generally, the present invention relates to methods and devices for the continuous and/or automatic in vivo monitoring of the level of an analyte using a subcutaneously implantable sensor. Many of these devices are small and comfortable when used, thereby allowing a wide range of activities. One embodiment includes a sensor control unit having a housing adapted for placement on skin. The housing is also adapted to receive a portion of an electrochemical sensor. The sensor control unit includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The sensor control unit may also include a variety of optional components, such as, for example, adhesive for adhering to the skin, a mounting unit, a receiver, a processing circuit, a power supply (e.g., a battery), an alarm system, a data storage unit, a watchdog circuit, and a measurement circuit. The sensor itself has at least one working electrode and at least one contact pad coupled to the working electrode or electrodes. The sensor may also include optional components, such as, for example, a counter electrode, a counter/reference electrode, a reference electrode, and a temperature probe. The analyte monitoring system also includes a display unit that has a receiver for receiving data from the sensor control unit and a display coupled to the receiver for displaying an indication of the level of an analyte. The display unit may optionally include a variety of components, such as, for example, a transmitter, an analyzer, a data storage unit, a watchdog circuit, an input device, a power supply, a clock, a lamp, a pager, a telephone interface, a computer interface, an alarm or alarm system, a radio, and a calibration unit. In addition, the analyte monitoring system or a component of the analyte monitoring system may optionally include a processor capable of determining a drug or treatment protocol and/or a drug delivery system.


According to one aspect of the invention, an insertion kit is disclosed for inserting an electrochemical sensor into a patient. The insertion kit includes an introducer. A portion of the introducer has a sharp, rigid, planar structure adapted to support the sensor during insertion of the electrochemical sensor. The insertion kit also includes an insertion gun having a port configured to accept the electrochemical sensor and the introducer. The insertion gun has a driving mechanism for driving the introducer and electrochemical sensor into the patient, and a retraction mechanism for removing the introducer while leaving the sensor within the patient.


According to another aspect of the invention, a method of using an electrochemical sensor is disclosed. A mounting unit is adhered to the skin of a patient. An insertion gun is aligned with a port on the mounting unit. The electrochemical sensor is disposed within the insertion gun and then the electrochemical sensor is inserted into the skin of the patient using the insertion gun. The insertion gun is removed, and a housing of the sensor control unit is mounted on the mounting base. A plurality of conductive contacts disposed on the housing is coupled to a plurality of contact pads disposed on the electrochemical sensor to prepare the sensor for use.


The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and the detailed description which follow more particularly exemplify these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:



FIG. 1 is a block diagram of one embodiment of a subcutaneous analyte monitor using a subcutaneously implantable analyte sensor, according to the invention.



FIG. 2 is a top view of one embodiment of an analyte sensor, according to the invention.



FIG. 3 is an expanded side view of one embodiment of a sensor and an introducer, according to the invention.



FIGS. 4A, 4B, 4C are cross-sectional views of three embodiments of the introducer of FIG. 3.



FIG. 5 is a cross-sectional view of one embodiment of an on-skin sensor control unit, according to the invention.



FIG. 6 is a top view of a base of the on-skin sensor control unit of FIG. 5.



FIG. 7 is a bottom view of a cover of the on-skin sensor control unit of FIG. 5.



FIG. 8 is a perspective view of the on-skin sensor control unit of FIG. 5 on the skin of a patient.



FIG. 9 is a perspective view of the internal structure of an insertion gun, according to the invention.



FIG. 10A is a top view of one embodiment of an on-skin sensor control unit, according to the invention.



FIG. 10B is a top view of one embodiment of a mounting unit of the on-skin sensor control unit of FIG. 10A.



FIG. 11A is a top view of another embodiment of an on-skin sensor control unit after insertion of an introducer and a sensor, according to the invention.



FIG. 11B is a top view of one embodiment of a mounting unit of the on-skin sensor control unit of FIG. 11A.



FIG. 11C is a top view of one embodiment of a housing for at least a portion of the electronics of the on-skin sensor control unit of FIG. 11A.



FIG. 11D is a bottom view of the housing of FIG. 11C.



FIG. 11E is a top view of the on-skin sensor control unit of FIG. 11A with a cover of the housing removed.



FIG. 12 depicts an introducer, sensor, insertion gun and mounting unit, which can be assembled and sold together in an insertion kit.



FIG. 13 is a perspective view showing a preferred commercial embodiment of a sensor inserter and adhesive mount constructed according to the invention.



FIG. 14 is a perspective view of the adhesive mount and sensor attached to the patient's skin.



FIG. 15 is a perspective view of the transmitter attached to the adhesive mount.



FIG. 16 is an exploded perspective view of the preferred commercial embodiment of FIG. 13.



FIG. 17 is a side elevation view of the preferred commercial embodiment of FIG. 13.



FIG. 18 is an end elevation view of the preferred commercial embodiment of FIG. 13.



FIG. 19 is a cross-sectional view taken along line 19-19 in FIG. 18.



FIG. 20 is a cross-sectional view taken along line 20-20 in FIG. 17.



FIG. 21 is a broken away view similar to FIG. 20, showing the shuttle in the neutral position.



FIG. 22 is a broken away view similar to FIG. 20, showing the shuttle in the cocked position.



FIG. 23 is a broken away view similar to FIG. 20, showing the shuttle in the insertion position.



FIG. 24 is a cross-sectional view taken along line 24-24 in FIG. 17.



FIG. 25 is a perspective view of a transcutaneously implantable sensor.



FIG. 26A is a perspective view of a sensor introducer.



FIG. 26B is a bottom view of the introducer shown in FIG. 26A.



FIG. 27 is a perspective view of a shuttle member.



FIG. 28 is a top plan view of an oversized adhesive tape.



FIG. 29 is a perspective view of the transmitter attached to the adhesive mount and showing the sensor sandwiched therebetween.



FIG. 30 is a perspective view of the interconnect on one end of the transmitter.



FIG. 31 is an enlarged perspective view of the interconnect of FIG. 30 with the seal and one spring removed for clarity.



FIG. 32 is an enlarged perspective view of the interconnect seal.



FIG. 33A is a perspective view of an alternative embodiment of a sensor inserter kit.



FIG. 33B is an exploded view of some of the components shown assembled in FIG. 33A.





While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DETAILED DESCRIPTION

The present invention is applicable to an analyte monitoring system using an implantable sensor for the in vivo determination of a concentration of an analyte, such as glucose or lactate, in a fluid. The sensor can be, for example, subcutaneously implanted in a patient for the continuous or periodic monitoring of an analyte in a patient's interstitial fluid. This can then be used to infer the glucose level in the patient's bloodstream. Other in vivo analyte sensors can be made, according to the invention, for insertion into a vein, artery, or other portion of the body containing fluid. The analyte monitoring system is typically configured for monitoring the level of the analyte over a time period which may range from days to weeks or longer.


The analyte monitoring systems of the present invention can be utilized under a variety of conditions. The particular configuration of a sensor and other units used in the analyte monitoring system may depend on the use for which the analyte monitoring system is intended and the conditions under which the analyte monitoring system will operate. One embodiment of the analyte monitoring system includes a sensor configured for implantation into a patient or user. For example, implantation of the sensor may be made in the arterial or venous systems for direct testing of analyte levels in blood. Alternatively, a sensor may be implanted in the interstitial tissue for determining the analyte level in interstitial fluid. This level may be correlated and/or converted to analyte levels in blood or other fluids. The site and depth of implantation may affect the particular shape, components, and configuration of the sensor. Subcutaneous implantation may be preferred, in some cases, to limit the depth of implantation of the sensor. Sensors may also be implanted in other regions of the body to determine analyte levels in other fluids. Examples of suitable sensor for use in the analyte monitoring systems of the invention are described in U.S. patent application Ser. Nos. 09/034,372 and 09/753,746, both incorporated herein by reference.


One embodiment of the analyte monitoring system 40 for use with an implantable sensor 42, and particularly for use with a subcutaneously implantable sensor, is illustrated in block diagram form in FIG. 1. The analyte monitoring system 40 includes, at minimum, a sensor 42, a portion of which is configured for implantation (e.g., subcutaneous, venous, or arterial implantation) into a patient, and a sensor control unit 44. The sensor 42 is coupled to the sensor control unit 44 which is typically attached to the skin of a patient. The sensor control unit 44 operates the sensor 42, including, for example, providing a voltage across the electrodes of the sensor 42 and collecting signals from the sensor 42. The sensor control unit 44 may evaluate the signals from the sensor 42 and/or transmit the signals to one or more optional receiver/display units 46, 48 for evaluation. The sensor control unit 44 and/or the receiver/display units 46, 48 may display or otherwise communicate the current level of the analyte. Furthermore, the sensor control unit 44 and/or the receiver/display units 46, 48 may indicate to the patient, via, for example, an audible, visual, or other sensory-stimulating alarm, when the level of the analyte is at or near a threshold level. In some embodiments, an electrical shock can be delivered to the patient as a warning through one of the electrodes or the optional temperature probe of the sensor. For example, if glucose is monitored then an alarm may be used to alert the patient to a hypoglycemic or hyperglycemic glucose level and/or to impending hypoglycemia or hyperglycemia.


A sensor 42 includes at least one working electrode 58 formed on a substrate 50, as shown in FIG. 2. The sensor 42 may also include at least one counter electrode 60 (or counter/reference electrode) and/or at least one reference electrode 62. The substrate 50 of the sensor may be formed using a variety of non-conducting materials, including, for example, polymeric or plastic materials and ceramic materials. Suitable materials for a particular sensor 42 may be determined, at least in part, based on the desired use of the sensor 42 and properties of the materials.


In some embodiments, the substrate is flexible. For example, if the sensor 42 is configured for implantation into a patient, then the sensor 42 may be made flexible (although rigid sensors may also be used for implantable sensors) to reduce pain to the patient and damage to the tissue caused by the implantation of and/or the wearing of the sensor 42. A flexible substrate 50 often increases the patient's comfort and allows a wider range of activities. Suitable materials for a flexible substrate 50 include, for example, non-conducting plastic or polymeric materials and other non-conducting, flexible, deformable materials. Examples of useful plastic or polymeric materials include thermoplastics such as polycarbonates, polyesters (e.g., Mylar™ and polyethylene terephthalate (PET)), polyvinyl chloride (PVC), polyurethanes, polyethers, polyamides, polyimides, or copolymers of these thermoplastics, such as PETG (glycol-modified polyethylene terephthalate).


In other embodiments, the sensor 42 is made using a relatively rigid substrate 50 to, for example, provide structural support against bending or breaking Examples of rigid materials that may be used as the substrate 50 include poorly conducting ceramics, such as aluminum oxide and silicon dioxide. One advantage of an implantable sensor 42 having a rigid substrate is that the sensor 42 may have a sharp point and/or a sharp edge to aid in implantation of a sensor 42 without an additional introducer.


It will be appreciated that for many sensors 42 and sensor applications, both rigid and flexible sensors will operate adequately. The flexibility of the sensor 42 may also be controlled and varied along a continuum by changing, for example, the composition and/or thickness of the substrate 50.


In addition to considerations regarding flexibility, it is often desirable that implantable sensors 42 should have a substrate 50 which is non-toxic. Preferably, the substrate 50 is approved by one or more appropriate governmental agencies or private groups for in vivo use.


Although the substrate 50 in at least some embodiments has uniform dimensions along the entire length 57 of the sensor 42, in other embodiments, the substrate 50 has a distal end 67 and a proximal end 65 with different widths 53, 55, respectively, as illustrated in FIG. 2. In these embodiments, the distal end 67 of the substrate 50 may have a relatively narrow width 53. For sensors 42 which are implantable into the subcutaneous tissue or another portion of a patient's body, the narrow width 53 of the distal end 67 of the substrate 50 may facilitate the implantation of the sensor 42. Often, the narrower the width of the sensor 42, the less pain the patient will feel during implantation of the sensor and afterwards. The sensor 42 is designed to be a replaceable component in an implantable analyte monitor. Typically, the sensor 42 is capable of operation over a period of days. Preferably, the period of operation is at least three days. The sensor 42 can then be removed and replaced with a new sensor.


An introducer 120 can be used to subcutaneously insert the sensor 42 into the patient, as illustrated in FIG. 3. The introducer 120 is typically formed using structurally rigid materials, such as metal or rigid plastic. Preferred materials include stainless steel and ABS (acrylonitrile-butadiene-styrene) plastic. In some embodiments, the introducer 120 is pointed and/or sharp at the tip 121 to facilitate penetration of the skin of the patient. A sharp, thin introducer may reduce pain felt by the patient upon insertion of the sensor 42. In other embodiments, the tip 121 of the introducer 120 has other shapes, including a blunt or flat shape. These embodiments may be particularly useful when the introducer 120 does not penetrate the skin but rather serves as a structural support for the sensor 42 as the sensor 42 is pushed into the skin.


The introducer 120 may have a variety of cross-sectional shapes, as shown in FIGS. 4A, 4B, and 4C. The introducer 120 illustrated in FIG. 4A is a flat, planar, pointed strip of rigid material which may be attached or otherwise coupled to the sensor 42 to ease insertion of the sensor 42 into the skin of the patient, as well as to provide structural support to the sensor 42 during insertion. The introducers 120 of FIGS. 4B and 4C are U- or V-shaped implements that support the sensor 42 to limit the amount that the sensor 42 may bend or bow during insertion. The cross-sectional width 124 of the introducers 120 illustrated in FIGS. 4B and 4C is typically 1 mm or less, preferably 700 μm or less, more preferably 500 μm or less, and most preferably 300 μm or less. The cross-sectional height 126 of the introducer 120 illustrated in FIGS. 4B and 4C is typically about 1 mm or less, preferably about 700 μm or less, and more preferably about 500 μm or less.


The sensor 42 itself may include optional features to facilitate insertion. For example, the sensor 42 may be pointed at the tip 123 to ease insertion, as illustrated in FIG. 3. In addition, the sensor 42 may include a barb 125 which helps retain the sensor 42 in the subcutaneous tissue of the patient. The barb 125 may also assist in anchoring the sensor 42 within the subcutaneous tissue of the patient during operation of the sensor 42. However, the barb 125 is typically small enough that little damage is caused to the subcutaneous tissue when the sensor 42 is removed for replacement. The sensor 42 may also include a notch 127 that can be used in cooperation with a corresponding structure (not shown) in the introducer to apply pressure against the sensor 42 during insertion, but disengage as the introducer 120 is removed. One example of such a structure in the insertion device is a rod (not shown) between two opposing sides of an introducer 120 and at an appropriate height of the introducer 120.


In operation, the sensor 42 is placed within or next to the introducer 120 and then a force is provided against the introducer 120 and/or sensor 42 to carry the sensor 42 into the skin of the patient. In one embodiment, the force is applied to the sensor 42 to push the sensor into the skin, while the introducer 120 remains stationary and provides structural support to the sensor 42. Alternatively, the force is applied to the introducer 120 and optionally to the sensor 42 to push a portion of both the sensor 42 and the introducer 120 through the skin of the patient and into the subcutaneous tissue. The introducer 120 is optionally pulled out of the skin and subcutaneous tissue with the sensor 42 remaining in the subcutaneous tissue due to frictional forces between the sensor 42 and the patient's tissue. If the sensor 42 includes the optional barb 125, then this structure may also facilitate the retention of the sensor 42 within the interstitial tissue as the barb catches in the tissue.


The force applied to the introducer 120 and/or the sensor 42 may be applied manually or mechanically. Preferably, the sensor 42 is reproducibly inserted through the skin of the patient. In one embodiment, an insertion gun is used to insert the sensor. One example of an insertion gun 200 for inserting a sensor 42 is shown in FIG. 9. The insertion gun 200 includes a housing 202 and a carrier 204. The introducer 120 is typically mounted on the carrier 204 and the sensor 42 is pre-loaded into the introducer 120. The carrier 204 drives the sensor 42 and, optionally, the introducer 120 into the skin of the patient using, for example, a cocked or wound spring, a burst of compressed gas, an electromagnet repelled by a second magnet, or the like, within the insertion gun 200. In some instances, for example, when using a spring, the carrier 204 and introducer 120 may be moved, cocked, or otherwise prepared to be directed towards the skin of the patient.


After the sensor 42 is inserted, the insertion gun 200 may contain a mechanism which pulls the introducer 120 out of the skin of the patient. Such a mechanism may use a spring, electromagnet, or the like to remove the introducer 120.


The insertion gun may be reusable. The introducer 120 is often disposable to avoid the possibility of contamination. Alternatively, the introducer 120 may be sterilized and reused. In addition, the introducer 120 and/or the sensor 42 may be coated with an anticlotting agent to prevent fouling of the sensor 42.


In one embodiment, the sensor 42 is injected between 2 to 12 mm into the interstitial tissue of the patient for subcutaneous implantation. Preferably, the sensor is injected 3 to 9 mm, and more preferably 5 to 7 mm, into the interstitial tissue. Other embodiments of the invention, may include sensors implanted in other portions of the patient, including, for example, in an artery, vein, or organ. The depth of implantation varies depending on the desired implantation target.


Although the sensor 42 may be inserted anywhere in the body, it is often desirable that the insertion site be positioned so that the on-skin sensor control unit 44 can be concealed. In addition, it is often desirable that the insertion site be at a place on the body with a low density of nerve endings to reduce the pain to the patient. Examples of preferred sites for insertion of the sensor 42 and positioning of the on-skin sensor control unit 44 include the abdomen, thigh, leg, upper arm, and shoulder.


An insertion angle is measured from the plane of the skin (i.e., inserting the sensor perpendicular to the skin would be a 90° insertion angle). Insertion angles usually range from 10 to 90°, typically from 15 to 60°, and often from 30 to 45°.


On-Skin Sensor Control Unit

The on-skin sensor control unit 44 is configured to be placed on the skin of a patient. The on-skin sensor control unit 44 is optionally formed in a shape that is comfortable to the patient and which may permit concealment, for example, under a patient's clothing. The thigh, leg, upper arm, shoulder, or abdomen are convenient parts of the patient's body for placement of the on-skin sensor control unit 44 to maintain concealment. However, the on-skin sensor control unit 44 may be positioned on other portions of the patient's body. One embodiment of the on-skin sensor control unit 44 has a thin, oval shape to enhance concealment, as illustrated in FIGS. 5-7. However, other shapes and sizes may be used.


The particular profile, as well as the height, width, length, weight, and volume of the on-skin sensor control unit 44 may vary and depends, at least in part, on the components and associated functions included in the on-skin sensor control unit 44, as discussed below. For example, in some embodiments, the on-skin sensor control unit 44 has a height of 1.3 cm or less, and preferably 0.7 cm or less. In some embodiments, the on-skin sensor control unit 44 has a weight of 90 grams or less, preferably 45 grams or less, and more preferably 25 grams or less. In some embodiments, the on-skin sensor control unit 44 has a volume of about 15 cm3 or less, preferably about 10 cm3 or less, more preferably about 5 cm3 or less, and most preferably about 2.5 cm3 or less.


The on-skin sensor control unit 44 includes a housing 45, as illustrated in FIGS. 5-7. The housing 45 is typically formed as a single integral unit that rests on the skin of the patient. The housing 45 typically contains most or all of the electronic components, described below, of the on-skin sensor control unit 44. The on-skin sensor control unit 44 usually includes no additional cables or wires to other electronic components or other devices. If the housing includes two or more parts, then those parts typically fit together to form a single integral unit.


In some embodiments, conductive contacts 80 are provided on the exterior of the housing 45. In other embodiments, the conductive contacts 80 are provided on the interior of the housing 45, for example, within a hollow or recessed region.


In some embodiments, the housing 45 of the on-skin sensor control unit 44 is a single piece. The conductive contacts 80 may be formed on the exterior of the housing 45 or on the interior of the housing 45 provided there is a port 78 in the housing 45 through which the sensor 42 can be directed to access the conductive contacts 80.


In other embodiments, the housing 45 of the on-skin sensor control unit 44 is formed in at least two separate portions that fit together to form the housing 45, for example, a base 74 and a cover 76, as illustrated in FIGS. 5-7. The two or more portions of the housing 45 may be entirely separate from each other. Alternatively, at least some of the two or more portions of the housing 45 may be connected together, for example, by a hinge, to facilitate the coupling of the portions to form the housing 45 of the on-skin sensor control unit 44.


These two or more separate portions of the housing 45 of the on-skin sensor control unit 44 may have complementary, interlocking structures, such as, for example, interlocking ridges or a ridge on one component and a complementary groove on another component, so that the two or more separate components may be easily and/or firmly coupled together. This may be useful, particularly if the components are taken apart and fit together occasionally, for example, when a battery or sensor 42 is replaced. However, other fasteners may also be used to couple the two or more components together, including, for example, screws, nuts and bolts, nails, staples, rivets, or the like. In addition, adhesives, both permanent or temporary, may be used including, for example, contact adhesives, pressure sensitive adhesives, glues, epoxies, adhesive resins, and the like.


Typically, the housing 45 is at least water resistant to prevent the flow of fluids into contact with the components in the housing, including, for example, the conductive contacts 80. Preferably, the housing is waterproof. In one embodiment, two or more components of the housing 45, for example, the base 74 and the cover 76, fit together tightly to form a hermetic, waterproof, or water resistant seal so that fluids cannot flow into the interior of the on-skin sensor control unit 44. This may be useful to avoid corrosion currents and/or degradation of items within the on-skin sensor control unit 44, such as the conductive contacts, the battery, or the electronic components, particularly when the patient engages in such activities as showering, bathing, or swimming.


Water resistant, as used herein, means that there is no penetration of water through a water resistant seal or housing when immersed in water at a depth of one meter at sea level. Waterproof, as used herein, means that there is no penetration of water through the waterproof seal or housing when immersed in water at a depth of ten meters, and preferably fifty meters, at sea level. It is often desirable that the electronic circuitry, power supply (e.g., battery), and conductive contacts of the on-skin sensor control unit, as well as the contact pads of the sensor, are contained in a water resistant, and preferably, a waterproof, environment.


The on-skin sensor control unit 44 is typically attached to the skin 75 of the patient, as illustrated in FIG. 8. The on-skin sensor control unit 44 may be attached by a variety of techniques including, for example, by adhering the on-skin sensor control unit 44 directly to the skin 75 of the patient with an adhesive provided on at least a portion of the housing 45 of the on-skin sensor control unit 44 which contacts the skin 75, by suturing the on-skin sensor control unit 44 to the skin 75 through suture openings (not shown) in the sensor control unit 44, or by strapping the on-skin sensor control unit 44 to the skin 75.


Another method of attaching the housing 45 of the on-skin sensor control unit 44 to the skin 75 includes using a mounting unit, 77. The mounting unit 77 is often a part of the on-skin sensor control unit 44. One example of a suitable mounting unit 77 is a double-sided adhesive strip, one side of which is adhered to a surface of the skin of the patient and the other side is adhered to the on-skin sensor control unit 44. In this embodiment, the mounting unit 77 may have an optional opening 79 which is large enough to allow insertion of the sensor 42 through the opening 79. Alternatively, the sensor may be inserted through a thin adhesive and into the skin.


A variety of adhesives may be used to adhere the on-skin sensor control unit 44 to the skin 75 of the patient, either directly or using the mounting unit 77, including, for example, pressure sensitive adhesives (PSA) or contact adhesives. Preferably, an adhesive is chosen which is not irritating to all or a majority of patients for at least the period of time that a particular sensor 42 is implanted in the patient. Alternatively, a second adhesive or other skin-protecting compound may be included with the mounting unit so that a patient, whose skin is irritated by the adhesive on the mounting unit 77, can cover his skin with the second adhesive or other skin-protecting compound and then place the mounting unit 77 over the second adhesive or other skin-protecting compound. This should substantially prevent the irritation of the skin of the patient because the adhesive on the mounting unit 77 is no longer in contact with the skin, but is instead in contact with the second adhesive or other skin-protecting compound.


Returning to FIG. 8, when the sensor 42 is changed, the on-skin sensor control unit 44 may be moved to a different position on the skin 75 of the patient, for example, to avoid excessive irritation. Alternatively, the on-skin sensor control unit 44 may remain at the same place on the skin of the patient until it is determined that the unit 44 should be moved.


Another embodiment of a mounting unit 77 used in an on-skin sensor control unit 44 is illustrated in FIGS. 10A and 10B. The mounting unit 77 and a housing 45 of an on-skin sensor control unit 44 are mounted together in, for example, an interlocking manner, as shown in FIG. 10A. The mounting unit 77 is formed, for example, using plastic or polymer materials, including, for example, polyvinyl chloride, polyethylene, polypropylene, polystyrene, ABS polymers, and copolymers thereof. The mounting unit 77 may be formed using a variety of techniques including, for example, injection molding, compression molding, casting, and other molding methods.


The mounting unit 77 typically includes an adhesive on a bottom surface of the mounting unit 77 to adhere to the skin of the patient or the mounting unit 77 is used in conjunction with, for example, double-sided adhesive tape or the like. The mounting unit 77 typically includes an opening 79 through which the sensor 42 is inserted, as shown in FIG. 10B. The mounting unit 77 may also include a support structure 220 for holding the sensor 42 in place and against the conductive contacts 80 on the on-skin sensor control unit 42. The mounting unit 77, also, optionally, includes a positioning structure 222, such as an extension of material from the mounting unit 77, that corresponds to a structure (not shown), such as an opening, on the sensor 42 to facilitate proper positioning of the sensor 42, for example, by aligning the two complementary structures.


In another embodiment, a coupled mounting unit 77 and housing 45 of an on-skin sensor control unit 44 is provided on an adhesive patch 204 with an optional cover 206 to protect and/or confine the housing 45 of the on-skin sensor control unit 44, as illustrated in FIG. 11A. The optional cover may contain an adhesive or other mechanism for attachment to the housing 45 and/or mounting unit 77. The mounting unit 77 typically includes an opening 47 through which a sensor 42 is disposed, as shown in FIG. 11B. The opening 47 may optionally be configured to allow insertion of the sensor 42 through the opening 47 using an introducer 120 or insertion gun 200 (see FIG. 9). The housing 45 of the on-skin sensor control unit 44 has a base 74 and a cover 76, as illustrated in FIG. 11C. A bottom view of the housing 45, as shown in FIG. 11D, illustrates ports 230 through which conductive contacts (not shown) extend to connect with contact pads on the sensor 42. A board 232 for attachment of circuit components may optionally be provided within the on-skin sensor control unit 44, as illustrated in FIG. 11E.


In some embodiments, the adhesive on the on-skin sensor control unit 44 and/or on any of the embodiments of the mounting unit 77 is water resistant or waterproof to permit activities such as showering and/or bathing while maintaining adherence of the on-skin sensor control unit 44 to the skin 75 of the patient and, at least in some embodiments, preventing water from penetrating into the sensor control unit 44. The use of a water resistant or waterproof adhesive combined with a water resistant or waterproof housing 45 protects the components in the sensor control unit 44 and the contact between the conductive contacts 80 and the sensor 42 from damage or corrosion. An example of a non-irritating adhesive that repels water is Tegaderm™ (3M™, St. Paul, Minn.).


In one embodiment, the on-skin sensor control unit 44 includes a sensor port 78 through which the sensor 42 enters the subcutaneous tissue of the patient, as shown in FIGS. 5 to 7. The sensor 42 may be inserted into the subcutaneous tissue of the patient through the sensor port 78. The on-skin sensor control unit 44 may then be placed on the skin of the patient with the sensor 42 being threaded through the sensor port 78. If the housing 45 of the sensor 42 has, for example, a base 74 and a cover 76, then the cover 76 may be removed to allow the patient to guide the sensor 42 into the proper position for contact with the conductive contacts 80.


Alternatively, if the conductive contacts 80 are within the housing 45 the patient may slide the sensor 42 into the housing 45 until contact is made between the contact pads 49 and the conductive contacts 80. The sensor control unit 44 may have a structure which obstructs the sliding of the sensor 42 further into the housing once the sensor 42 is properly positioned with the contact pads 49 in contact with the conductive contacts 80.


In other embodiments, the conductive contacts 80 are on the exterior of the housing 45 (see e.g., FIGS. 10A-10B and 11A-11E). In these embodiments, the patient guides the contact pads 49 of the sensor 42 into contact with the conductive contacts 80. In some cases, a guiding structure may be provided on the housing 45 which guides the sensor 42 into the proper position. An example of such a structure includes a set of guiding rails extending from the housing 45 and having the shape of the sensor 42.


In some embodiments, when the sensor 42 is inserted using an introducer 120 (see FIG. 3), the tip of the introducer 120 or optional insertion gun 200 (see FIG. 9) is positioned against the skin or the mounting unit 77 at the desired insertion point. In some embodiments, the introducer 120 is positioned on the skin without any guide. In other embodiments, the introducer 120 or insertion gun 200 is positioned using guides (not shown) in the mounting unit 77 or other portion of the on-skin sensor control unit 44. In some embodiments, the guides, opening 79 in the mounting unit 77 and/or sensor port 78 in the housing 45 of the on-skin sensor control unit 44 have a shape which is complementary to the shape of the tip of the introducer 120 and/or insertion gun 200 to limit the orientation of the introducer 120 and/or insertion gun 200 relative to the opening 79 and/or sensor port 78. The sensor can then be subcutaneously inserted into the patient by matching the complementary shape of the opening 79 or sensor port 78 with the introducer 120 and/or insertion gun 200.


In some embodiments, the shapes of a) the guides, opening 79, or sensor port 78, and (b) the introducer 120 or insertion gun 200 are configured such that the two shapes can only be matched in a single orientation. This aids in inserting the sensor 42 in the same orientation each time a new sensor is inserted into the patient. This uniformity in insertion orientation may be required in some embodiments to ensure that the contact pads 49 on the sensor 42 are correctly aligned with appropriate conductive contacts 80 on the on-skin sensor control unit 44. In addition, the use of the insertion gun, as described above, may ensure that the sensor 42 is inserted at a uniform, reproducible depth.


An exemplary on-skin sensor control unit 44 can be prepared and used in the following manner. A mounting unit 77 having adhesive on the bottom is applied to the skin. An insertion gun 200 (see FIG. 9) carrying the sensor 42 and the introducer 120 is positioned against the mounting unit 77. The insertion gun 200 and mounting unit 77 are optionally designed such that there is only one position in which the two properly mate. The insertion gun 200 is activated and a portion of the sensor 42 and optionally a portion of the introducer 120 are driven through the skin into, for example, the subcutaneous tissue. The insertion gun 200 withdraws the introducer 120, leaving the portion of the sensor 42 inserted through the skin. The housing 45 of the on-skin control unit 44 is then coupled to the mounting unit 77. Optionally, the housing 45 and the mounting unit 77 are formed such that there is only one position in which the two properly mate. The mating of the housing 45 and the mounting unit 77 establishes contact between the contact pads 49 (see e.g., FIG. 2) on the sensor 42 and the conductive contacts 80 on the on-skin sensor control unit 44. Optionally, this action activates the on-skin sensor control unit 44 to begin operation.


The introducer, sensor, insertion gun and mounting unit can be manufactured, marketed, or sold as a unit. For example, FIG. 12 depicts an introducer 270, sensor 272, insertion gun 274 and mounting unit 276, which can be assembled (as indicated by the arrows) and sold together in an insertion kit. In such an embodiment of an insertion kit, the insertion gun 274 can be packaged in a pre-loaded fashion, with an introducer 270 and sensor 272 mated or otherwise coupled, the mated sensor 272 and introducer 270 loaded upon the carrier 278 of the insertion gun, and with a mounting unit 276 already mated with the end of the insertion gun 274.


In one embodiment, the insertion gun 274 is packaged in a state where it is ready to thrust the sensor 272 (and perhaps introducer 270) into subcutaneous tissue. For example, the insertion gun 274 can be packaged in a “cocked” state, such that the thrusting force used to introduce the sensor 272 into the subcutaneous tissue is stored in the device as potential energy (in the case of the embodiment depicted in FIG. 12, the insertion gun 274 would be “cocked” by compressing its spring 280, thus storing potential energy within the coils of the spring). Preferably, an insertion gun 274 packaged in such a manner employs a “safety”, a barrier to prevent the release of the stored potential energy. The barrier is removed in order to permit the potential energy to be released. Within the context of the embodiment presented in FIG. 12, an example of a safety is a pin (not pictured) that impedes the spring from expanding, once compressed. Thus, an insertion kit so embodied can be obtained at a place of purchase, removed from its package, and used after removal of the safety, without necessitating additional steps. Alternatively, the insertion gun 274 can be packaged in the above-described pre-loaded configuration, but without being “cocked”. Thus, an insertion kit with an “uncocked” insertion gun 274 can be obtained at a place of purchase, removed from its package, cocked, and used. To facilitate the insertion kit being ready to use with minimal user-exercised steps, the insertion kit can be sterilized prior to packaging. Examples of acceptable sterilizing techniques include exposing the elements of the insertion kit to gamma radiation or an e-beam.


Referring to FIGS. 13-33B, preferred commercial embodiments of a sensor inserter constructed according to the invention will now be described. FIG. 13 shows an overall perspective view of a sensor inserter kit 300 comprising a single-use sensor inserter 310 and a single-use adhesive mount 312 removably attached to the bottom thereof.


As an overview of the operation of inserter kit 300, the kit comes packaged generally as shown in FIG. 13 with a sensor 314 (best seen in FIGS. 16 and 25) preloaded within inserter 310 and with inserter 310 in a “cocked” state. After preparing an insertion site on the skin, typically in the abdominal region, the patient removes upper liner 316 and lower liner 318 from adhesive mount 312 to expose the bottom surface and a portion of the top surface of an adhesive tape 320 (best seen in FIG. 16) located beneath mount 312. Mount 312, with inserter 310 attached, is then applied to the patient's skin at the insertion site. Safety lock tabs 322 are squeezed together to allow actuator button 324 to be pressed causing inserter 310 to fire, thereby inserting sensor 314 into the patient's skin with a predetermined velocity and force. Once sensor 314 has been inserted into the skin, the patient removes inserter 310 from mount 312 by pressing release tabs 326 on opposite sides of inserter 310 and lifting inserter 310 away from mount 312.


Referring to FIG. 14, mount 312 is shown adhered to a patient's skin 328 with sensor 314 already inserted. Once inserter 310 is removed from mount 312, transmitter 330 can be slid into place. The circuitry of transmitter 330 makes electrical contact with the contact pads on sensor 314 after transmitter 330 is fully seated on mount 312. Once initialization and synchronization procedures are completed, electrochemical measurements from sensor 314 can be sent wirelessly from transmitter 330 to a portable receiver 332, as shown in FIG. 15. Sensor 314, mount 312 and transmitter 330 remain in place on the patient for a predetermined period, currently envisioned to be three days. These components are then removed so that sensor 314 and mount 312 can be properly discarded. The entire procedure above can then be repeated with a new inserter 310, sensor 314 and mount 312, reusing transmitter 330 and receiver 332.


Referring to FIG. 16, the preferred inserter kit 300 is assembled as shown from the following components: housing 334, actuator button 324, drive spring 336, shuttle 338, introducer sharp 340, sensor 314, retraction spring 342, inserter base 344, upper liner 316, adhesive mount 312, adhesive tape 320, and lower liner 318.


Sensor 314 has a main surface 346 slidably mounted between U-shaped rails 348 of introducer sharp 340 and releasably retained there by sensor dimple 350 which engages introducer dimple 352. Introducer sharp 340 is mounted to face 354 of shuttle 338, such as with adhesive, heat stake or ultrasonic weld. Sensor 314 also has a surface 356 that extends orthogonally from main surface 346 and just beneath a driving surface 358 of shuttle 338 when mounted thereon (details of these features are better shown in FIGS. 19 and 25-27.)


Shuttle 338 is slidably and non-rotatably constrained on base 344 by arcuate guides 360. As best seen in FIGS. 19, 24 and 27, shuttle 338 is generally formed by an outer ring 362 and an inner cup-shaped post 364 connected by two bridges 366. Bridges 366 slide between the two slots 368 formed between guides 360 and allow shuttle 338 to travel along guides 360 without rotating. Retraction spring 342 is captivated at its outer circumference by guides 360, at its bottom by the floor 370 of base 344, at its top by bridges 366, and at its inner circumference by the outer surface of shuttle post 364. Drive spring 336 is captivated at its bottom and outer circumference by the inside surface of shuttle post 364, at its top by the ceiling 372 inside actuator button 324, and at its inner circumference by stem 374 depending from ceiling 372. When drive spring 336 is compressed between actuator button 324 and shuttle 338 it urges shuttle 338 towards base 344. When retraction spring 342 is compressed between shuttle 338 and base 344, it urges shuttle 338 towards actuator button 324.


Actuator button 324 is slidably received within housing 334 from below and resides in opening 376 at the top of housing 334 with limited longitudinal movement. Arms 378 on each side of actuator button 324 travel in channels 380 along the inside walls of housing 334, as best seen in FIG. 20. Longitudinal movement of actuator button 324 is limited in one direction by the base of arms 378 contacting the edge of opening 376 at the top of housing 334, and in the other direction by the distal ends 384 of arms 378 contacting stops 386 in channels 380. Slots 388 are preferably provided in the top of housing 334 for ease of housing manufacture and so tools can be inserted to inwardly compress arms 378 beyond stops 386 to allow actuator button 324 to be removed from housing 334 if needed.


When sensor 314, introducer sharp 340, shuttle 338, retraction spring 342, drive spring 336 and actuator button 324 are assembled between base 344 and housing 334 as shown in FIG. 16 and described above, housing 334 is snapped into place on base 344. Base 344 is held onto housing 334 by upper base barbs 390 that engage upper openings 392 in housing 334, and lower base barbs 394 (best seen in FIG. 17) that engage lower openings 396 in housing 334. Slots 398 and 400 are provided for ease of manufacture of housing 334, and base 344 is preferably removable from housing 334 with tools if needed.


Referring to FIG. 19, actuator button 324 is preferably provided with safety lock tabs 322 hingedly formed on opposite ends. Tabs 322 can be urged from a relaxed outward position to a flexed inward position. When in the normal outward position, shoulders 402 on the outer surfaces of tabs 322 engage the rim 404 of opening 376 to prevent the actuator button 324 from being depressed, thereby avoiding accidental firing of inserter 310. Tabs 322 can be squeezed inward just enough to clear the rim 404 of opening 376 while pressing the actuator button 324 down to fire the inserter. Alternatively, tabs 322 can be squeezed further inward so that barbs 406 on the inside edges can engage catches 408 located on a center portion of actuator button 324, thereby defeating the safety lock to allow later firing by simply pressing down on the actuator button 324. Preferably, upwardly extending grips are provided on tabs 322 for better visual indication of safety lock status and actuation control.


Referring to FIG. 20, shuttle 338 is provided with laterally extending barbed fingers 412 which travel in channels 380 along the inside walls of housing 334. When shuttle 338 is inserted up into housing 334 far enough, barbed fingers 412 momentarily deflect inward and then snap outward again to catch on stops 386. In this “cocked” position as shown, drive spring 336 is compressed and urging shuttle 338 towards base 344, but barbed fingers 412 catching on stops 386 prevent such travel.


Referring to FIGS. 21-23, the sequence of loading, cocking, arming, firing, and automatic retraction of inserter 310 will be described. It is envisioned that in production, inserters 310 will be fabricated and fully assembled by one vender except for sensor 314, which will be supplied and installed by a second vendor in a sterile environment. Accordingly, inserter 310 will be manufactured and shipped to the sensor vendor in a neutral state, as shown in FIG. 21. A hole 414 provided through the center of actuator button 324 allows the sensor vendor to insert a pin (manually or by automated machinery, not shown) through hole 414 to drive shuttle 338 towards base 344 in a controlled fashion and hold it there against the force of retraction spring 342. This will cause introducer sharp 340 to be extended through base 344 (as shown in FIG. 23) so that sensor 314 can be loaded into introducer 340. When the pin is removed, shuttle 338, introducer 340 and sensor 314 will retract to the neutral position. The sensor vendor can then cock the loaded inserter 310 before shipment by pushing another pin (not shown) from the opposite direction through a central hole 416 in base 344 (with mount 312 removed) until the pin contacts dimple 418 formed in the bottom of shuttle 338. By pushing shuttle 338 towards actuator button 324 until barbed fingers 412 clear stops 386, the inserter 310 is cocked (as shown in FIG. 22.)


Referring to FIG. 22, inserter 310 is preferably received by the patient in the cocked position as shown. To use inserter 310, the patient applies mount 312 to the mounting site and disables the safety mechanism as previously described, and then pushes actuator button 324 against the force of drive spring 336. As actuator button 324 travels toward base 344, drive cam surfaces 420 on arms 378 contact ramped surfaces 422 of barbed fingers 412 and urge them inward. When fingers 412 are driven inward enough to clear stops 386, shuttle 338 is driven by drive spring 336 with a predetermined speed and force to an insertion position, as shown in FIG. 23.


Referring to FIG. 23, inserter 310 is shown in the insertion position with the tail 424 of introducer sharp 340 extending through base 344 and mount 312 into the skin of the patient. FIG. 23 shows shuttle 338 in a fully extended position with its lower surface 426 bottomed out on base 344. However, the lower orthogonal surface 356 of sensor 314 will contact an exposed sensor contact portion 428 (best seen in FIG. 16) on top of adhesive tape 320 supported from below by the patient's skin, and therefore will typically stop traveling before reaching the fully bottomed out position shown. Tail 424 of introducer sharp 340 provides rigidity and a skin piercing edge 430 for allowing the flexible tail 431 of sensor 314 to be implanted in the patient's skin. After providing this function, introducer sharp 340 is immediately removed from the patient and retracted into a safe position inside housing 334 as refraction spring 342 (which has been compressed by the travel of the shuttle) pushes shuttle 338 back towards actuator cap. Sensor 314 is pulled from introducer sharp 340 and held in place by the sensor contact portion 428 on top of adhesive tape 320 adhering to orthogonal surface 356 of sensor 314. The geometries of sensor dimple 350 and mating introducer dimple 352 are chosen to create a separation force between them that is less than the adhesion force of tape 320 on orthogonal surface 356, but great enough to retain sensor 314 in introducer sharp 340 during typical shipping and product handling shock loads. Driving surface 358 beneath shuttle 338 presses down on top of orthogonal surface 356 to ensure good contact with adhesive tape 320 before shuttle 338 retracts with introducer sharp 340. As discussed above with previous embodiments, barb(s) on sensor tail 431 can be employed to further anchor the sensor in its operating position.


Referring again to FIG. 21, retraction spring 342 will return shuttle 338 to the neutral position as shown after firing, but without sensor 314 which remains inserted in patient's skin (not still in introducer sharp 340 as shown). Drive spring 336 is preferably designed to be stiffer than retraction spring 342 so that shuttle 338 oscillations are quickly dampened out, and so introducer sharp 340 does not return to sensor 314 or the patient to cause injury. With sensor 314 now inserted in the patient's skin, inserter 310 can be removed from mount 312 by inwardly flexing release tabs 326 on opposite sides of inserter 310 to remove latch hooks 432 from mount channels 434 and then lifting inserter 310 away from mount 312. Introducer sharp 340 remains protected inside housing 334 during disposal of inserter 310. Transmitter 330 can now be slid into place on mount 312 as previously described.


Referring to FIG. 28, an alternative embodiment of adhesive tape 320′ is shown. This oversized tape 320′ has the advantage of holding transmitter 330 in place even when fairly large forces are placed on it. In this embodiment adhesive tape 320′ has a double-sided portion 436 (adhesive on both top and bottom sides) residing between mount 312 and the patient's skin, and a single-sided portion 438 outwardly extending from the double-sided portion 436, preferably in all directions, for adhering just to the patient's skin. In the previous embodiment, it is difficult to separate mount 312 from the skin merely with tension forces, but applying a force to just one side of mount 312 results in a high peeling force being applied to that edge of the adhesive tape 320 which causes tape 320 to peel off of the skin. In contrast, any force applied to transmitter 330 in this alternative embodiment results in a tension force rather than a peeling force being applied to tape 320′, inhibiting inadvertent removal until an edge of tape 320′ is intentionally peeled up. Preferably, single-sided portion 438 has a width roughly double the width of double-sided portion 436. In the preferred embodiment, theses widths are 2.14 and 1.14 inches, respectively. Preferably, the length that single-sided portion 438 extends beyond double-sided portion 436 is roughly equivalent to the combined height of transmitter 330 attached to mount 312, in this case about 0.5 inches.


In the preferred embodiment, sensor 314 is made from a 0.005 inch thick Mylar® substrate, such as Dupont Melinex ST-505, print treated both sides, heat stabilized and bi-axially oriented. Main surface 346 is 0.315 tall by 0.512 wide, and orthogonal surface 356 is 0.374 wide by 0.202 deep. Sensor tail 431 is 0.230 long by 0.023 wide. Semispherical sensor dimple 350 is 0.050 inches wide and 0.026 inches deep. Introducer sharp 340 is made from SUS 301 medical grade stainless steel, 0.004 inches thick, having a surface roughness less than or equal to 0.5 micrometers. The height of the main portion of introducer sharp 340 is 0.614 inches, and the inside width is 0.513 inches. The overall thickness of rolled rails 348 is 0.026 inches. The length and width of introducer tail 424 are 0.354 and 0.036 inches, respectively. The preferred angle of the introducer sharp 340 is 21 degrees. Preferably, semispherical introducer dimple 352 has a radius of 0.024 inches. In the preferred embodiment, shuttle 338 has an average speed of at least 1 meter/second, and has a momentum at its end of travel of about 2.65 lb-m/sec.


Preferably, housing 334, button 324, shuttle 338, base 344 and mount 312 are all injection molded from G.E. Lexan PC. Inside and outside working surfaces of arms 378 on button 324 are preferably lubricated with Dow Corning 360 Medical Fluid. Drive spring 336 has a free length of 1.25 inches, a working length of 1.00 inch, and a rate between 20 and 30 pounds per inch. Retraction spring 342 has a free length of 1.5 inches, a working length of 0.35 inches, and a rate between 0.15 and 0.35 pounds per inch. Adhesive tape 320 preferably is medical grade acrylic adhesive on polyester film (such as Acutek 0396013) with a semi-bleached kraft liner having silicon release.


Referring to FIG. 29, an interconnect 440 is shown for providing waterproof electrical connections between sensor 314 and transmitter 330. Interconnect 440 includes a seal 442 mounted on an end of transmitter 330 that contacts one side of sensor 314 when transmitter 330 is slid onto mount 312. When transmitter 330 is locked into place on mount 312, seal 442 is compressed between transmitter 330 and sensor 314 and urges sensor 314 against raised end stop 444 of mount 312.


Referring to FIG. 30, further details of interconnect 440 are shown. Seal 442 has an exterior wall 446 for surrounding electrical contacts 448 (in this case four), and interior walls 450 for isolating electrical contacts 448 from each other. Rim 452 formed on the transmitter housing 330 surrounds the base 454 of seal 442 to prevent it from collapsing outward when compressed (see FIGS. 31-32).


Referring to FIG. 31, an enlarged partial view of FIG. 30 is shown with seal 442 and one spring removed for clarity. Electrical contacts 448 are preferably constructed from compression springs 456 mounted on connector lugs 458. Lugs 458 are stamped rearward on their edges to form protrusions that retain springs 456. Alternately or in conjunction with this stamping, plastic rings (not shown) can be melted over the base of each spring 456 for attaching it to its respective lug 458. Connector lugs 458 can protrude through slots in transmitter 330, or be insert molded integral with the plastic housing when it is molded.


Referring to FIG. 32, an enlarged perspective view of the seal 442 is shown. It has been discovered through experimentation that two lips 462 of equal height along the distal edge of exterior wall 446 provide the best seal from exterior elements. Good isolation between electrical contacts 448 is best achieved by having interior walls 450 with a height equal to that of lips 462. Recesses 464 should be sized large enough so that seal 442 does not interfere with the movement of springs 456 when seal 442 and springs 456 are compressed. In the preferred embodiment, the distal face of seal 442 defined by lips 462 is formed at a 1 degree angle to match the draft angle of mount end stop 444.


Seal 442 is preferably made of shore A 30 durometer compression molded silicone. It is envisioned that seal 442 can be shortened in the axial direction (parallel to springs 456) to reduce the force required to compress it when attaching transmitter 330 to mount 312. Best results for fastening seal 442 to transmitter 330 have been achieved with double sided adhesive tape 320, silicone adhesive on one side and acrylic adhesive on the other for sticking to the PC-ABS blend of the transmitter 330, such as product number 9731 manufactured by 3M Company of St. Paul, Minn. Springs 456 are preferably made from gold-plated beryllium copper so as to deter galvanic current effects. Preferably, main surface 346 of sensor 314 that contacts seal 442 has a uniform thickness dielectric coating with a window in it (i.e. no dielectric) where springs 456 contact sensor 314. An interconnect 440 constructed as described above remains water proof when submerged to a depth of at least 1 meter for 45 minutes.


To increase the reliability of sensor insertion, the following enhancements can be added to the inserter kit 300 described above. First, a sensor flap can be formed along the top edge of sensor 314. When sensor 314 reaches the extended, delivered position as shown in FIG. 23, the flap catches on the bottom edge of base 344 to ensure that sensor 314 separates from introducer sharp 340 as shuttle 338 returns upward to the retracted position. Adhesive can also be located on the bottom of orthogonal sensor surface 356 to ensure that sensor 314 adheres to the sensor contact portion 428 on the top of adhesive mount tape 320, as shown in FIG. 16.


Referring to FIGS. 33A and 33B, actuator button 324′ can be made easier for elderly patients to push by anchoring the upper end of drive spring 336 on a housing bridge 470 instead of button 324. This change also makes the insertion force of inserter 310 more consistent, and allows stronger spring forces to be used if desired. Bridge 470 spans across opening 376′ and divides it into two openings 472 in the top of housing 334′. The top portion of button 324′ is bifurcated into two protrusions 474 that each extend through an opening 472. A clearance hole (not shown) is provided through the center of button 324′ to allow drive spring 336 to pass through and secure around a post (not shown) depending from the bottom center of bridge 470.


Safety lock key 476 can be provided to prevent actuator button 324′ from being pressed until key 476 is removed. Aperture 478 is provided in the top center of bridge 470 for receiving boss 480 located at the bottom of key 476, thereby allowing key 476 to rotate. When key handle 482 is rotated perpendicular to button protrusions 474 as shown, two opposing perpendicular fins 484 on key 476 swing into inwardly facing slots (not shown) on the inside of protrusions 474 and prevent button 324′ from being actuated. When key handle 482 and fins 484 are rotated parallel to button protrusions 474 such that fins 484 disengage therefrom, key 476 can be removed and button 324′ can then be actuated. Other than these modifications, this inserter kit 300′ functions the same as the embodiment previously described.


To provide an easier and more consistent release of shuttle 338 by actuator button 324 or 324′, it is envisioned that less aggressive finger engagement with stops 386 can be employed, or the above designs can be modified to have a single, more centrally located shuttle release finger (not shown) instead of the two outboard fingers 412 shown.


The present invention should not be considered limited to the particular examples described above. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable, and which fall within the general scope of the invention, will be readily apparent to those of skill in the art to which the present invention is directed upon review of the instant specification.

Claims
  • 1. An assembly comprising: an inserter device comprising: an actuator button,a sharp comprising a distal end configured to be inserted into a user,a slidable shuttle,a first spring,a stem extending into an inner circumference of the first spring,a second spring having a proximal end in contact with the slidable shuttle, anda post extending into an inner circumference of the second spring;a glucose sensor disposed within the inserter device, the glucose sensor comprising a distal end configured to be inserted into the user;a mount releasably coupled with the inserter device, wherein the mount comprises an adhesive portion configured to adhere to skin of the user while the mount is coupled with the inserter device, and wherein a bottom surface of the mount is disposed within a distal plane; anda liner removably attached to the adhesive portion of the mount, wherein the liner is configured to be removed from the adhesive portion before the adhesive portion is adhered to the skin of the user,wherein the actuator button, when depressed, is configured to cause automatic advancement of the slidable shuttle, the sharp, and the glucose sensor by the first spring, such that the distal end of the sharp and the distal end of the glucose sensor advance through an opening in the mount and into the user,wherein, before the actuator button is depressed, a portion of the stem is a first height from the distal plane and a portion of the post is a second height from the distal plane that is equal to the first height,wherein a proximal end of the post comprises an opening,wherein the distal end of the sharp is configured to automatically retract from within the user and into an interior space of the inserter device after the automatic advancement of the slidable shuttle, the sharp, and the glucose sensor,wherein the mount is configured for positioning on the skin of the user prior to advancing the distal end of the sharp and the distal end of the glucose sensor through the opening in the mount,wherein the inserter device is configured to be removed from the mount while the distal end of the glucose sensor remains in the user,wherein the second spring comprises a coiled spring, andwherein the mount is further configured to receive an electronics component housing into the mount after the inserter device is removed from the mount.
  • 2. The assembly of claim 1, wherein the sharp and the glucose sensor are configured to automatically advance in a direction towards the skin of the user when the actuator button is depressed such that a proximal portion of the glucose sensor couples with the mount and the distal end of the glucose sensor is inserted into the user.
  • 3. The assembly of claim 2, wherein the second spring is configured to apply a force to automatically retract the slidable shuttle and the sharp in a direction away from the skin of the user.
  • 4. The assembly of claim 3, wherein the inserter device further comprises a lateral extension releasably engaged with a stop, and wherein the actuator button, when depressed, is further configured to release the lateral extension from the stop and cause a release of energy from the first spring, and wherein, before the actuator button is depressed, a distal end of the lateral extension is a third height from the distal plane and the proximal end of the second spring is a fourth height from the distal plane that is greater than the third height.
  • 5. The assembly of claim 4, wherein the inserter device further comprises: a housing coupled with the actuator button; anda base coupled with the mount and the housing, the base comprising guides, wherein the slidable shuttle is configured to automatically advance along the guides of the base in a direction towards the skin of the user when the actuator button is depressed.
  • 6. The assembly of claim 5, wherein the glucose sensor is further configured to be electrically connected to electronics in the electronics component housing when the electronics component housing is received into the mount.
  • 7. The assembly of claim 6, wherein the mount further comprises a cavity for receiving the electronics component housing.
  • 8. The assembly of claim 7, wherein the glucose sensor is received within the sharp.
  • 9. An assembly comprising: an inserter device comprising: an actuator button,a safety mechanism configured to impede the actuator button,a sharp comprising a distal end configured to be inserted into a user,a slidable shuttle,a first spring,a stem extending into an inner circumference of the first spring,a second spring having a proximal end in contact with the slidable shuttle, anda post extending into an inner circumference of the second spring;a glucose sensor disposed within the inserter device, the glucose sensor comprising a distal end configured to be inserted into the user;a mount releasably coupled with the inserter device, wherein the mount comprises an adhesive portion configured to adhere to skin of the user while the mount is coupled with the inserter device, and wherein the adhesive portion extends outwardly beyond a bottom portion of the mount in all directions, and wherein a bottom surface of the mount is disposed within a distal plane; anda liner removably attached to the adhesive portion of the mount, wherein the liner is configured to be removed from the adhesive portion before the adhesive portion is adhered to the skin of the user,wherein the safety mechanism comprises a safety barrier, and wherein the safety barrier is configured to be removed from the inserter device before the actuator button is depressed,wherein the actuator button, when depressed, is configured to cause automatic advancement of the slidable shuttle, the sharp, and the glucose sensor by the first spring, such that the distal end of the sharp and the distal end of the glucose sensor advance through an opening in the mount and into the user,wherein, before the actuator button is depressed, a portion of the stem is a first height from the distal plane and a portion of the post is a second height from the distal plane that is equal to the first height,wherein a proximal end of the post comprises an opening,wherein the distal end of the sharp is configured to automatically retract from within the user and into an interior space of the inserter device after the automatic advancement of the slidable shuttle, the sharp, and the glucose sensor,wherein the mount is configured for positioning on the skin of the user prior to advancing the distal end of the sharp and the distal end of the glucose sensor through the opening in the mount,wherein the inserter device is configured to be removed from the mount while the distal end of the glucose sensor remains in the user,wherein the second spring comprises a coiled spring, andwherein the mount is further configured to receive an electronics component housing into the mount after the inserter device is removed from the mount.
  • 10. The assembly of claim 9, wherein the sharp and the glucose sensor are configured to automatically advance in a direction towards the skin of the user when the actuator button is depressed such that a proximal portion of the glucose sensor couples with the mount and the distal end of the glucose sensor is inserted into the user.
  • 11. The assembly of claim 10, wherein the first spring is a coiled spring or a wound spring.
  • 12. The assembly of claim 11, wherein the first spring is a wound spring.
  • 13. The assembly of claim 10, wherein the mount further comprises a positioning structure configured to facilitate positioning of the glucose sensor.
  • 14. The assembly of claim 10, wherein the inserter device is configured to transcutaneously position at least a portion of the glucose sensor at an angle of insertion between 15 and 60 degrees relative to the skin of the user.
  • 15. The assembly of claim 14, wherein the inserter device is configured to transcutaneously position at least a portion of the glucose sensor at an angle of insertion between 30 and 45 degrees relative to the skin of the user.
  • 16. The assembly of claim 15, wherein the inserter device is configured to transcutaneously position at least a portion of the glucose sensor at an angle of insertion of 45 degrees relative to the skin of the user.
  • 17. The assembly of claim 10, wherein the inserter device further comprises a lateral extension releasably engaged with a stop, and wherein the actuator button, when depressed, is further configured to release the lateral extension from the stop and cause a release of energy from the first spring, and wherein, before the actuator button is depressed, a distal end of the lateral extension is a third height from the distal plane and the proximal end of the second spring is a fourth height from the distal plane that is greater than the third height.
  • 18. The assembly of claim 17, wherein the second spring is configured to apply a force to automatically retract the slidable shuttle and the sharp in a direction away from the skin of the user.
  • 19. The assembly of claim 9, wherein the inserter device further comprises: a housing coupled with the actuator button; anda base coupled with the mount and the housing, the base comprising guides, wherein the slidable shuttle is configured to automatically advance along the guides of the base in a direction towards the skin of the user when the actuator button is depressed.
  • 20. The assembly of claim 9, wherein the glucose sensor is further configured to be electrically connected to electronics in the electronics component housing when the electronics component housing is received into the mount.
  • 21. The assembly of claim 20, wherein the mount further comprises a cavity for receiving the electronics component housing.
  • 22. The assembly of claim 21, wherein the glucose sensor is received within the sharp.
  • 23. The assembly of claim 9, wherein the assembly is a part of a glucose monitoring kit, wherein the glucose monitoring kit further comprises the electronics component housing, wherein the electronics component housing contains electronics, wherein the electronics are configured to be electrically coupled with the glucose sensor, and wherein the electronics comprise a transmitter, a power supply, and a data storage unit.
  • 24. The assembly of claim 9, wherein the assembly is a part of a glucose monitoring kit, wherein the glucose monitoring kit further comprises a display device configured to display a glucose level of the user.
  • 25. The assembly of claim 9, wherein the inserter device is packaged in a cocked state and wherein the inserter device is further configured to be removed from a packaging before the adhesive portion of the mount is adhered to the skin of the user.
  • 26. The assembly of claim 9, wherein the slidable shuttle is configured to automatically advance at an average speed of at least one meter per second.
  • 27. An assembly comprising: an inserter device comprising: an actuator button,a safety mechanism configured to impede the actuator button,a sharp comprising a distal end configured to be inserted into a user,a slidable shuttle,a first spring,a stem extending into an inner circumference of the first spring,a second spring having a proximal end in contact with the slidable shuttle,a post extending into an inner circumference of the second spring, anda lateral extension releasably engaged with a stop;a glucose sensor disposed within the inserter device, the glucose sensor comprising a distal end configured to be inserted into the user;a mount releasably coupled with the inserter device, wherein the mount comprises an adhesive portion configured to adhere to skin of the user while the mount is coupled with the inserter device, and wherein a bottom surface of the mount is disposed within a distal plane; anda liner removably attached to the adhesive portion of the mount, wherein the liner is configured to be removed from the adhesive portion before the adhesive portion is adhered to the skin of the user,wherein the safety mechanism comprises a safety barrier, and wherein the safety barrier is configured to be removed from the inserter device before the actuator button is depressed,wherein the actuator button, when depressed, is configured to release the lateral extension from the stop and cause a release of energy from the first spring, wherein the release of energy from the first spring causes automatic advancement of the slidable shuttle, the sharp, and the glucose sensor such that the distal end of the sharp and the distal end of the glucose sensor advance through an opening in the mount and into the user,wherein, before the actuator button is depressed, a portion of the stem is a first height from the distal plane and a portion of the post is a second height from the distal plane that is equal to the first height,wherein a proximal end of the post comprises an opening,wherein, before the actuator button is depressed, a distal end of the lateral extension is a third height from the distal plane and the proximal end of the second spring is a fourth height from the distal plane that is greater than the third height,wherein the distal end of the sharp is configured to automatically retract from within the user and into an interior space of the inserter device after the automatic advancement of the slidable shuttle, the sharp, and the glucose sensor,wherein the mount is configured for positioning on the skin of the user prior to advancing the distal end of the sharp and the distal end of the glucose sensor through the opening in the mount,wherein the inserter device is configured to be removed from the mount while the distal end of the glucose sensor remains in the user,wherein the second spring comprises a coiled spring, andwherein the mount is further configured to receive an electronics component housing into the mount after the inserter device is removed from the mount.
  • 28. The assembly of claim 27, wherein the first spring is a wound spring, wherein the adhesive portion extends outwardly beyond a bottom portion of the mount in all directions,wherein the sharp and the glucose sensor are configured to automatically advance in a direction towards the skin of the user when the actuator button is depressed such that a proximal portion of the glucose sensor couples with the mount and the distal end of the glucose sensor is inserted into the user,wherein the second spring is configured to apply a force to automatically retract the slidable shuttle and the sharp in a direction away from the skin of the user, andwherein the glucose sensor is further configured to be electrically connected to electronics in the electronics component housing when the electronics component housing is received into the mount.
  • 29. The assembly of claim 28, wherein the inserter device further comprises: a housing coupled with the actuator button; anda base coupled with the mount and the housing, the base comprising guides, wherein the slidable shuttle is configured to automatically advance along the guides of the base in a direction towards the skin of the user when the actuator button is depressed.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/928,700, filed Jul. 14, 2020, which is a continuation of U.S. patent application Ser. No. 15/963,828, filed Apr. 26, 2018, which is a continuation of U.S. patent application Ser. No. 14/244,831, filed Apr. 3, 2014, now U.S. Pat. No. 9,980,670, which is a continuation of U.S. patent application Ser. No. 12/538,067, filed Aug. 7, 2009, now abandoned, which is a continuation of U.S. patent application Ser. No. 11/899,917, filed Sep. 6, 2007, now U.S. Pat. No. 8,029,442, which is a continuation of U.S. patent application Ser. No. 10/703,214, filed Nov. 5, 2003, now U.S. Pat. No. 7,381,184, which claims priority to U.S. Provisional Application No. 60/424,099, filed Nov. 5, 2002, the disclosures of each of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (1052)
Number Name Date Kind
3123790 Tyler Mar 1964 A
3260656 Ross, Jr. Jul 1966 A
3522807 Millenbach Aug 1970 A
3581062 Aston May 1971 A
3653841 Klein Apr 1972 A
3670727 Reiterman Jun 1972 A
3719564 Lilly, Jr. et al. Mar 1973 A
3776832 Oswin et al. Dec 1973 A
3837339 Aisenberg et al. Sep 1974 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3972320 Kalman Aug 1976 A
3979274 Newman Sep 1976 A
4008717 Kowarski Feb 1977 A
4016866 Lawton Apr 1977 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4059406 Fleet Nov 1977 A
4076596 Connery et al. Feb 1978 A
4098574 Dappen Jul 1978 A
4100048 Pompei et al. Jul 1978 A
4120292 LeBlanc, Jr. et al. Oct 1978 A
4129128 McFarlane Dec 1978 A
4151845 Clemens May 1979 A
4168205 Danniger et al. Sep 1979 A
4172770 Semersky et al. Oct 1979 A
4178916 McNamara Dec 1979 A
4206755 Klein Jun 1980 A
4224125 Nakamura et al. Sep 1980 A
4240438 Updike et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4247297 Berti et al. Jan 1981 A
4294258 Bernard Oct 1981 A
4327725 Cortese et al. May 1982 A
4340458 Lerner et al. Jul 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4352960 Dormer et al. Oct 1982 A
4356074 Johnson Oct 1982 A
4365637 Johnson Dec 1982 A
4366033 Richter et al. Dec 1982 A
4373527 Fischell Feb 1983 A
4375399 Havas et al. Mar 1983 A
4384586 Christiansen May 1983 A
4390621 Bauer Jun 1983 A
4401122 Clark, Jr. Aug 1983 A
4404066 Johnson Sep 1983 A
4418148 Oberhardt Nov 1983 A
4425920 Bourland et al. Jan 1984 A
4427770 Chen et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4440175 Wilkins Apr 1984 A
4450842 Zick et al. May 1984 A
4458686 Clark, Jr. Jul 1984 A
4461691 Frank Jul 1984 A
4469110 Slama Sep 1984 A
4477314 Richter et al. Oct 1984 A
4478976 Goertz et al. Oct 1984 A
4484987 Gough Nov 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4522690 Venkatsetty Jun 1985 A
4524114 Samuels et al. Jun 1985 A
4526661 Steckhan et al. Jul 1985 A
4527240 Kvitash Jul 1985 A
4534356 Papadakis Aug 1985 A
4538616 Rogoff Sep 1985 A
4543955 Schroeppel Oct 1985 A
4545382 Higgins et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4560534 Kung et al. Dec 1985 A
4571292 Liu et al. Feb 1986 A
4573994 Fischell et al. Mar 1986 A
4581336 Malloy et al. Apr 1986 A
4595011 Phillips Jun 1986 A
4619754 Niki et al. Oct 1986 A
4619793 Lee Oct 1986 A
4627445 Garcia Dec 1986 A
4627842 Katz Dec 1986 A
4627908 Miller Dec 1986 A
4633878 Bombardien Jan 1987 A
4637403 Garcia et al. Jan 1987 A
4650547 Gough Mar 1987 A
4654197 Lilja et al. Mar 1987 A
4655880 Liu Apr 1987 A
4655885 Hill et al. Apr 1987 A
4671288 Gough Jun 1987 A
4679562 Luksha Jul 1987 A
4680268 Clark, Jr. Jul 1987 A
4682602 Prohaska Jul 1987 A
4684537 Graetzel et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685466 Rau Aug 1987 A
4698057 Joishy Oct 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4711247 Fishman Dec 1987 A
4717673 Wrighton et al. Jan 1988 A
4721601 Wrighton et al. Jan 1988 A
4721677 Clark, Jr. Jan 1988 A
4726378 Kaplan Feb 1988 A
4726716 McGuire Feb 1988 A
4729672 Takagi Mar 1988 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4755173 Konopka Jul 1988 A
4757022 Shults et al. Jul 1988 A
4758323 Davis et al. Jul 1988 A
4759371 Franetzki Jul 1988 A
4759828 Young et al. Jul 1988 A
4764416 Ueyama et al. Aug 1988 A
4776944 Janata et al. Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4781683 Wozniak et al. Nov 1988 A
4781798 Gough Nov 1988 A
4784736 Lonsdale et al. Nov 1988 A
4795707 Niiyama et al. Jan 1989 A
4796634 Huntsman et al. Jan 1989 A
4805624 Yao et al. Feb 1989 A
4813424 Wilkins Mar 1989 A
4815469 Cohen et al. Mar 1989 A
4817603 Turner Apr 1989 A
4820399 Senda et al. Apr 1989 A
4822337 Newhouse et al. Apr 1989 A
4830959 McNeil et al. May 1989 A
4832797 Vadgama et al. May 1989 A
RE32947 Dormer et al. Jun 1989 E
4840893 Hill et al. Jun 1989 A
4848351 Finch Jul 1989 A
4854322 Ash et al. Aug 1989 A
4871351 Feingold Oct 1989 A
4871440 Nagata et al. Oct 1989 A
4874500 Madou et al. Oct 1989 A
4890620 Gough Jan 1990 A
4894137 Takizawa et al. Jan 1990 A
4895147 Bodicky et al. Jan 1990 A
4897162 Lewandowski et al. Jan 1990 A
4897173 Nankai et al. Jan 1990 A
4909908 Ross et al. Mar 1990 A
4911794 Parce et al. Mar 1990 A
4917800 Lonsdale et al. Apr 1990 A
4919141 Zier et al. Apr 1990 A
4919767 Vadgama et al. Apr 1990 A
4921199 Villaveces May 1990 A
4923586 Katayama et al. May 1990 A
4925268 Iyer et al. May 1990 A
4927516 Yamaguchi et al. May 1990 A
4934369 Maxwell Jun 1990 A
4935105 Churchouse Jun 1990 A
4935345 Guibeau et al. Jun 1990 A
4938860 Wogoman Jul 1990 A
4944299 Silvian Jul 1990 A
4950378 Nagara Aug 1990 A
4953552 DeMarzo Sep 1990 A
4954129 Giuliani et al. Sep 1990 A
4969468 Byers et al. Nov 1990 A
4970145 Bennetto et al. Nov 1990 A
4974929 Cuny Dec 1990 A
4986271 Wilkins Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4994167 Shults et al. Feb 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5001054 Wagner Mar 1991 A
5013161 Zaragoza et al. May 1991 A
5019974 Beckers May 1991 A
5035860 Kleingeld et al. Jul 1991 A
5036860 Leigh et al. Aug 1991 A
5047044 Smith et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5058592 Whisler Oct 1991 A
5070535 Hochmair et al. Dec 1991 A
5082550 Rishpon et al. Jan 1992 A
5082786 Nakamoto Jan 1992 A
5089112 Skotheim et al. Feb 1992 A
5095904 Seligman et al. Mar 1992 A
5101814 Palti Apr 1992 A
5106365 Hernandez Apr 1992 A
5108564 Szuminsky et al. Apr 1992 A
5108889 Smith et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5120420 Nankai et al. Jun 1992 A
5122925 Inpyn Jun 1992 A
5126034 Carter et al. Jun 1992 A
5133856 Yamaguchi et al. Jul 1992 A
5135003 Souma Aug 1992 A
5140985 Schroeder et al. Aug 1992 A
5141868 Shanks et al. Aug 1992 A
5161532 Joseph Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5190041 Palti Mar 1993 A
5192416 Wang et al. Mar 1993 A
5198367 Aizawa et al. Mar 1993 A
5202261 Musho et al. Apr 1993 A
5205920 Oyama et al. Apr 1993 A
5208154 Weaver et al. May 1993 A
5209229 Gilli May 1993 A
5217595 Smith et al. Jun 1993 A
5229282 Yoshioka et al. Jul 1993 A
5234835 Nestor et al. Aug 1993 A
5238729 Debe Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5250439 Musho et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264103 Yoshioka et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5264106 McAleer et al. Nov 1993 A
5271815 Wong Dec 1993 A
5279294 Anderson Jan 1994 A
5284156 Schramm et al. Feb 1994 A
5285792 Sjoquist et al. Feb 1994 A
5286362 Hoenes et al. Feb 1994 A
5286364 Yacynych et al. Feb 1994 A
5288636 Pollmann et al. Feb 1994 A
5293546 Tadros et al. Mar 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320098 Davidson Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5337747 Neftei Aug 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5352348 Young et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5368028 Palti Nov 1994 A
5372133 Esch Dec 1994 A
5372427 Padovani et al. Dec 1994 A
5376251 Kaneko et al. Dec 1994 A
5378628 Gratzel et al. Jan 1995 A
5379238 Stark Jan 1995 A
5387327 Khan Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5395504 Saurer et al. Mar 1995 A
5400782 Beaubiah Mar 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425361 Fenzlein et al. Jun 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5437999 Dieboid et al. Aug 1995 A
5462645 Albery et al. Oct 1995 A
5469846 Khan Nov 1995 A
5472317 Field et al. Dec 1995 A
5489414 Schreiber et al. Feb 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5545191 Mann et al. Aug 1996 A
5549568 Sheilds Aug 1996 A
5551427 Altman Sep 1996 A
5560357 Faupei et al. Oct 1996 A
5562713 Silvian Oct 1996 A
5565085 Ikeda et al. Oct 1996 A
5567302 Song et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5575563 Chiu et al. Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5582698 Flaherty et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halli et al. Dec 1996 A
5589326 Deng et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5596150 Arndt et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5617851 Lipkovker Apr 1997 A
5628310 Rao et al. May 1997 A
5628890 Carter et al. May 1997 A
5632557 Simons May 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5651869 Yoshioka et al. Jul 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665071 Wyrick Sep 1997 A
5665222 Heller et al. Sep 1997 A
5670031 Hintsche et al. Sep 1997 A
5680858 Hansen et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5695623 Michel et al. Dec 1997 A
5708247 McAleer et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711297 Iliff et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5711862 Sakoda et al. Jan 1998 A
5733044 Rose et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5749656 Boehm et al. May 1998 A
5766131 Kondo et al. Jun 1998 A
5771001 Cobb Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5791344 Schulman et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814020 Gross Sep 1998 A
5820551 Hill et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5827184 Netherly et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5842983 Abel et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsais et al. Jan 1999 A
5865804 Bachynsky Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5899855 Brown May 1999 A
5924979 Sedlow et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5931868 Gross et al. Aug 1999 A
5948006 Mann Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5954643 Van Antwerp Sep 1999 A
5954685 Tierney Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5993411 Choi Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6017335 Bumham Jan 2000 A
6022368 Gavronsky et al. Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6026321 Miyata et al. Feb 2000 A
6027459 Shain et al. Feb 2000 A
6049727 Crothall Apr 2000 A
6056718 Funderburk et al. May 2000 A
6068399 Tseng May 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254536 DeVito Jul 2001 B1
6254586 Mann et al. Jul 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6283982 Levaughn et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6331244 Lewis et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368141 Van Antwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6409740 Kuhr et al. Jun 2002 B1
6413393 Antwerp et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6437679 Roques Aug 2002 B1
6440068 Brown et al. Aug 2002 B1
6445374 Albert et al. Sep 2002 B2
6478736 Mault Nov 2002 B1
6482176 Wich Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6522927 Bishay et al. Feb 2003 B1
6551494 Heller et al. Apr 2003 B1
6554795 Lam et al. Apr 2003 B2
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572566 Effenhauser Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6589229 Connelly et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6648821 Lebel et al. Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6659948 Lebel et al. Dec 2003 B2
6666849 Marshall et al. Dec 2003 B1
6668196 Villegas et al. Dec 2003 B1
6676290 Lu Jan 2004 B1
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6702857 Brauker et al. Mar 2004 B2
6733446 Lebel et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6770030 Schaupp et al. Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6830551 Uchigaki et al. Dec 2004 B1
6837858 Cunningham et al. Jan 2005 B2
6837885 Koblish et al. Jan 2005 B2
6837988 Leong et al. Jan 2005 B2
6849052 Ughigaki et al. Feb 2005 B2
6854882 Chen Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6895265 Silver May 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6959211 Rule et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6971999 Py et al. Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7097637 Triplett et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7171274 Starkweather et al. Jan 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7335294 Heller et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7340309 Miazga et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7416541 Yuzhakov et al. Aug 2008 B2
7424318 Brister et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7604592 Freeman et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbies et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7660615 VanAntwerp et al. Feb 2010 B2
7666149 Simons et al. Feb 2010 B2
7682338 Griffin Mar 2010 B2
7697967 Stafford Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7727147 Osorio et al. Jun 2010 B1
7731657 Stafford Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7763042 Iio et al. Jul 2010 B2
7822454 Alden et al. Oct 2010 B1
8615282 Brister et al. Dec 2013 B2
20010039387 Rutynowski Nov 2001 A1
20010056262 Cabin et al. Dec 2001 A1
20020013538 Teller Jan 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020019606 Lebel et al. Feb 2002 A1
20020022855 Bobroff Feb 2002 A1
20020023852 McIvor et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020055711 Lavi et al. May 2002 A1
20020057993 Maisey et al. May 2002 A1
20020066764 Peny et al. Jun 2002 A1
20020076966 Carron et al. Jun 2002 A1
20020082487 Kollias et al. Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020119711 VanAntwerp et al. Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020154050 Krupp et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020165462 Westbrook et al. Nov 2002 A1
20020169369 Ward et al. Nov 2002 A1
20020198444 Ughigaki et al. Dec 2002 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030069510 Semler Apr 2003 A1
20030078481 McIvor et al. Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030083686 Freeman et al. May 2003 A1
20030097092 Flaherty May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030100821 Heller et al. May 2003 A1
20030109775 O'Neil et al. Jun 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030135333 Aceti et al. Jul 2003 A1
20030144581 Conn et al. Jul 2003 A1
20030144608 Kojima et al. Jul 2003 A1
20030155656 Chiu et al. Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030199910 Boecker et al. Oct 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225361 Sabra Dec 2003 A1
20040002682 Kovelman et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040006413 Miller et al. Apr 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040096959 Steine et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say et al. Jun 2004 A1
20040116847 Wall Jun 2004 A1
20040116865 Bengtsson Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040116866 Gorman et al. Jul 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138544 Ward et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040138688 Giraud Jul 2004 A1
20040147996 Miazga et al. Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171910 Moore-Steele Sep 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040210122 Sieburg Oct 2004 A1
20040223985 Dunfiled et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050006122 Burnette Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050085872 Yanagihara et al. Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050090850 Thoes et al. Apr 2005 A1
20050106713 Phan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050154410 Conway et al. Jul 2005 A1
20050165404 Miller Jul 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050222518 Dib Oct 2005 A1
20050222599 Czernecki et al. Oct 2005 A1
20050236277 Imran et al. Oct 2005 A9
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060004303 Weidenhaupt et al. Jan 2006 A1
20060009727 O'Mahony et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060047220 Sakata et al. Mar 2006 A1
20060081469 Lee Apr 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060155210 Beckman et al. Jul 2006 A1
20060155317 List et al. Jul 2006 A1
20060161664 Motoyama Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060189939 Gonnelli et al. Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060200181 Fukuzawa et al. Sep 2006 A1
20060200970 Brister et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224171 Sakata et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060258929 Goode, Jr. et al. Nov 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060276724 Freeman et al. Dec 2006 A1
20060282042 Walters et al. Dec 2006 A1
20060287591 Ocvirk et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070038044 Dobbies et al. Feb 2007 A1
20070060814 Stafford Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070088377 Levaughn et al. Apr 2007 A1
20070010613 Sloan et al. May 2007 A1
20070110124 Shiraki et al. May 2007 A1
20070123819 Memoe et al. May 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070156094 Safabash et al. Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173741 Deshmukh et al. Jul 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070213611 Simpson et al. Sep 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244368 Bayloff et al. Oct 2007 A1
20070244398 Lo et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20080004512 Funderburk et al. Jan 2008 A1
20080004573 Kaufmann et al. Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080009805 Ethelfeld Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080027474 Curry et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080033318 Mace Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064941 Funderburk et al. Mar 2008 A1
20080065646 Zhang et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080097246 Stafford Apr 2008 A1
20080108942 Brister et al. May 2008 A1
20080112848 Huffstodt et al. May 2008 A1
20080114280 Stafford May 2008 A1
20080119707 Stafford May 2008 A1
20080133702 Sharma et al. Jun 2008 A1
20080154205 Wojcik Jun 2008 A1
20080167578 Bryer et al. Jul 2008 A1
20080183061 Goode, Jr. et al. Jul 2008 A1
20080183399 Goode, Jr. et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode, Jr. et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode, Jr. et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195049 Thalmann et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode, Jr. et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080200897 Hoss et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214481 Challoner et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080269673 Butoi et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080283396 Wang et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080294096 Uber et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300476 Stafford Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306434 Dobbies et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20090005659 Kollias et al. Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090036915 Karbowniczek et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090054866 Teisen-Simony et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090069750 Schraga Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076359 Peyser Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090088614 Taub Apr 2009 A1
20090088787 Koike et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090102678 Mazza et al. Apr 2009 A1
20090105569 Stafford Apr 2009 A1
20090124877 Goode et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090124979 Raymond et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090131860 Nielsen May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090171182 Stafford Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090212766 Olson et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090259118 Feldman et al. Oct 2009 A1
20090259201 Hwang et al. Oct 2009 A1
20090259202 Leeflang et al. Oct 2009 A1
20090270765 Ghesquire et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090292184 Funderburk et al. Nov 2009 A1
20090292185 Funderburk et al. Nov 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299167 Seymour Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100004597 Gryn et al. Jan 2010 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049014 Funderburk et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100069728 Funderburk et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbies et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100100113 Iio et al. Apr 2010 A1
20100106088 Yodfat et al. Apr 2010 A1
20100113897 Brenneman et al. May 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100168677 Gabriel et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174164 Brister et al. Jul 2010 A1
20100174165 Brister et al. Jul 2010 A1
20100174166 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179402 Goode et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode et al. Jul 2010 A1
20100185069 Brister et al. Jul 2010 A1
20100185070 Brister et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode et al. Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198033 Krulevitch et al. Aug 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100198036 Kamath et al. Aug 2010 A1
20100204653 Gryn et al. Aug 2010 A1
20100212583 Brister et al. Aug 2010 A1
20100214104 Goode et al. Aug 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100217557 Kamath et al. Aug 2010 A1
20100223013 Kamath et al. Sep 2010 A1
20100223022 Kamath et al. Sep 2010 A1
20100223023 Kamath et al. Sep 2010 A1
20100228109 Kamath et al. Sep 2010 A1
20100228497 Kamath et al. Sep 2010 A1
20100240975 Goode et al. Sep 2010 A1
20100240976 Goode et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100262201 He et al. Oct 2010 A1
20100274107 Boock et al. Oct 2010 A1
20100280341 Boock et al. Nov 2010 A1
20100286496 Simpson et al. Nov 2010 A1
20100298684 Leach et al. Nov 2010 A1
20100324392 Yee et al. Dec 2010 A1
20100324403 Brister et al. Dec 2010 A1
20100331642 Bruce et al. Dec 2010 A1
20100331644 Neale et al. Dec 2010 A1
20100331647 Shah et al. Dec 2010 A1
20100331648 Kamath et al. Dec 2010 A1
20100331653 Stafford Dec 2010 A1
20100331656 Mensinger et al. Dec 2010 A1
20100331657 Mensinger et al. Dec 2010 A1
20110004085 Mensinger et al. Jan 2011 A1
20110009727 Mensinger et al. Jan 2011 A1
20110021889 Hoss et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110040256 Bobroff et al. Feb 2011 A1
20110040263 Hordum et al. Feb 2011 A1
20110046456 Hordum et al. Feb 2011 A1
20110046467 Simpson et al. Feb 2011 A1
20110054275 Stafford Mar 2011 A1
20110060196 Stafford Mar 2011 A1
20110073475 Kastanos et al. Mar 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110118579 Goode et al. May 2011 A1
20110118580 Goode et al. May 2011 A1
20110124992 Brauker et al. May 2011 A1
20110124997 Goode et al. May 2011 A1
20110125410 Goode et al. May 2011 A1
20110130970 Goode et al. Jun 2011 A1
20110130971 Goode et al. Jun 2011 A1
20110130998 Goode et al. Jun 2011 A1
20110137257 Gyrn et al. Jun 2011 A1
20110144465 Shults et al. Jun 2011 A1
20110178378 Brister et al. Jul 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110184258 Stafford Jul 2011 A1
20110190614 Brister et al. Aug 2011 A1
20110201910 Rasdal et al. Aug 2011 A1
20110201911 Johnson et al. Aug 2011 A1
20110218414 Kamath et al. Sep 2011 A1
20110231107 Brauker et al. Sep 2011 A1
20110231140 Goode et al. Sep 2011 A1
20110231141 Goode et al. Sep 2011 A1
20110231142 Goode et al. Sep 2011 A1
20110253533 Shults et al. Oct 2011 A1
20110257521 Fraden Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110270062 Goode et al. Nov 2011 A1
20110270158 Brauker et al. Nov 2011 A1
20110275919 Petisce et al. Nov 2011 A1
20110290645 Brister et al. Dec 2011 A1
20110313543 Brauker et al. Dec 2011 A1
20110319739 Kamath et al. Dec 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120035445 Boock et al. Feb 2012 A1
20120040101 Tapsak et al. Feb 2012 A1
20120046534 Simpson et al. Feb 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120108934 Valdes et al. May 2012 A1
20120108983 Banet et al. May 2012 A1
20120123385 Edwards et al. May 2012 A1
20120143135 Cole et al. Jun 2012 A1
20120296327 Hutchins et al. Nov 2012 A1
20130047981 Bacon Feb 2013 A1
20130267813 Pryor et al. Oct 2013 A1
Foreign Referenced Citations (146)
Number Date Country
2903216 Aug 1979 DE
227029 Sep 1985 DE
3934299 Oct 1990 DE
0010375 Apr 1980 EP
0026995 Apr 1981 EP
0048090 Mar 1982 EP
0078636 May 1983 EP
0080304 Jun 1983 EP
0096288 Dec 1983 EP
0098592 Jan 1984 EP
0125139 Nov 1984 EP
0127958 Dec 1984 EP
0136362 Apr 1985 EP
0170375 Feb 1986 EP
0177743 Apr 1986 EP
0184909 Jun 1986 EP
0206218 Dec 1986 EP
0230472 Aug 1987 EP
0241309 Oct 1987 EP
0245073 Nov 1987 EP
0255291 Feb 1988 EP
0278647 Aug 1988 EP
0320109 Jun 1989 EP
0353328 Mar 1990 EP
0359831 Mar 1990 EP
0368209 May 1990 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
0400918 Dec 1990 EP
0453283 Oct 1991 EP
0470290 Feb 1992 EP
0286118 Jan 1995 EP
1048264 Nov 2000 EP
1177802 Feb 2002 EP
0987982 Jan 2007 EP
2060284 May 2009 EP
2201969 Jun 2010 EP
2327362 Jun 2011 EP
2335587 Jun 2011 EP
1394171 May 1975 GB
1599241 Sep 1981 GB
2073891 Oct 1981 GB
2154003 Aug 1985 GB
2204408 Nov 1988 GB
2254436 Oct 1992 GB
54-041191 Apr 1979 JP
55-010581 Jan 1980 JP
55-010583 Jan 1980 JP
55-010584 Jan 1980 JP
55-012406 Jan 1980 JP
56-163447 Dec 1981 JP
57-070448 Apr 1982 JP
60-173457 Sep 1985 JP
60-173458 Sep 1985 JP
60-173459 Sep 1985 JP
61-090050 May 1986 JP
62-085855 Apr 1987 JP
62-114747 May 1987 JP
63-058149 Mar 1988 JP
63-128252 May 1988 JP
63-139246 Jun 1988 JP
63-294799 Dec 1988 JP
63-317757 Dec 1988 JP
63-317758 Dec 1988 JP
1-11476 May 1989 JP
1-114747 May 1989 JP
1-124060 May 1989 JP
1-134244 May 1989 JP
1-156658 Jun 1989 JP
2-062958 Mar 1990 JP
2-120655 May 1990 JP
2-287145 Nov 1990 JP
2-310457 Dec 1990 JP
3-026956 Feb 1991 JP
3-028752 Feb 1991 JP
3-202764 Sep 1991 JP
5-072171 Mar 1993 JP
5-196595 Aug 1993 JP
6-190050 Jul 1994 JP
7-055757 Mar 1995 JP
7-072585 Mar 1995 JP
8-285814 Nov 1996 JP
8-285815 Nov 1996 JP
9-021778 Jan 1997 JP
9-101280 Apr 1997 JP
9-285459 Nov 1997 JP
10-170471 Jun 1998 JP
11-506629 Jun 1999 JP
2004-520103 Jul 2004 JP
2004-520898 Jul 2004 JP
1281988 Jan 1987 SU
WO-1985005119 Nov 1985 WO
WO-1989008713 Sep 1989 WO
WO-1990005300 May 1990 WO
WO-1990005910 May 1990 WO
WO-1991001680 Feb 1991 WO
WO-1991004704 Apr 1991 WO
WO-1991015993 Oct 1991 WO
WO-1992013271 Aug 1992 WO
WO-1994020602 Sep 1994 WO
WO-1994027140 Nov 1994 WO
WO-1996039977 May 1996 WO
WO-1996025089 Aug 1996 WO
WO-1996030431 Oct 1996 WO
WO-1996035370 Nov 1996 WO
WO-1997002847 Jan 1997 WO
WO-1997019344 May 1997 WO
WO-1997042882 Nov 1997 WO
WO-1997042883 Nov 1997 WO
WO-1997042886 Nov 1997 WO
WO-1997042888 Nov 1997 WO
WO-1997043962 Nov 1997 WO
WO-1998056293 Dec 1997 WO
WO-1998035053 Aug 1998 WO
WO-1999033504 Jul 1999 WO
WO-1999056613 Nov 1999 WO
WO-2000049940 Aug 2000 WO
WO-2000059370 Oct 2000 WO
WO-2000078992 Dec 2000 WO
WO-2001052935 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2002016905 Feb 2002 WO
WO-2002050534 Jun 2002 WO
WO-2002058537 Aug 2002 WO
WO-02058537 Aug 2002 WO
WO-2003028784 Apr 2003 WO
WO-2003076893 Sep 2003 WO
WO-2003082091 Oct 2003 WO
WO-2004028337 Apr 2004 WO
WO-2004060436 Jul 2004 WO
WO-2004061420 Jul 2004 WO
WO-2004098684 Nov 2004 WO
WO-2004112602 Dec 2004 WO
WO-2005084534 Sep 2005 WO
WO-2005089103 Sep 2005 WO
WO-2006024671 Mar 2006 WO
WO-2006042811 Apr 2006 WO
WO-2006108809 Oct 2006 WO
WO-2007089738 Aug 2007 WO
WO-2007140783 Dec 2007 WO
WO-2008065646 Jun 2008 WO
WO-2008133702 Nov 2008 WO
WO-2009062675 May 2009 WO
WO-2009068661 Jun 2009 WO
WO-2010112521 Oct 2010 WO
WO-2011002815 Jan 2011 WO
Non-Patent Literature Citations (166)
Entry
Abruna, H. D., et al., “Rectifying Interfaces Using Two-Layer Films of Electrochemically Polymerized Vinylpyridine and Vinylbipyridine Complexes of Ruthenium and Iron on Electrodes”, Journal of the American Chemical Society, vol. 103, No. 1, 1981, pp. 1-5.
Albery, W. J., et al., “Amperometric Enzyme Electrodes Part II: Conducting Salts as Electrode Materials for the Oxidation of Glucose Oxidase”, Journal of Electro Analytical Chemistry, vol. 194, 1985, pp. 223-235.
Albery, W. J., et al., “Amperometric Enzyme Electrodes”, Philosophical Transactions of The Royal Society of London, vol. 316, 1987, pp. 107-119.
Alcock, S. J., et al., “Continuous Analyte Monitoring to Aid Clinical Practice”, IEEE Engineering in Medicine and Biology Magazine, 1994, pp. 319-325.
Anderson, L. B., et al., “Thin-Layer Electrochemistry: Steady-State Methods of Studying Rate Processes”, Journal of Electro Analytical Chemistry, vol. 10, 1965, pp. 295-305.
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1071.
Bartlett, P. N., et al., “Covalent Binding of Electron Relays to Glucose Oxidase”, Journal of the Chemical Society, Chemical Communications, 1987, pp. 1603-1604.
Bartlett, P. N., et al., “Modification of Glucose Oxidase by Tetrathiafulvalene”, Journal of the Chemical Society, Chemical Communications, 1990, pp. 1135-1136.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Bindra, D. S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring”, Analytical Chemistry, vol. 63, No. 17, 1991, pp. 1692-1696.
Bobbioni-Harsch, E., et al., “Lifespan of Subcutaneous Glucose Sensors and Their Performances During Dynamic Glycaemia Changes in Rats”, Journal of Biomedical Engineering, vol. 15, 1993, pp. 457-463.
Brandt, J., et al., “Covalent Attachment of Proteins to Polysaccharide Carriers by Means of Benzoquinone”, Biochimica et Biophysica Acta, vol. 386, 1975, pp. 196-202.
Brownlee, M., et al., “A Glucose-Controlled Insulin-Delivery System: Semisynthetic Insulin Bound to Lectin”, Science, vol. 206, 1979, 1190-1191.
Cass, A. E., et al., “Ferricinum Ion as an Electron Acceptor for Oxido-Reductases”, Journal of ElectroAnalytical Chemistry, vol. 190, 1985, pp. 117-127.
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671.
Castner, J. F., et al., “Mass Transport and Reaction Kinetic Parameters Determined Electrochemically for Immobilized Glucose Oxidase”, Biochemistry, vol. 23 No. 10, 1984, 2203-2210.
Claremont, D. J., et al., “Biosensors for Continuous In Vivo Glucose Monitoring”, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 10, 1988.
Clark Jr., L. C., et al., “Differential Anodic Enzyme Polarography for the Measurement of Glucose”, Oxygen Transport to Tissue: Instmmentation, Methods, and Physiology, 1973, pp. 127-133.
Clark Jr., L. C., et al., “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery”, Annals New York Academy of Sciences, 1962, pp. 29-45.
Clark Jr., L. C., et al., “Long-term Stability of Electroenzymatic Glucose Sensors Implanted in Mice”, American Society of Artificial Internal Organs Transactions, vol. XXXIV, 1988, pp. 259-265.
Clarke, W. L., et al., “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose”, Diabetes Care, vol. 10, No. 5, 1987, pp. 622-628.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Csoregi, E., et al., “Design, Characterization, and One-Point in Vivo Calibration of a Subcutaneously Implanted Glucose Electrode”, Analytical Chemistry, vol. 66 No. 19, 1994, pp. 3131-3138.
Csoregi, E., et al., “On-Line Glucose Monitoring by Using Microdialysis Sampling and Amperometric Detection Based on ‘Wired’ Glucose Oxidase in Carbon Paste”, Mikrochimica Acta, vol. 121, 1995, pp. 31-40.
Davis, G., “Electrochemical Techniques for the Development of Amperometric Biosensors”, Biosensors, vol. 1, 1985, pp. 161-178.
Degani, Y., et al., “Direct Electrical Communication Between Chemically Modified Enzymes and Metal Electrodes. 1. Electron Transfer from Glucose Oxidase to Metal Electrodes via Electron Relays, Bound Covalently to the Enzyme”, The Journal of Physical Chemistry, vol. 91, No. 6, 1987, pp. 1285-1289.
Degani, Y., et al., “Direct Electrical Communication Between Chemically Modified Enzymes and Metal Electrodes. 2. Methods for Bonding Electron-Transfer Relays to Glucose Oxidase and D-Amino-Acid Oxidase”, Journal of the American Chemical Society, vol. 110, No. 8, 1988, pp. 2615-2620.
Degani, Y., et al., “Electrical Communication Between Redox Centers of Glucose Oxidase and Electrodes via Electrostatically and Covalently Bound Redox Polymers”, Journal of the American Chemical Society, vol. III, 1989, pp. 2357-2358.
Denisevich, P., et al., “Unidirectional Current Flow and Charge State Trapping at Redox Polymer Interfaces on Bilayer Electrodes: Principles, Experimental Demonstration, and Theory”, Journal of the American Chemical Society, vol. 103, 1981, pp. 4727-4737.
Dicks, J. M., et al., “Ferrocene Modified Polypyrrole with Immobilised Glucose Oxidase and its Application in Amperometric Glucose Microbiosensors”, Annales de Biologie Clinique, vol. 47, 1989, pp. 607-619.
Ellis, C. D., et al., “Selectivity and Directed Charge Transfer through an Electroactive MetallopolymerFilm”, Journal of the American Chemical Society, vol. 103, No. 25, 1981, pp. 7480-7483.
Engstrom, R. C., “Electrochemical Pretreatment of Glassy Carbon Electrodes”, Analytical Chemistry, vol. 54, No. 13, 1982, pp. 2310-2314.
Engstrom, R. C., et al., “Characterization of Electrochemically Pretreated Glassy Carbon Electrodes”, Analytical Chemistry, vol. 56, No. 2, 1984, pp. 136-141.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Feldman, B., et al., “Electron Transfer Kinetics at Redox Polymer/Solution Interfaces Using Microelectrodes and Twin Electrode Thin Layer Cells”, Journal of ElectroAnalytical Chemistry, vol. 194, 1985, pp. 63-81.
Fischer, H., et al., “Intramolecular Electron Transfer Medicated by 4,4′-Bypyridine and Related Bridging Groups”, Journal of the American Chemical Society, vol. 98, No. 18, 1976, pp. 5512-5517.
Foulds, N. C., et al., “Enzyme Entrapment in Electrically Conducting Polymers: Immobilisation of Glucose Oxidase in Polypyrrole and its Application in Amperometric Glucose Sensors”, Journal of the Chemical Society, Faraday Transactions 1, vol. 82, 1986, pp. 1259-1264.
Foulds, N. C., et al., “Immobilization of Glucose Oxidase in Ferrocene-Modified Pyrrole Polymers”, Analytical Chemistry, vol. 60, No. 22, 1988, pp. 2473-2478.
Freedman, D., et al. Statistics: Second Edition, 1991, p. 74.
Frew, J. E., et al., “Electron-Transfer Biosensors”, Philosophical Transactions of The Royal Society of London, vol. 316, 1987, pp. 95-106.
Gorton, L., et al., “Selective Detection in Flow Analysis Based on the Combination of Immobilized Enzymes and Chemically Modified Electrodes”, Analytica Chimica Acta, vol. 250, 1991, pp. 203-248.
Gregg, B. A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Bionsensor Applications”, Analytical Chemistry, vol. 62, No. 3, 1990, pp. 258-263.
Gregg, B. A., et al., “Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone”, Journal of Physical Chemistry, vol. 95, No. 15, 1991, 5970-5975.
Gunasingham, et al., “Electrochemically Modulated Optrode for Glucose”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 353-359.
Hale, P. D., et al., “A New Class of Amperometric Biosensor Incorporating a Polymeric Electron-Transfer Mediator”, Journal of the American Chemical Society, vol. III, No. 9, 1989, pp. 3482-3484.
Harrison, D. J., et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniatureized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Analytical Chemistry, vol. 60, No. 19, 1988, pp. 2002-2007.
Hawkridge, F. M., et al., “Indirect Coulometric Titration of Biological Electron Transport Components”, Analytical Chemistry, vol. 45, No. 7, 1973, pp. 1021-1027.
Heller, A., “Electrical Connection Enzyme Redox Centers to Electrodes”, Journal of Physical Chemistry, vol. 96, No. 9, 1990, pp. 3579-3587.
Heller, A., “Electrical Wiring of Redox Enzymes”, Accounts of Chemical Research vol. 23, No. 5, 1990, 128-134.
Heller, A., et al., “Amperometric Biosensors Based on Three-Dimensional Hydrogel-Forming Epoxy Networks”, Sensors and Actuators B, vol. 13-14, 1993, pp. 180-183.
Hoel, P., Elementary Statistics: Fourth Edition, 1976, pp. 113-114.
Ianniello, R. M., et al., “Differential Pulse Voltammetric Study of Direct Electron Transfer in Glucose Oxidase Chemically Modified Graphite Electrodes”, Analytical Chemistry, vol. 54, No. 7, 1982, pp. 1098-1101.
Ianniello, R. M., et al., “Immobilized Enzyme Chemically Modified Electrode as an Amperometric Sensor”, Analytical Chemistry, vol. 53, No. 13, 1981, pp. 2090-2095.
Ikeda, T., et al., “Artificial Pancreas—Investigation of the Stability of Glucose Sensors Using a Telemetry System” (English language translation of abstract), Jpn. J. Artif. Organs, vol. 19, No. 2, 1990, 889-892.
Ikeda, T., et al., “Glucose Oxidase-Immobilized Benzoquinone-Carbon Paste Electrode as a Glucose Sensor”, Agricultural and Biological Chemistry, vol. 49, No. 2, 1985, pp. 541-543.
Ikeda, T., et al., “Kinetics of Outer-Sphere Electron Transfers Between Metal Complexes in Solutions and Polymeric Films on Modified Electrodes”, Journal of the American Chemical Society, vol. 103, No. 25, 1981, pp. 7422-7425.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, J. M., et al., “Potential-Dependent Enzymatic Activity in an Enzyme Thin-Layer Cell”, Analytical Chemistry, vol. 54, No. 8, 1982, pp. 1377-1383.
Johnson, K. W., “Reproducible Electrodeposition of Biomolecules for the Fabrication of Miniature Electroenzymatic Biosensors”, Sensors and Actuators B, vol. 5, 1991, pp. 85-89.
Johnson, K. W., et al., “In vivo Evaluation of an Electroenzymatic Glucose Sensor Implanted in Subcutaneous Tissue”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 709-714.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, p. 198.
Jonsson, G., et al., “An Amperometric Glucose Sensor Made by Modification of a Graphite Electrode Surface With Immobilized Glucose Oxidase and Adsorbed Mediator”, Biosensors, vol. 1, 1985, pp. 355-368.
Josowicz, M., et al., “Electrochemical Pretreatment of Thin Film Platinum Electrodes”, Journal of the Electrochemical Society, vol. 135 No, 1, 1988, pp. 112-115.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, p. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Katakis, I., et al., “Electrostatic Control of the Electron Transfer Enabling Binding of Recombinant Glucose Oxidase and Redox Polyelectrolytes”, Journal of the American Chemical Society, vol. 116, No. 8, 1994, pp. 3617-3618.
Katakis, I., et al., “L-α-Glycerophosphate and L-Lactate Electrodes Based on the Electrochemical ‘Wiring’ of Oxidases”, Analytical Chemistry, vol. 6 4, No. 9, 1992, pp. 1008-1013.
Kenausis, G., et al., “‘Wiring’ of Glucose Oxidase and Lactate Oxidase Within a Hydrogel Made with Poly(vinyl pyridine) complexed with [Os(4,4′-dimethoxy-2,2′-bipyridine)2Cl]+/2+”, Journal of the Chemical Society, Faraday Transactions, vol. 92, No. 20, 1996, pp. 4131-4136.
Koudelka, M., et al., “In-Vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 31-36.
Kulys, J., et al., “Mediatorless Peroxidase Electrode and Preparation of Bienzyme Sensors”, Bioelectrochemistry and Bioenergetics, vol. 24, 1990, pp. 305-311.
Lager, W., et al., “Implantable Electrocatalytic Glucose Sensor”, Hormone Metabolic Research, vol. 26, 1994, pp. 526-530.
Lindner, E., et al., “Flexible (Kapton-Based) Microsensor Arrays of High Stability for Cardiovascular Applications”, Journal of the Chemical Society, Faraday Transactions, vol. 89, No. 2, 1993, pp. 361-367.
Maidan, R., et al., “Elimination of Electrooxidizable Interferant-Produced Currents in Amperometric Biosensors”, Analytical Chemistry, vol. 64, No. 23, 1992, pp. 2889-2896.
Mastrototaro, J. J., et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate”, Sensors and Actuators B, vol. 5, 1991, pp. 139-144.
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
McNeil, C. J., et al., “Thermostable Reduced Nicotinamide Adenine Dinucleotide Oxidase: Application to Amperometric Enzyme Assay”, Analytical Chemistry, vol. 61, No. 1, 1989, pp. 25-29.
Minimed Technologies, “Tape Tips and Other Infusion Site Information”, 1995.
Miyawaki, O., et al., “Electrochemical and Glucose Oxidase Coenzyme Activity of Flavin Adenine Dinucleotide Covalently Attached to Glassy Carbon at the Adenine Amino Group”, Biochimica et Biophysica Acta, vol. 838, 1985, pp. 60-68.
Moatti-Sirat, D., et al., “Evaluating In Vitro and In Vivo the Interference of Ascorbate and Acetaminophen on Glucose Detection by a Needle-Type Glucose Sensor”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 345-352.
Moatti-Sirat, D., et al., “Reduction of Acetaminophen Interference in Glucose Sensors by a Composite Nafion Membrane: Demonstration in Rats and Man”, Diabetologia, vol. 37, 1994, pp. 610-616.
Moatti-Sirat, D., et al., “Towards Continuous Glucose Monitoring: In Vivo Evaluation of a Miniaturized Glucose Sensor Implanted for Several Days in Rat Subcutaneous Tissue”, Diabetologia, vol. 35, 1992, pp. 224-330.
Nagy, G., et al., “A New Type of Enzyme Electrode: The Ascorbic Acid Eliminator Electrode”, Life Sciences, vol. 31, No. 23, 1982, pp. 2611-2616.
Nakamura, S., et al., “Effect of Periodate Oxidation on the Structure and Properties of Glucose Oxidase”, Biochimica et Biophysica Acta., vol. 445, 1976, pp. 294-308.
Narasimham, K., et al., “p-Benzoquinone Activation of Metal Oxide Electrodes for Attachment of Enzymes”, Enzyme and Microbial Technology, vol. 7, 1985, pp. 283-286.
Ohara, T. J., “Osmium Bipyridyl Redox Polymers Used in Enzyme Electrodes”, Platinum Metals Review, vol. 39, No. 2, 1995, pp. 54-62.
Ohara, T. J., et al., “‘Wired’ Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances”, Analytical Chemistry, vol. 66, No. 15, 1994, pp. 2451-2457.
Ohara, T. J., et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2Cl]+/2+ Complexed Poly(1-Vinylimidazole) Films”, Analytical Chemistiy, vol. 65, No. 23, 1993, pp. 3512-3517.
Olievier, C. N., et al., “In Vivo Measurement of Carbon Dioxide Tension with a Miniature Electrodes”, Pflugers Archiv: European Journal of Physiology, vol. 373, 1978, pp. 269-272.
Paddock, R. M., et al., “Electrocatalytic Reduction of Hydrogen Peroxide via Direct Electron Transfer From Pyrolytic Graphite Electrodes to Irreversibly Adsorbed Cyctochrome C Peroxidase”, Journal of ElectroAnalytical Chemistry, vol. 260, 1989, pp. 487-494.
Palleschi, G., et al., “A Study of Interferences in Glucose Measurements in Blood by Hydrogen Peroxide Based Glucose Probes”, Analytical Biochemistry, vol. 159, 1986, pp. 114-121.
Pankratov, I., et al., “Sol-Gel Derived Renewable-Surface Biosensors”, Journal of ElectroAnalytical Chemistry, vol. 393, 1995, pp. 35-41.
Pathak, C., et al., “Rapid Photopolymerization of Immunoprotective Gels in Contact with Cells and Tissue”, Journal of the American Chemical Society, vol. 114, No. 21, 1992, pp. 8311-8312.
Pickup, J., “Developing Glucose Sensors for In Vivo Use”, Tibtech, vol. 11, 1993, pp. 285-291.
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pickup, J., et al., “Potentially-Implantable, Amperometric Glucose Sensors with Mediated Electron Transfer: Improving the Operating Stability”, Biosensors, vol. 4, 1989, pp. 109-119.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Poitout, V., et al., “A Glucose Monitoring System for On Line Estimation in Man of Blood Glucose Concentration Using a Miniaturized Glucose Sensor Implanted in the Subcutaneous Tissue and a Wearable Control Unit”, Diabetolgia, vol. 36, 1993, pp. 658-663.
Poitout, V., et al., “Calibration in Dogs of a Subcutaneous Miniaturized Glucose Sensor Using a Glucose Meter for Blood Glucose Determination”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 587-592.
Poitout, V., et al., “In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor”, ASAIO Transactions, vol. 37, No. 3, 1991, pp. M298-M300.
Pollak, A., et al., “Enzyme Immobilization by Condensation Copolymerization into Cross-Linked Polyacrylamide Gels”, Journal of the American Chemical Society, vol. 102, No. 20, 1980, pp. 6324-6336.
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Reach, G., et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?”, Analytical Chemistry, vol. 64, No. 6, 1992, pp. 381-386.
Rebrin, K., et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs”, Diabetologia, vol. 32, 1989, pp. 573-576.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Samuels, G. J., et al., “An Electrode-Supported Oxidation Catalyst Based on Ruthenium (IV). pH ‘Encapsulation’ in a Polymer Film”, Journal of the American Chemical Society, vol. 103, No. 2, 1981, pp. 307-312.
Sasso, S. V., et al., “Electropolymerized 1,2-Diaminobenzene as a Means to Prevent Interferences and Fouling and to Stabilize Immobilized Enzyme in Electrochemical Biosensors”, Analytical Chemistry, vol. 62, No. 11, 1990, pp. 1111-1117.
Scheller, F., et al., “Enzyme Electrodes and Their Application”, Philosophical Transactions of The Royal Society of London B, vol. 316, 1987, pp. 85-94.
Schmehl, R. H., et al., “The Effect of Redox Site Concentration on the Rate of Mediated Oxidation of Solution Substrates by a Redox Copolymer Film”, Journal of ElectroAnalytical Chemistry, vol. 152, 1983, pp. 97-109.
Schmidt, F. J., et al., “Calibration of a Wearable Glucose Sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sittampalam, G., et al., “Surface-Modified Electrochemical Detector for Liquid Chromatography”, Analytical Chemistry, vol. 55, No. 9, 1983, pp. 1608-1610.
Soegijoko, S., et al., “External Artificial Pancreas: A New Control Unit Using Microprocessor”, Hormone and Metabolic Research Supplement Series, vol. 12, 1982, pp. 165-169.
Sprules, S. D., et al., “Evaluation of a New Disposable Screen-Printed Sensor Strip for the Measurement of NADH and Its Modification to Produce a Lactate Biosensor Employing Microliter Volumes”, Electroanalysis, vol. 8, No. 6, 1996, pp. 539-543.
Sternberg, F., et al., “Calibration Problems of Subcutaneous Glucosensors when Applied ‘In-Situ’ in Man”, Hormone and Metabolic Research, vol. 26, 1994, pp. 523-526.
Sternberg, R., et al., “Covalent Enzyme Coupling on Cellulose Acetate Membranes for Glucose Sensor Development”, Analytical Chemistry, vol. 60, No. 24, 1988, pp. 2781-2786.
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Suekane, M., “Immobilization of Glucose Isomerase”, Zettschrift fur Allgemeine Mikrobiologie, vol. 22, No. 8, 1982, pp. 565-576.
Tajima, S., et al., “Simultaneous Determination of Glucose and 1,5-Anydroglucitol”, Chemical Abstracts, vol. III, No. 25, 1989, p. 394.
Tarasevich, M. R., “Bioelectrocatalysis”, Comprehensive Treatise of Electrochemistry, vol. 10, 1985, pp. 231-295.
Tatsuma, T., et al., “Enzyme Monolayer—and Bilayer-Modified Tin Oxide Electrodes for the Determination of Hydrogen Peroxide and Glucose”, Analytical Chemistry, vol. 61, No. 21, 1989, pp. 2352-2355.
Taylor, C., et al., “‘Wiring’ of Glucose Oxidase Within a Hydrogel Made with Polyvinyl Imidazole Complexed with [(Os-4,4′-dimethoxy-2,2′-bipyridine)Cl]+/2+”, Journal of ElectroAnalytical Chemistry, vol. 396, 1995, pp. 511-515.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Trojanowicz, M., et al., “Enzyme Entrapped Polypyrrole Modified Electrode for Flow-Injection Determination of Glucose”, Biosensors & Bioelectronics, vol. 5, 1990, pp. 149-156.
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115.
Turner, R. F., et al., “A Biocompatible Enzyme Electrode for Continuous in vivo Glucose Monitoring in Whole Blood”, Sensors and Actuators B, vol. 1, 1990, pp. 561-564.
Tuzhi, P., et al., “Constant Potential Pretreatment of Carbon Fiber Electrodes for In Vivo Electrochemistry”, Analytical Letters, vol. 24, No. 6, 1991, pp. 935-945.
Umana, M., “Protein-Modified Electrochemically Active Biomaterial Surface”, U.S. Army Research Office, Analytical and Chemical Sciences Research Triangle Institute, 1988, pp. 1-9.
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Urban, G., et al., “Miniaturized Thin-Film Biosensors Using Covalently Immobilized Glucose Oxidase”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 555-562.
Velho, G., et al., “In Vitro and In Vivo Stability of Electrode Potentials in Needle-Type Glucose Sensors”, Diabetes, vol. 38, No. 2, 1989, pp. 164-171.
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Von Woedtke, T., et al., “In Situ Calibration of Implanted Electrochemical Glucose Sensors”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 943-952.
Vreeke, M. S., et al., “Hydrogen Peroxide Electrodes Based on Electrical Connection of Redox Centers of Various Peroxidases to Electrodes through a Three-Dimensional Electron-Relaying Polymer Network”, Diagnostic Biosensors Polymers, Chapter 15, 1993, pp. 180-193.
Vreeke, M., et al., “Hydrogen Peroxide and β-Nicotinamide Adenine Dinucleotide Sensing Amperometric Electrodes Based on Electrical Connection of Horseradish Peroxidase Redox Centers to Electrodes through a Three-Dimensional Electron Relaying Polymer Network”, Analytical Chemistry, vol. 64, No. 24, 1992, pp. 3084-3090.
Wang, D. L., et al., “Miniaturized Flexible Amperometric Lactate Probe”, Analytical Chemistry, vol. 65, No. 8, 1993, pp. 1069-1073.
Wang, J., et al., “Activation of Glassy Carbon Electrodes by Alternating Current Electrochemical Treatment”, Analytica Chimica Acta, vol. 167, 1985, pp. 325-334.
Wang, J., et al., “Amperometric Biosensing of Organic Peroxides with Peroxidase-Modified Electrodes”, Analytica Chimica Acta, vol. 254, 1991, pp. 81-88.
Wang, J., et al., “Screen-Printable Sol-Gel Enzyme-Containing Carbon Inks”, Analytical Chemistry, vol. 68, No. 15, 1996, pp. 2705-2708.
Wang, J., et al., “Sol-Gel-Derived Metal-Dispersed Carbon Composite Amperometric Biosensors”, Electroanalysis, vol. 9, No. 1, 1997, pp. 52-55.
Williams, D. L., et al., “Electrochemical-Enzymatic Analysis of Blood Glucose and Lactate”, Analytical Chemistry, vol. 42, No. 1, 1970, pp. 118-121.
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistiy, vol. 38, No. 9, 1992, pp. 1613-1617.
Yabuki, S., et al., “Electro-Conductive Enzyme Membrane”, Journal of the Chemical Society, Chemical Communications, 1989, pp. 945-946.
Yang, L., et al., “Determination of Oxidase Enzyme Substrates Using Cross-Flow Thin-Layer Amperometiy”, Electroanalysis, vol. 8, No. 8-9, 1996, pp. 716-721.
Yao, S. J., et al., “The Interference of Ascorbate and Urea in Low-Potential Electrochemical Glucose Sensing”, Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, Part 2, 1990, pp. 487-489.
Yao, T., “A Chemically-Modified Enzyme Membrane Electrode as an Amperometric Glucose Sensor”, Analytica Chimica Acta, vol. 148, 1983, pp. 27-33.
Ye, L., et al., “High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode”, Analytical Chemistry, vol. 65, No. 3, 1993, pp. 238-241.
Yildiz, A., et al., “Evaluation of an Improved Thin-Layer Electrode”, Analytical Chemistry, vol. 40, No. 7, 1968, pp. 1018-1024.
Zamzow, K., et al., “New Wearable Continuous Blood Glucose Monitor (BGM) and Artificial Pancreas (AP)”, Diabetes, vol. 39, 1990, p. 5A-20.
Zhang, Y., et al., “Application of Cell Culture Toxicity Tests to the Development of Implantable Biosensors”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 653-661.
Zhang, Y., et al., “Elimination of the Acetaminophen Interference in an Implantable Glucose Sensor”, Analytical Chemistry, vol. 66, No. 7, 1994, pp. 1183-1188.
Zhu, J., et al., “Fabrication and Characterization of Glucose Sensors Based on a Microarray H202 electrode”, Biosensors & Bioelectronics, vol. 9, 1994, pp. 295-300.
Related Publications (1)
Number Date Country
20210128031 A1 May 2021 US
Provisional Applications (1)
Number Date Country
60424099 Nov 2002 US
Continuations (6)
Number Date Country
Parent 16928700 Jul 2020 US
Child 17145655 US
Parent 15963828 Apr 2018 US
Child 16928700 US
Parent 14244831 Apr 2014 US
Child 15963828 US
Parent 12538067 Aug 2009 US
Child 14244831 US
Parent 11899917 Sep 2007 US
Child 12538067 US
Parent 10703214 Nov 2003 US
Child 11899917 US