Sensor inserter having introducer

Information

  • Patent Grant
  • 11160475
  • Patent Number
    11,160,475
  • Date Filed
    Thursday, January 31, 2019
    5 years ago
  • Date Issued
    Tuesday, November 2, 2021
    2 years ago
Abstract
Methods, device and system for providing a sensor insertion assembly including an inserter housing, an introducer including a body portion having a proximal end and a distal end and a shaft portion comprising a channel and a distal end, the shaft portion extending downwardly from an edge of the body portion, the shaft portion including a holding member disposed along a length of the channel, the holding member configured to substantially releasably retain a sensor, an on-body electronics unit, wherein the introducer is configured for insertion of the sensor through an aperture in the on-body electronics unit prior to insertion through skin and a drive mechanism included in the inserter housing and operatively coupled to the introducer, wherein the drive mechanism drives the introducer and retained sensor through the skin are provided.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to a sensor delivery unit. More particularly, the present disclosure relates to a sensor inserter having a safety member to impede actuation of the inserter. The present disclosure also relates to an introducer having a holding member configured to releasably retain a sensor, such as an analyte sensor. The introducer can further comprise a compressible member configured to tent the skin and puncture the skin to a reduced depth during insertion of a sensor. The present disclosure also relates to a method of arming the sensor delivery unit.


BACKGROUND

Diabetes Mellitus is an incurable chronic disease in which the body does not produce or properly utilize insulin. Insulin is a hormone produced by the pancreas that regulates blood sugar (glucose). In particular, when blood sugar levels rise, e.g., after a meal, insulin lowers the blood sugar levels by facilitating blood glucose to move from the blood into the body cells. Thus, when the pancreas does not produce sufficient insulin (a condition known as Type I Diabetes) or does not properly utilize insulin (a condition known as Type II Diabetes), the blood glucose remains in the blood resulting in hyperglycemia or abnormally high blood sugar levels.


The vast and uncontrolled fluctuations in blood glucose levels in people suffering from diabetes cause long-term, serious complications. Some of these complications include blindness, kidney failure, and nerve damage. Additionally, it is known that diabetes is a factor in accelerating cardiovascular diseases such as atherosclerosis (hardening of the arteries), leading to stroke, coronary heart disease, and other diseases. Accordingly, one important and universal strategy in managing diabetes is to control blood glucose levels.


The first step in managing blood glucose levels is testing and monitoring blood glucose levels by using conventional techniques, such as drawing blood samples, applying the blood to a test strip, and determining the blood glucose level using colorimetric, electrochemical, or photometric test meters. Another more recent technique for monitoring glucose levels is by using commercially available continuous glucose monitoring systems.


In accordance with the monitoring of glucose levels, a sensor is typically subcutaneously or transcutaneously positioned under the skin of a user. In this regard, a sensor inserter assembly, which can be preloaded with a sensor, is employed to insert the sensor through the skin of a user. A new sensor is generally implanted under the user's skin every three to seven days. Thus, easy to use sensor inserter assemblies causing reduced trauma to the skin during use are desired.


SUMMARY

In certain embodiments, a sensor insertion assembly is provided that includes an inserter housing, an introducer including a body portion having a proximal end and a distal end and a shaft portion comprising a channel and a distal end, the shaft portion extending downwardly from an edge of the body portion, the shaft portion including a holding member disposed along a length of the channel, the holding member configured to substantially releasably retain a sensor, an on-body electronics unit, wherein the introducer is configured for insertion of the sensor through an aperture in the on-body electronics unit prior to insertion through skin and a drive mechanism included in the inserter housing and operatively coupled to the introducer that drives the introducer and retained sensor through the skin.


In certain embodiments, the introducer holding member may include one or more rolling members disposed along a length of the shaft portion, the rolling members configured to contact and releasably retain the sensor. The introducer rolling members may be configured to rotate. The sensor retained by the shaft portion of the introducer may be displaced from the shaft portion upon rotation of the rolling members. The introducer rolling members may be disposed within the channel. The introducer rolling members may be disposed within a sidewall of the channel. The introducer shaft portion may include an aperture formed in the channel, and the sensor may include a flange extending from an edge of the sensor, the flange disposed in the aperture formed in the channel. The aperture may include a section configured to be wider than the width of a sensor flange such that the sensor may be displaced from the shaft. The introducer holding member may comprise a sponge material disposed along the channel of the shaft portion, the sponge material configured to provide a soft interference fit with a sensor disposed in the shaft portion.


In certain embodiments, the introducer shaft portion is substantially hollow. The introducer shaft portion may be configured to retain at least a portion of the sensor substantially subcutaneously when the shaft portion is removed from a skin layer. The introducer distal end may include a tapered end configured to pierce the skin layer and at least a portion of the sensor may be substantially retained within the shaft portion while the tapered end is piercing through the skin layer. The sensor may be substantially contemporaneously transcutaneously introduced through the skin layer when the tapered end of the shaft portion is transcutaneously introduced to the skin layer. In certain embodiments, the sensor includes an analyte sensor. The analyte sensor may be a glucose sensor. The introducer may be configured to position the analyte sensor in fluid contact with an analyte of a user.


In certain embodiments, the introducer may include a compressible member having a distal end, the compressible member attached to a lateral side of the introducer shaft portion, wherein the distal end of the compressible member is distal to the distal end of the introducer shaft portion. The compressible member may be configured to retract to allow the sharp to penetrate skin of a user.





BRIEF DESCRIPTION OF THE DRAWINGS

A detailed description of various aspects, features, and embodiments of the subject matter described herein is provided with reference to the accompanying drawings, which are briefly described below. The drawings are illustrative and are not necessarily drawn to scale, with some components and features being exaggerated for clarity. The drawings illustrate various aspects and features of the present subject matter and may illustrate one or more embodiment(s) or example(s) of the present subject matter in whole or in part.



FIG. 1 is a perspective view showing a sensor inserter and adhesive mount constructed in accordance with the disclosed subject matter;



FIG. 2 is a perspective view of the adhesive mount and sensor attached to the user's skin in accordance with the disclosed subject matter;



FIG. 3 is a perspective view of the transmitter attached to the adhesive mount in accordance with the disclosed subject matter;



FIG. 4 is an exploded perspective view of the embodiment of FIG. 1;



FIG. 5 is a cross-sectional view of the inserter of FIG. 1;



FIG. 6 is a schematic depiction of an introducer and sensor in accordance with the disclosed subject matter;



FIG. 7 is a is a schematic depiction of a shaft portion of the introducer in accordance with the disclosed subject matter;



FIG. 8 is a perspective view of a shaft portions having one or more holding member in accordance with the disclosed subject matter;



FIG. 9 is a sectional view of the shaft portion of FIG. 8 in accordance with the disclosed subject matter;



FIG. 10 is a sectional view of a shaft portion having one or more holding member in accordance with the disclosed subject matter;



FIG. 11 is a perspective view of the shaft portion of FIG. 10 in accordance with the disclosed subject matter;



FIG. 12 is a perspective view of a shaft portion having one or more holding members in accordance with the disclosed subject matter;



FIG. 13 is a sectional view of a shaft portion having one or more holding members in accordance with the disclosed subject matter in a first configuration;



FIG. 14 is a sectional view of a shaft portion having one or more holding member in accordance with the disclosed subject matter in a second configuration;



FIG. 15 is a sectional view of a shaft portion having one or more holding member in accordance with the disclosed subject matter in a second configuration;



FIG. 16 is a perspective view of the shaft portion of FIG. 15 in accordance with the disclosed subject matter;



FIG. 17 is a perspective view of the shaft portion of FIG. 15 in accordance with the disclosed subject matter;



FIGS. 18-20 are views of a shaft portion in accordance with the disclosed subject matter;



FIG. 21 is a sectional view of a shaft portion having one or more holding member in accordance with the disclosed subject matter in a second configuration;



FIG. 22 is a sectional view of a shaft portion having one or more holding member in accordance with the disclosed subject matter in a second configuration;



FIG. 23 is a side view of a shaft portion comprising a compressible member in accordance with the disclosed subject matter in a second configuration;



FIG. 24 is an enlarged side view of a shaft portion of FIG. 23 in accordance with the disclosed subject matter in a second configuration;



FIG. 25 is a partial side view of a shaft portion of FIG. 23 in accordance with the disclosed subject matter in a second configuration;



FIG. 26 is a sectional view of a shaft portion of FIG. 23 in accordance with the disclosed subject matter in a second configuration;



FIG. 27 is a side view of a shaft portion of FIG. 23 in accordance with the disclosed subject matter in a second configuration;



FIG. 28-30 are schematic depictions of the introducer of FIGS. 23-27 depressing the skin and retracting to allow introducer sharp to pierce the skin in accordance with the disclosed subject matter;



FIGS. 31-45 are perspective views of some embodiments of the safety member of the sensor inserter assembly in accordance with the disclosed subject matter;



FIG. 46 is a cross-sectional view of an inserter having a pin disposed against the shuttle of the inserter in accordance with the disclosed subject matter; and



FIGS. 47-49 illustrate a method of arming a sensor.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

A detailed description of the disclosure is provided herein. It should be understood, in connection with the following description, that the subject matter is not limited to particular embodiments described, as the particular embodiments of the subject matter may of course vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the disclosed subject matter will be limited only by the appended claims.


Where a range of values is provided, it is understood that each intervening value between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosed subject matter. Every range stated is also intended to specifically disclose each and every “sub-rang” of the stated range. That is, each and every range smaller than the outside range specified by the outside upper and outside lower limits given for a range, whose upper and lower limits are within the range from said outside lower limit to said outside upper limit (unless the context clearly dictates otherwise), is also to be understood as encompassed within the disclosed subject matter, subject to any specifically excluded range or limit within the stated range. Where a range is stated by specifying one or both of an upper and lower limit, ranges excluding either or both of those stated limits, or including one or both of them, are also encompassed within the disclosed subject matter, regardless of whether or not words such as “from”, “to”, “through”, or “including” are or are not used in describing the range.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosed subject matter belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosed subject matter, this disclosure may specifically mention certain exemplary methods and materials.


All publications mentioned in this disclosure are, unless otherwise specified, incorporated herein by reference in its entirety herein for all purposes, including without limitation to disclose and describe the methods and/or materials in connection with which the publications are cited.


The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosed subject matter is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates, which may need to be independently confirmed.


As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.


Nothing contained in the Abstract or the Summary should be understood as limiting the scope of the disclosure. The Abstract and the Summary are provided for bibliographic and convenience purposes and due to their formats and purposes should not be considered comprehensive.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosed subject matter. Any recited method can be carried out in the order of events recited, or in any other order which is logically possible. Reference to a singular item, includes the possibility that there are plural of the same item present. When two or more items (for example, elements or processes) are referenced by an alternative “or”, this indicates that either could be present separately or any combination of them could be present together except where the presence of one necessarily excludes the other or others.


Various exemplary embodiments of the analyte monitoring system and methods of the present disclosure are described in further detail below. Although the present disclosure is described primarily with respect to a glucose monitoring system, each aspect of the present disclosure is not intended to be limited to the particular embodiment so described. Accordingly, it is to be understood that such description should not be construed to limit the scope of the present disclosure, and it is to be understood that the analyte monitoring system can be configured to monitor a variety of analytes, as described below. Further, section headers, where provided, are merely for the convenience of the reader and are not to be taken as limiting the scope of the present disclosure in any way, as it will be understood that certain elements and features of the present disclosure have more than one function and that aspects of the present disclosure and particular elements are described throughout the specification.


A. Overview

The present disclosure is generally directed to an analyte monitoring system including an apparatus, such as an inserter, configured to insert various devices into the body of a subject, such as for example, an analyte sensor, an infusion set, or a lancing device.


Certain classes of analyte monitoring systems are provided in small, lightweight, battery-powered and electronically-controlled systems. Such systems may be configured to detect signals indicative of in vivo analyte levels using an electrochemical sensor, and collect such signals, with or without processing the signal. In some embodiments, the portion of the system that performs this initial processing may be configured to provide the raw or initially processed data to another unit for further collection and/or processing. Such provision of data may be effected, for example, via a wired connection, such as an electrical, or via a wireless connection, such as an IR or RF connection.


Certain analyte monitoring systems for in vivo measurement employ a sensor that measures analyte levels in interstitial fluids under the surface of the subject's skin. These may be inserted partially through the skin or positioned entirely under the skin. A sensor in such a system may operate as an electrochemical cell. Such a sensor may use any of a variety of electrode configurations, such as a three-electrode configuration (e.g., with “working”, “reference” and “counter” electrodes), driven by a controlled potential (potentiostat) analog circuit, a two-electrode system configuration (e.g., with only working and counter electrodes), which may be self-biasing and/or self-powered, and/or other configurations. In some embodiments, the sensor may be positioned within a blood vessel.


In certain systems, the analyte sensor is in communication with a sensor control unit. As used in this disclosure, an on-body unit sometimes refers to such a combination of an analyte sensor with such a sensor control unit. The analyte monitoring system may include an on-body unit including a sensor and a monitor unit. Exemplary embodiments of combination analyte sensor and sensor control unit configurations are further disclosed in, among others, U.S. patent application Ser. Nos. 12/873,301 and 11/530,473, now U.S. Pat. No. 9,398,882, the disclosures of each of which are incorporated herein by reference for all purposes. In some embodiments, the on-body unit includes electronics configured to process the signal generated by the sensor and may further include a transmitter, transceiver, or other communications electronics to provide the processed data to the monitor unit via a communication link between the on-body unit and the monitor unit.


Analyte monitoring systems, in some embodiments, include an adhesive mounting unit for adhering the on-body unit to a patient's skin. Exemplary mounting units can be found in, among others, U.S. patent application Ser. Nos. 12/873,302, 13/171,401, now U.S. Pat. No. 9,572,534, and Ser. No. 11/027,230, now U.S. Pat. No. 8,571,624, the disclosures of each of which are incorporated herein by reference for all purposes. In certain embodiments, mounting units include a base module in addition to an adhesive. The base module may be configured to physically couple with the on-body unit electronics for adhesive mounting of the on-body unit electronics to the patient. Examples of such coupling embodiments can be found in, among others, Ser. No. 12/895,015, now U.S. Pat. No. 9,351,669, and Ser. No. 11/365,334, now U.S. Pat. No. 8,029,441, the disclosures of each of which are incorporated herein by reference for all purposes. In some embodiments the mounting unit may also include a temperature sensing module to monitor the temperature of the skin of the patient, such as disclosed in Ser. No. 11/026,766, the disclosure of which is incorporated herein by reference.


In certain embodiments, the on-body unit is placed on the skin of the patient prior to insertion of the sensor through the skin. In such embodiments, the sensor may be inserted through an aperture in the on-body unit prior to penetration of skin. Exemplary disclosures of these embodiments can be found in, among others, U.S. Publication Nos. 2011/0213225, 2010/0198034, 2010/0324392, 2011/0319729, 2011/0288574, 2012/0010642 and 2013/0150691, the disclosures of which are incorporated herein by reference for all purposes.


The monitor unit can include a display for displaying or communicating information to the user of the analyte monitoring system or the user's health care provider or another. The monitor unit is also referred to in this disclosure as a “receiver unit” or “receiver device”, or in some contexts, depending on the usage, as a “display unit,” “handheld unit,” or “meter”. In some embodiments, receiver may also include buttons and/or scroll wheel which allow a user to interact with a user interface located on receiver. The monitor unit, in some embodiments, may include, e.g., a mobile telephone device, a personal digital assistant, other consumer electronic device such as MP3 device, camera, radio, etc., or other communication-enabled data processing device.


The monitor unit may perform data processing and/or analysis, etc. on the received analyte data to generate information pertaining to the monitored analyte levels. The monitor unit may incorporate a display screen, which can be used, for example, to display measured analyte levels, and/or audio component such as a speaker to audibly provide information to a user, and/or a vibration device to provide tactile feedback to a user. It is also useful for a user of an analyte monitor to be able to see trend indications (including the magnitude and direction of any ongoing trend), and such data may be displayed as well, either numerically, or by a visual indicator, such as an arrow that may vary in visual attributes, such as size, shape, color, animation, or direction. The receiver device may further incorporate an in vitro analyte test strip port and related electronics in order to be able to make discrete (e.g., blood glucose) measurements.


In certain embodiments described herein, on-body unit and monitor unit communicate via communications link (in this embodiment, a wireless RF connection). Communication may occur, e.g., via RF communication, infrared communication, Bluetooth® communication, Zigbee® communication, 802.1x communication, or WiFi communication, etc. In some embodiments, the communication may include an RF frequency of 433 MHz, 13.56 MHz, or the like. In some embodiments, a secondary monitor unit may be provided. A data processing terminal may be provided for providing further processing or review of analyte data.


In certain embodiments, the analyte monitoring system may be a continuous analyte monitor (e.g., a continuous glucose monitoring system or CGM), and accordingly operate in a mode in which the communications via communications link has sufficient range to support a flow of data from the on-body unit to the monitor unit. In some embodiments, the data flow in a CGM system is automatically provided by the on-body unit to the monitor unit. For example, in some embodiments no user intervention is required for the on-body unit to send the data to the monitor unit. In some embodiments, the on-body unit provides the signal relating to analyte level to the receiving unit 300 on a periodic basis. For example, the signal may be provided, e.g., automatically sent, on a fixed schedule, e.g., once every 250 ms, once a second, once a minute, etc. In some embodiments, the signal is provided to the monitor unit upon the occurrence of an event, e.g., a hyperglycemic event or a hypoglycemic event, etc. In some embodiments, on-body unit may further include local memory in which it may record “logged data” or buffered data collected over a period of time and provide the some or all of the accumulated data to monitor unit from time-to-time. A separate data logging unit may be provided to acquire periodically received data from on-body unit. Data transmission may be one-way communication, e.g., the on-body unit provides data to the monitor unit without receiving signals from the monitor unit. In some embodiments, two-way communication is provided between the on-body unit and the monitor unit.


In some embodiments, the analyte monitoring system includes a sensor which obtains an analyte signal which is provided to the monitor unit “on demand.” According to such embodiments, the monitor unit requests a signal from the on-body unit, or the on-body unit may be activated to send signal upon activation to do so. Accordingly, one or both of the on-body unit and monitor unit may include a switch activatable by a user or activated upon some other action or event, the activation of which causes analyte-related signal to be transferred from the on-body unit to the monitor unit. For example, the monitor unit is placed in close proximity with a transmitter device and initiates a data transfer, either over a wired connection, or wirelessly by various means, including, for example various RF-carried encodings and protocols and IR links.


In some embodiments, the signal relating to analyte level is instantaneously generated by the analyte sensor upon receipt of the request, and provided to the monitor unit as requested, and/or the signal relating to analyte level is periodically obtained, e.g., once every 250 ms, once a second, once a minute, etc. Upon receipt of the “on demand” request at the on-body unit, an analyte signal is provided to the monitor unit. In some cases, the signal provided to the monitor unit is or at least includes the most recent analyte signal(s).


In further embodiments, additional data is provided to the monitor unit “on demand.” For example, analyte trend data may be provided. Such trend data may include two or more analyte data points to indicate that analyte levels are rising, falling, or stable. Analyte trend data may include data from longer periods of time, such as, e.g., several minutes, several hours, several days, or several weeks.


In some embodiments, analyte monitoring systems may further include medication infusion devices integrated therewith. Examples of such embodiments can be found in, among others, U.S. patent application Ser. No. 11/552,065, now U.S. Pat. No. 9,259,175, and Ser. No. 12/032,593, now U.S. Pat. No. 9,636,450, the disclosures of each of which are incorporated herein by reference for all purposes.


Further embodiments of analyte monitoring systems and on demand analyte monitoring system are further disclosed in U.S. Pat. No. 6,175,752 and U.S. Publication Nos. 2011/0213225, 2010/0198034, 2010/0324392, 2011/0319729, 2011/0288574, 2012/0010642 and 2013/0150691, the disclosures of each of which are incorporated herein by reference for all purposes. Further details regarding on demand systems are also disclosed in U.S. Pat. No. 7,620,438, U.S. Patent Publication Nos. 2009/0054749, 2007/0149873, 2008/0064937, 2008/0071157, 2008/0071158, 2009/0281406, 2008/0058625, 2009/0294277, 2008/0319295, 2008/0319296, 2009/0257911, 2008/0179187, 2007/0149875, 2009/0018425, and U.S. patent application Ser. No. 12/625,524, now U.S. Pat. No. 8,390,455, Ser. No. 12/625,525, now U.S. Pat. No. 8,358,210, Ser. No. 12/625,528, now U.S. Pat. No. 8,115,635, Ser. Nos. 12/628,201, 12/628,177, 12/628,198, 12/628,203, 12/628,210, 12/393,921, 61/149,639, 12/495,709, 61/155,889, 61/155,891, 61/155,893, 61/165,499, 61/227,967, 61/163,006, 12/495,730, 12/495,712, now U.S. Pat. No. 8,437,827, 61/238,461, 61/256,925, 61/238,494, 61/238,159, 61/238,483, 61/238,581, 61/247,508, 61/247,516, 61/247,514, 61/247,519, 61/249,535, 12/544,061, 12/625,185, now U.S. Pat. No. 8,354,013, Ser. No. 12/625,208, now U.S. Pat. No. 9,042,954, Ser. Nos. 12/624,767, 12/242,780, now U.S. Pat. No. 8,983,568, Ser. Nos. 12/183,602, 12/211,014, now U.S. Pat. No. 8,636,884, and Ser. No. 12/114,359, now U.S. Pat. No. 8,080,385, the disclosures of each of which are incorporated by reference in their entirety herein for all purposes.


B. Sensor

The sensor, in accordance with one embodiment of the present disclosure, can be configured to detect and monitor an analyte of interest present in a biological sample of a user. The biological sample can be a biological fluid containing the analyte of interest, such as (but not limited to) interstitial fluid, blood, and urine. The analyte of interest can be one or more analytes including acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. However, other suitable analytes can also be monitored, as would be known in the art. Furthermore, the analyte monitoring system can be configured to monitor the concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, theophylline, warfarin, and the like.


During use, the sensor is physically positioned in or on the body of a user whose analyte level is being monitored by an insertion device. The sensor can be configured to continuously sample the analyte level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the transmitter. In some embodiments, the sensor is implantable into a subject's body for a period of time (e.g., three days, five days, seven days, etc.) to contact and monitor an analyte present in the biological fluid. Thus, a new sensor must be used typically every three to seven days.


Generally, the sensor comprises a substrate, one or more electrodes, a sensing layer and a barrier layer, as described below and disclosed in U.S. Pat. Nos. 6,284,478 and 6,990,366, the disclosures of which are incorporated by reference in their entirety herein for all purposes. In one embodiment, the sensor includes a substrate. In some embodiments, the substrate is formed from a relatively flexible material. Suitable materials for a flexible substrate include, for example, non-conducting plastic or polymeric materials and other non-conducting, flexible, deformable materials. Suitable plastic or polymeric materials include thermoplastics such as polycarbonates, polyesters (e.g., Mylar® and polyethylene terephthalate (PET)), polyvinyl chloride (PVC), polyurethanes, polyethers, polyamides, polyimides, or copolymers of these thermoplastics, such as PETG (glycol-modified polyethylene terephthalate). In other embodiments, the sensor includes a relatively rigid substrate. Suitable examples of rigid materials that may be used to form the substrate include poorly conducting ceramics, such as aluminum oxide and silicon dioxide. Further, the substrate can be formed from an insulating material. Suitable insulating materials include polyurethane, Teflon (fluorinated polymers), polyethyleneterephthalate (PET, Dacron) or polyimide.


The substrate can include a distal end and a proximal end. In some embodiments, the distal and proximal ends have different widths. In some embodiments, the distal and proximal ends have the same width. In some embodiments, the proximal end of the sensor remains above the skin surface. In such embodiments, the distal end of the substrate may have a relatively narrow width. Moreover, sensors intended to be positioned at least partially into the tissue of a user's body at can be configured to have narrow distal end or distal point to facilitate the insertion of the sensor. For example, for insertable sensors designed for continuous or periodic monitoring of the analyte during normal activities of the patient, a distal end of the sensor which is to be implanted into the user has a width of 2 mm or less, preferably 1 mm or less, and more preferably 0.5 mm or less. In certain embodiments, as disclosed in U.S. patent application Ser. No. 12/870,818, the disclosure of which is incorporated herein by reference, the sensor substrate distal end is constructed of material and shape to facilitate insertion of the distal end of the sensor through the skin of a patient without the use of an introducer sharp.


A plurality of electrodes can be disposed near the distal end of sensor. The electrodes include working electrode, counter electrode and reference electrode. Other embodiments, however, can include a greater or fewer number of electrodes.


Each of the electrodes is formed from conductive material, for example, a non-corroding metal or carbon wire. Suitable conductive materials include, for example, vitreous carbon, graphite, silver, silver-chloride, platinum, palladium, or gold. The conductive material can be applied to the substrate by various techniques including laser ablation, printing, etching, silk-screening, and photolithography. In one embodiment, each of the electrodes is formed from gold by a laser ablation technique. The sensor can include conductive traces extending from electrodes to corresponding, respective contacts to define the sensor electronic circuitry. In one embodiment, an insulating substrate (e.g., dielectric material) and electrodes are arranged in a stacked orientation (i.e., insulating substrate disposed between electrodes). Alternatively, the electrodes can be arranged in a side by side orientation (not shown), as described in U.S. Pat. No. 6,175,752, the disclosure of which is incorporated by reference in its entirety herein for all purposes.


The sensor can include a sensing material having one or more components designed to facilitate the electrolysis of the analyte of interest. The components, for example, may be immobilized on the working electrode. Alternatively, the components of the sensing layer may be immobilized within or between one or more membranes or films disposed over the working electrode or the components may be immobilized in a polymeric or sol-gel matrix. Further aspects of the sensor are described in U.S. Pat. Nos. 5,262,035, 5,264,104, 5,264,105, 5,320,725, 5,593,852, and 5,665,222, each of which is incorporated by reference in its entirety herein for all purposes.


In some embodiments, the sensor is a self-powered analyte sensor, which is capable of spontaneously passing a currently directly proportional to analyte concentration in the absence of an external power source. Any exemplary sensor is described in U.S. patent application Ser. No. 12/393,921, filed Feb. 26, 2009, which is hereby incorporated by reference in its entirety herein for all purposes.


C. Inserter

In one aspect of the present disclosure, an inserter is provided. The object to be inserted into the subject can be, for example, an analyte sensor as described above. Alternatively, other objects such as but not limited to an infusion set, or lancing device can be inserted.


An exemplary embodiment of the sensor inserter assembly 100 is illustrated in FIGS. 1-5. Generally, the sensor inserter assembly 100 includes a sensor (not shown) preloaded within inserter 110. After preparing an insertion site on the skin of a user, the user removes an upper liner 116 and lower liner 118 from an adhesive mount 112 to expose the bottom surface and a portion of the top surface of an adhesive tape located on the bottom surface of the mount 112. Mount 112, with inserter 110 attached, is then applied to the user's skin at the insertion site. The inserter includes an actuator button 124 to be pressed causing inserter 110 to fire, thereby inserting sensor 114 (not shown in FIG. 1) into the user's skin S. In some embodiments of the present disclosure, the inserter 110 includes a safety member to impede actuation of the inserter as described below. Mount 112, in certain embodiments, may be configured to receive inserter 110 in only a single configuration, thus ensuring proper alignment of the inserter 110 on the mount. Exemplary embodiments of mount and inserter configured for proper alignment can be found in, among others, U.S. patent application Ser. No. 11/380,883, and Ser. No. 11/535,983, now U.S. Pat. No. 7,697,967, the disclosures of each of which are incorporated herein by reference for all purposes.


Once sensor 114 has been inserted into the skin S, the user removes inserter 110 from mount 112 by pressing release tabs 126 on opposite sides of inserter 110 and lifting inserter 110 away from mount 112. Further details of the inserter assembly 100 are provided in U.S. Pat. No. 7,381,184, which is incorporated by reference in its entirety herein for all purposes. In other embodiments, the inserter maybe integrated with the mount, wherein after insertion of the sensor through the skin of the patient, the sensor electronics unit is slid into place on the mount, while the inserter remains part of the mount. Exemplary embodiments are disclosed in, among others, U.S. patent application Ser. No. 11/216,932, now U.S. Pat. No. 7,731,657, Ser. Nos. 11/192,773, 11/240,257, now U.S. Pat. No. 7,883,464, Ser. No. 11/240,259, now U.S. Pat. No. 8,512,243, and Ser. No. 11/530,472, now U.S. Pat. No. 8,333,714, the disclosures of each of which are incorporated herein by reference for all purposes.


Once inserter 110 is removed from mount 112, sensor electronics unit 130 can be slid into place, as illustrated in FIG. 3. The circuitry of sensor electronics unit 130 makes electrical contact with the contacts on sensor 114 after sensor electronics unit 130 is fully seated on mount 112. As discussed hereinabove, mount 112, together with sensor 114, and sensor electronics unit 130 comprises an on-body unit. In some embodiments, sensor electronics unit 130 may include communications circuitry, such as a transmitter, transceiver, or the like, for communicating with additional equipment. For example, once initialization and synchronization procedures are completed, electrochemical measurements from sensor 114 can be sent, e.g., wirelessly from sensor electronics unit 130 to a monitor unit, such as portable receiver 132, as shown in FIG. 3. Sensor 114, mount 112 and sensor electronics unit 130 remain in place on the user for a predetermined period, currently envisioned to be several hours, to several days, e.g., about three days, about five days, about seven days, etc. After expiration of the lifetime of the sensor, these components are then removed so that sensor 114 and mount 112 can be properly discarded. The entire procedure above can then be repeated with a new inserter 110, sensor 114 and mount 112. In some embodiments, the sensor electronics unit 130 and receiver 132 are durable and are reused.


Referring to FIG. 4, the inserter assembly 100 according to one embodiment can be assembled as shown from the following components: e.g., housing 134, actuator button 124, drive spring 136, shuttle 138, introducer sharp 140, sensor 114, retraction spring 142, inserter base 144, upper liner 116, mounting unit 112, adhesive tape 120, and lower liner 118.


Sensor 114 has a main surface 146 slidably mounted between U-shaped rails 148 of introducer sharp 140. Introducer sharp 140 can be mounted to face 154 of shuttle 138, such as with adhesive, heat stake or ultrasonic weld. U.S. patent application Ser. No. 11/216,932, now U.S. Pat. No. 7,731,657, Ser. No. 11/617,698, now U.S. Pat. No. 8,545,403, and Ser. No. 11/535,983, now U.S. Pat. No. 7,697,967, disclose additional embodiments of sensor introducer sharps and insertion devices, the disclosures of which is incorporated herein by reference.


In some embodiments, shuttle 138 can be slidably and non-rotatably constrained on base 144 by arcuate guides 160. The shuttle can be generally formed by an outer ring 162 and an inner cup-shaped post 164 connected by two bridges 166. Bridges 166 can be configured to slide between the two slots 168 formed between guides 160 and allow shuttle 138 to travel along guides 160 without rotating. Retraction spring 142 can be captivated at its outer circumference by guides 160, at its bottom by the floor 170 (FIG. 5) of base 144, at its top by bridges 166, and at its inner circumference by the outer surface of shuttle post 164. Drive spring 136 is captivated at its bottom and outer circumference by the inside surface of shuttle post 164, at its top by the ceiling 172 (FIG. 5) inside actuator button 124, and at its inner circumference by stem 174 depending from ceiling 172.


When drive spring 136 is compressed between actuator button 124 and shuttle 138 it can urge shuttle 138 towards base 144. When retraction spring 142 is compressed between shuttle 138 and base 144, it urges shuttle 138 towards actuator button 124.


In some embodiments, the actuator button 124 is slidably received within housing 134 from below and resides in opening 176 at the top of housing 134 with limited longitudinal movement. Arms 178 on each side of actuator button 124 can be configured to travel in channels 180 along the inside walls of housing 134, as best seen in FIG. 5. Longitudinal movement of actuator button 124 can be limited in one direction by the base 182 of arms 178 contacting the edge of opening 176 at the top of housing 134, and in the other direction by the distal ends 184 of arms 178 contacting stops 186 in channels 180. Slots 188 are preferably provided in the top of housing 134 for ease of housing manufacture and so tools can be inserted to inwardly compress arms 178 beyond stops 186 to allow actuator button 124 to be removed from housing 134 if needed.


When sensor 114, introducer 140, shuttle 138, retraction spring 142, drive spring 136 and actuator button 124 are assembled between base 144 and housing 134 as shown in FIG. 5 and described above, housing 134 is snapped into place on base 144. Base 144 is held onto housing 134 by upper base barbs 190 that engage upper openings 192 in housing 134, and lower base barbs 194 that engage lower openings 192 in housing 134.


Generally, in accordance with one embodiment of the present disclosure, as illustrated in FIG. 6, an introducer 440 is provided which comprises a body portion 401 and a shaft portion 405. Introducer 440 is substantially identical to introducer 140, and useful with an inserter, such as inserter assembly 100 described hereinabove, with the differences illustrated in the accompanying figures, and described herein. The shaft portion 405 can include a substantially sharp distal edge segment 403 to contact and pierce the skin of a user for transcutaneous placement of the sensor through the user's skin S. As shown, the sensor 114 is retained within the shaft portion 405 of the introducer 440 and is configured to be held in position during insertion of the sensor through the user's skin by the substantially hollow cylindrical shape of the shaft portion 405, as illustrated in FIG. 6.


In some embodiments, referring to FIGS. 6 and 7, the tip of the analyte sensor 114 can be retained at the distal edge segment 403 of the introducer 440 during the subcutaneously or transcutaneous positioning of the sensor 114 through the user's skin. Thus, the sensor 114 is positioned within the substantially hollow shaft portion 405 of the introducer 440. The distal edge segment 403 of the introducer 440 is configured to first pierce through the user's skin, and guide sensor retained in the shaft portion 405 of the introducer 440 through the pierced skin of the user. After placement of the sensor 114 at the desired location under the skin, the introducer 440 can be retracted from the user, leaving the sensor 114 in place. In some embodiments, during the introducer removal process, a radial configuration 404 of the shaft portion 405 is configured to guide the removal of the introducer 440 from the pierced skin.


In some embodiments, the shaft portion includes one or more holding members configured to retain the sensor in the introducer. For example, but not limitation, the shaft portion 405 of the introducer 440 may have a ribbed configuration to provide additional friction fit during the insertion of the introducer and sensor through the skin of the user.


The holding member can include various configurations, as depicted in FIGS. 8 to 31. In one embodiment, as shown in FIGS. 8-9, the shaft portion 405 may include one or more rolling members 406. The rolling members 406 can include for example rollers, balls, or wheels. In some embodiments, the rolling members 406 are disposed within the channel or wall of the shaft portion 405. The rolling members 406 are configured to retain the sensor 114 in the introducer 140 by friction forces prior to insertion of the sensor 114 into the user's body. During the insertion process, the rolling members 406 can turn or rotate to displace the sensor 114 from the introducer shaft 405 during the insertion process. When the sensor 114 is placed at the desired depth and caught in the mount as part of the insertion (e.g., by hook, clamp or gripper), the rolling members 406 rotate from the friction from the sensor 114 as the introducer exits back into the inserter.


In some embodiments, as shown in FIGS. 10-11, the shaft portion 405 of the introducer 140 and the sensor 114 comprise a magnet 408 or magnetized area 409, such that magnetic forces retain the sensor within the introducer. The magnetic material can be any material that will provide magnetic forces including, but not limited to, low grade stainless steel, carbon ink, and the like. In some embodiments, the shaft or the sensor can be doped with magnetic metal. The magnet can be disposed along the channel of the shaft portion. In this regard, in accordance with one embodiment, magnetic material can be embedded on the surface of the sensor. Further, a magnet or a magnetized area is fit into the sharp to hold the sensor in place. Release of the magnetic force can occur when the shaft portion 405 is removed as part of the insertion process of the sensor delivery unit.


In other embodiments, as illustrated in FIG. 12, the holding member comprises a sheath 407 disposed coaxially about the shaft portion 405. The sheath 407 can comprise one or more perforations along a perforation line 410 disposed along a length of the sheath. In this manner, the sheath can be a tear away member. In some embodiments, the sheath comprises a polymer film. The polymer film can be attached to an outer surface of the shaft portion. Suitable materials for the sheath include polyimide, Pebax, polyethylene, Nylon, PTFE, polyester, and polyurethane.


In another embodiment, as depicted in FIGS. 13-14, the shaft portion 405 can include one or more windings 411 configured to releasably retain the sensor 114. The windings are generally a wound member 411 having the capability to unwind, as illustrated in FIG. 14. While the winding 411 is in the wound configuration, it applies an interference against the sensor body to retain the sensor 114. The sensor can be displaced from the shaft portion 405 upon unwinding the one or more windings. In some embodiments, the windings comprise wound rolls of polymer film.


In other embodiments, the shaft portion 405 of the introducer 140 includes a substantially longitudinal opening 412, as shown in FIGS. 15-17. The sensor 114 can include a flange 413 disposed along an edge of the sensor body 114 to communicate through the longitudinal opening 412. The engagement of the longitudinal opening 412 and the flange 413 provide an interference fit to retain the sensor 114. In some embodiments, the slot includes a distal section 412B configured to be wider than the width of a proximal section 412A, and sufficiently wide such that the sensor flange 413 may be displaced from the shaft when the flange becomes disposed in the wider section of the opening 412, for example during the insertion process as the sensor travels towards an insertion position. In this manner, the longitudinal opening 412 can be provided with a greater width at a distal section to allow the introducer 140 to be completely de-coupled from the sensor 114 retained within the shaft portion 405 during the placement thereof, so that the introducer 140 may be removed completely from the user, while leaving in place the sensor 114.


As an alternative, illustrated in FIGS. 18-20 the sensor 114 can be configured to include a pin 415 extending from a lateral end of the sensor body. Similar to the flange member described above, the pin can engage a slot 412′ formed in the introducer so as to retain the sensor in the introducer. In some embodiments, the pin can be configured as a hinge member 416.


In yet another embodiment, the holding member can include a sponge material 417 disposed along the channel of the shaft portion 405, as shown in FIG. 21. The sponge material 417 can be configured to provide a soft interference fit with a sensor 114 disposed in the shaft portion 405 and may comprise polyurethane, polyether, polystyrene, or isoprene foams. The foams can be attached via adhesive, or applied during the lubricious coating process (i.e., a silicone coating used to reduce friction and make insertion more smooth).


In other embodiments, the shaft 405 is provided with a diaphragm 418, such as a thin, semi-rigid membrane housed along a portion of the channel. The diaphragm can include an opening 419 to receive and retain the sensor, as shown in FIG. 22. The diaphragm 418 may be molded or cast polymer (silicone, urethane or TPE) plug or insert with a series of slits or webbing similar to an iris. Or it could be a type of a duckbill valve. In one embodiment, the diaphragm 418 is fixed (molded or glued) to the inner diameter of the introducer. The diaphragm 418 may be rigid enough to hold the sensor but flexible to open when the senor is captured during insertion.


In another aspect of the present disclosure, the introducer 440 may be configured to reduce the insertion and extraction forces through the user's skin, thus reducing trauma to the skin. In this regard, the introducer 440 can be configured to include a compressible member 518 attached to a lateral side of the introducer 440, as illustrated in FIGS. 23-24. In some embodiments, the compressible member 518 can include a first section, or barrel 519, and a second section, or plunger 520, as shown in FIG. 23. The first section 519 can include a compressible body. For example, the compressible body can include a spring, such as a compression spring 522 (illustrated in dashed lines). In some embodiments, the first section 519 includes a housing comprising the spring. The springs may be helical compression springs having variable pitch and compression rate. The shape of the spring can be straight, hourglass, conical or barrel. Alternatively, a controlled friction can be used to allow a plunger 520 to move inside the barrel 519 at a set force. When the predetermined “break force” is reached, the plunger 520 can move. As illustrated in FIGS. 26-27, the shaft 405 of the introducer 440 is attached in some embodiments to the housing of the compression member 518.


In some embodiments, the second section 520 of the compressible member 518 is non-compressible, but retractable. For example, the second section 520 can be formed from a solid thermoplastic member. The first section 519 can be configured to receive the second section 520. In this manner, the compressible member 518 can be compressed upon retraction of the second section 520 within the first portion housing 519. In this regard, the first and second sections can have a telescoping relationship, such that the sliding engagement of the second member upwardly into the first member causes compression of the compressible member, as illustrated in FIG. 25. A first position of second section 520 is illustrated in dashed line and the second position of the second section 520 is illustrated in solid line. The compression of the compressible member 518 by the retraction of the second member 520 causes the distal edge 403 of the introducer shaft, i.e., the sharp, to contact and pierce through the skin of the user.


During operation, as shown in FIGS. 28-30, the compressible member 518 contacts the skin S of a user. During this process, the second section 520 of the compressible member contacts the skin S prior to the introducer edge 403 because the distal end of the compressible member 518 is initially distal to the introducer distal end 403. See FIGS. 28-29. In this manner, the second member 520 can depress the skin S from the pressure of the contact between the second section 520 and the skin S. As shown in FIG. 30, the distal end 403 of the introducer 440 then makes contact with the skin S, as the compressible section 518 compressed upon retraction of the second section 520 upwardly to allow the distal end 403 of the introducer 440 to puncture the skin S and proceed to insert the sensor 114 (not shown in FIG. 30). The compressible member 518 allows control of the depth of the puncture. By maintaining a relatively small skin puncture, it is possible to reduce the amount of potential bleeding during the skin piercing process for subcutaneous or transcutaneous sensor placement, and likewise the result is less bruising and also faster healing.


In some embodiments, the edge segment 403 of the introducer 440 guides the sensor 114 into and through the skin puncture. The edge segment 403 may be sharpened and polished to facilitate a smooth puncture and a clean cut through the user's skin. In this regard, the substantially hollow shaft portion can be configured to minimize the necessary force to deploy the introducer, and minimize pain and skin trauma during puncture and removal of the introducer from the skin. In this regard, the edge segment 403 of the introducer 440 includes a substantially sharp and angled tip (as shown in FIG. 6) for piercing the user's skin. The edge segment 403 of the introducer 440 can be sharp and tapered to facilitate skin piercing while minimizing skin trauma. In this manner, it is possible to minimize the size of the skin wound at the piercing site where the introducer 440 is placed through the skin, and thus, the user will likely experience a faster healing time.


Referring to FIGS. 31-45, actuator 124 described hereinabove can be provided with a safety member, such as safety member 625, 625′, 625″, 634, 636, 650, configured to impede actuation of the actuator, by for example, preventing the actuator button 124 from being depressed. Accordingly, the safety member can avoid accidental firing of inserter assembly 100. The safety member can take the form of various configurations.


For example, the safety member 625 can comprise a pin or a plug member, such as, but not limited to, a “grenade” pin, or molded plug, as disclosed in FIGS. 31-36. In this regard, as depicted in FIGS. 31-32, the actuator 124 can include one or more apertures or slots (not shown) extending through the actuator 124 through which the safety pin 628 is disposed. The safety member can further include a pull tab 626 for ease of removal to deactivate the safety. As depicted in FIGS. 33-34, the actuator 124 can include one or more apertures or slots (not shown) extending through the actuator 124 through which the safety pin 628′ is disposed. The safety member can further include a pull tab 626′ for ease of removal to deactivate the safety.


In yet another embodiment, the safety member 625″ can include a body having a first end 630 and a second end 632 configured to form an L-shaped body, as shown in FIGS. 35-36. In this regard, the L-shaped safety member includes, as part of its unitary body a pull tab 630 that protrudes from the slot or aperture formed in actuator 124. In this manner, the first or second ends of the L-shaped body can define a pull tab for deactivation of the safety.


In other embodiments, the safety member comprises a D-ring 634, as shown in FIGS. 37-38. The D ring 634 can be formed from plastic or a metal. As illustrated in FIG. 39, the actuator can include a slot having an opening in communication with the exterior of the actuator. The D-ring can be slid and disposed in the slot, as shown in FIG. 38.


In yet another embodiment, the safety member can comprise a press clip 636, as illustrated in FIGS. 40-42. The press clip 636, in some embodiments, comprises first and second legs 638, 640 connected to each other at a bridging member 642. The press clip 636 includes first and second feet 644, 646 configured to be disposed in one or more apertures formed in the actuator, as illustrated in FIGS. 41 and 42. The configuration of clip 636 provides an outward force, as indicated by arrows 40. The press clip 646 can be disposed in one or more apertures formed on an interior surface of the actuator 124 as illustrated in FIG. 42.


In yet another embodiment, the safety member can comprise a press clip 650, as illustrated in FIGS. 43-45. The press clip 650, in some embodiments, comprises first and second legs 652, 654 connected to each other at a bridging member 656. The press clip 650 includes first and second feet 658, 660 configured to be disposed in one or more apertures formed in the actuator 124, as illustrated in FIGS. 44 and 45. The configuration of clip 650 provides an inward force, as indicated by arrows 43. The press clip 650 can be disposed in one or more apertures formed on an exterior surface of the actuator 124 as illustrated in FIG. 45.


During disposition of the safety member 625 in the actuator, depression of the actuator is impeded. The safety member can be formed from a variety of materials. For example, the material can be a thermoplastic material, such as TPE materials or a metal. In some embodiments, the thermoplastic material has a shore hardness of about 40 to 50. In another embodiment, plastic, metal, wood, or paper can be formed in the shape of a pin as long as it could serve to prevent the downward movement of the button.


Upon deactivation of the safety member such as by removal of the safety member, tabs 122, as illustrated in FIGS. 1 and 5, can be squeezed inward just enough to clear the rim 204 of opening 176 while pressing the actuator button 124 down to fire the inserter. Alternatively, tabs 122 can be squeezed further inward so that barbs on the inside edges can engage catches located on a center portion of actuator button 124 by simply pressing down on the actuator button 124.


Referring back to FIG. 5, shuttle 138 is provided with laterally extending barbed fingers 212 which travel in channels 180 along the inside walls of housing 134. When shuttle 138 is inserted up into housing 134 far enough, barbed fingers 212 momentarily deflect inward and then snap outward again to catch on stops 186. In this armed or cocked position as shown, drive spring 136 is compressed and urging shuttle 138 towards base 144, but barbed fingers 212 catching on stops 186 prevent such travel.


After manufacture of the sensor inserter assembly, the sensor inserter assembly can be shipped in an unarmed position. In this manner, no safety member as described above is necessary for safe shipping or handling as the sensor inserter assembly in its unarmed position cannot fire. In this regard, as shown in FIG. 46 the sensor inserter assembly 110 in its unarmed position can include a pin 728 member, such as a plastic tubular member, disposed in the firing path of the inserter. The pin 728 is configured to butt against the bottom of the shuttle 138 and protrude from the bottom surface of the sensor inserter assembly, as shown in FIGS. 46 and 47. The pin 728 can keep the shuttle from bouncing on the return spring.


In another aspect of the present disclosure, a method is provided to arm the sensor inserter assembly. The sensor can be armed by the user prior to insertion of a sensor. The method includes, as shown in FIGS. 47-49, contacting the sensor inserter assembly against a surface, such as a table top. The contact of the pin 728 with a relatively hard surface causes the pin to be pushed upwardly the retraction position such that the barbed fingers 212 are moved to a cocked position, as described above. In this manner, the sensor inserter assembly can be configured such that an audible click is sounded when the barbed fingers move to position. During movement to the armed position, the actuator button 124 moves upwardly to the cocked position. After the barbed fingers and the actuator are armed, the pin 728 is removed from the sensor insertion assembly and the sensor inserter assembly is armed and ready to use.


In operation, the user arms the drive mechanism, such as the first spring, to generate the sufficient inertial force needed to drive the introducer and the sensor through the user's skin. In one embodiment, the introducer and the sensor are provided in a fully assembled sensor inserter assembly package within a transmitter mounting unit. Thus, when the user wishes to place the sensor subcutaneously or transcutaneously, the drive mechanism is armed, and the user places the transmitter mount on the surface of the user's skin where the user wishes to place the sensor. In other embodiments, the sensor insertion assembly may be self-arming, allowing for ease of insertion of the sensor. Examples of such embodiments can be found in, among others, U.S. patent application Ser. No. 12/129,573, now U.S. Pat. No. 8,613,703, the disclosure of which is incorporated herein by reference for all purposes.


Additional embodiments of analyte sensor insertion devices can be found in, among others, U.S. patent application Ser. No. 11/552,072, now U.S. Pat. No. 9,788,771, Ser. No. 13/434,804, now U.S. Pat. No. 9,743,862, Ser. No. 11/216,932, now U.S. Pat. No. 7,731,657, Ser. No. 11/617,698, now U.S. Pat. No. 8,545,403, Ser. No. 11/380,883, and 11/535,983, now U.S. Pat. No. 7,697,967, the disclosures of which are incorporated herein by reference for all purposes. Such embodiments include insertion devices utilizing variable speed insertion, by varying the speed of the shuttle through the insertion device; shape memory alloy insertion devices, wherein the introducer is constructed of a shape memory alloy that changes shape from a compressed state to a rigid insertion shape upon activation of the shape memory alloy; and coupleable insertion devices and on-skin mounting units, wherein the systems are configured such that the insertion device and on-skin mounting unit can only be coupled in a position such that the insertion device is aligned for proper sensor insertion.


Various other modifications and alterations in the structure and method of operation of this present disclosure will be apparent to those skilled in the art without departing from the scope and spirit of the present disclosure. Although the present disclosure has been described in connection with specific embodiments, it should be understood that the present disclosure as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present disclosure and that structures and methods within the scope of these claims. Additional detailed description of embodiments of the disclosed subject matter are provided in but not limited to: U.S. Pat. Nos. 7,299,082; 7,167,818; 7,041,468; 6,942,518; 6,893,545; 6,881,551; 6,773,671; 6,764,581; 6,749,740; 6,746,582; 6,736,957; 6,730,200; 6,676,816; 6,618,934; 6,616,819; 6,600,997; 6,592,745; 6,591,125; 6,560,471; 6,540,891; 6,514,718; 6,514,460; 6,503,381; 6,461,496; 6,377,894; 6,338,790; 6,299,757; 6,284,478; 6,270,455; 6,175,752; 6,161,095; 6,144,837; 6,143,164; 6,121,009; 6,120,676; 6,071,391; 5,918,603; 5,899,855; 5,822,715; 5,820,551; 5,628,890; 5,601,435; 5,593,852; 5,509,410; 5,320,715; 5,264,014; 5,262,305; 5,262,035; 4,711,245; 4,545,382; 5,356,786; 5,543,326; 6,103,033; 6,134,461; 6,143,164; 6,144,837; 6,161,095; 6,579,690; 6,605,200; 6,605,201; 6,618,934; 6,654,625; 6,676,816; 6,730,200; 6,736,957; and 6,932,892; and U.S. Publication Nos. 2004/0186365; 2005/0182306; 2006/0025662; 2006/0091006; 2007/0056858; 2007/0068807; 2007/0095661; 2007/0108048; 2007/0199818; 2007/0227911; 2007/0233013; 2008/0066305; 2008/0081977; 2008/0102441; 2008/0148873; 2008/0161666; 2008/0267823; and 2009/0054748; and U.S. patent application Ser. No. 10/745,878, filed Dec. 26, 2003, now U.S. Pat. No. 7,811,231; U.S. patent application Ser. No. 12/143,731, filed Jun. 20, 2008, now U.S. Pat. No. 8,597,188; U.S. patent application Ser. No. 12/143,734, filed Jun. 20, 2008, now U.S. Pat. No. 8,617,069; U.S. Provisional Application No. 61/149,639, filed Feb. 3, 2009; U.S. Provisional Application No. 61/291,326 filed Dec. 30, 2009, and U.S. Provisional Application No. 61/299,924 filed Jan. 29, 2010; U.S. patent application Ser. No. 11/461,725, now U.S. Pat. No. 7,866,026; U.S. patent application Ser. No. 12/131,012; U.S. patent application Ser. No. 12/242,823, now U.S. Pat. No. 8,219,173; U.S. patent application Ser. No. 12/363,712, now U.S. Pat. No. 8,346,335; U.S. patent application Ser. No. 12/698,124; U.S. patent application Ser. No. 12/698,129, now U.S. Pat. No. 9,402,544; U.S. patent application Ser. No. 12/714,439; U.S. patent application Ser. No. 12/794,721, now U.S. Pat. No. 8,595,607; U.S. patent application Ser. No. 12/842,013, now U.S. Pat. No. 9,795,326; U.S. Provisional Application No. 61/238,646; U.S. Provisional Application No. 61/345,562; U.S. Provisional Application No. 61/361,374; and elsewhere, the disclosures of each are incorporated by reference in their entirety herein for all purposes.


The foregoing only illustrates the principles of the disclosed subject matter. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. It will be appreciated that those skilled in the art will be able to devise numerous modifications which, although not explicitly described herein, embody the principles of the disclosed subject matter and are thus within the spirit and scope of the disclosed subject matter.

Claims
  • 1. A sensor insertion assembly, comprising: an inserter housing;an analyte sensor;a shuttle disposed within the inserter housing, the shuttle coupled to an introducer sharp, a drive spring, and a retraction spring, wherein the drive spring, upon release, is configured to displace the shuttle and the introducer sharp in a distal direction and to insert at least a portion of the analyte sensor in fluid contact with a bodily fluid under a skin layer, andwherein the retraction spring, upon release, is configured to displace the shuttle and the introducer sharp in a proximal direction;an actuator mechanism configured to release the drive spring; anda removable safety clip configured to impede actuation of the actuator mechanism, wherein the removable safety clip comprises a first leg portion, a second leg portion, and a bridging portion connecting the first and the second leg portions, andwherein the first and the second leg portions are biased in an inward direction.
  • 2. The sensor insertion assembly of claim 1, further comprising a mounting unit configured to releasably couple with the inserter housing.
  • 3. The sensor insertion assembly of claim 2, wherein the mounting unit includes an aperture through which the introducer sharp and the at least a portion of the analyte sensor are positioned under a skin layer upon release of the drive spring.
  • 4. The sensor insertion assembly of claim 2, wherein the mounting unit includes an adhesive bottom surface.
  • 5. The sensor insertion assembly of claim 2, wherein the mounting unit is configured to receive a sensor electronics unit after the inserter housing is uncoupled from the mounting unit.
  • 6. The sensor insertion assembly of claim 2, wherein the first leg portion includes a first foot portion, wherein the second leg portion includes a second foot portion, and wherein the first and the second foot portions are configured to releasably engage one or more apertures on an exterior surface of the sensor insertion assembly.
  • 7. The sensor insertion assembly of claim 6, wherein the first and the second foot portions are biased in an inward direction.
  • 8. The sensor insertion assembly of claim 6, wherein the first and the second foot portions are configured to disengage from the one or more apertures upon application of one or more forces to the first and the second leg portions.
  • 9. The sensor insertion assembly of claim 8, wherein the one or more forces comprises a squeezing force.
  • 10. The sensor insertion assembly of claim 1, wherein the actuator mechanism comprises at least one depressible button.
  • 11. The sensor insertion assembly of claim 10, wherein the removable safety clip is further configured to prevent the at least one depressible button from being depressed.
  • 12. The sensor insertion assembly of claim 1, wherein the removable safety clip is further configured to disengage from the sensor insertion assembly upon application of one or more forces to the first and the second leg portions.
  • 13. The sensor insertion assembly of claim 1, wherein the at least a portion of the analyte sensor is disposed in a channel of the introducer sharp while the drive spring is in a compressed state.
  • 14. The sensor insertion assembly of claim 1, wherein the drive spring and the retraction spring comprise compression springs.
  • 15. The sensor insertion assembly of claim 1, wherein the drive spring and the retraction spring are each in a compressed state prior to the actuation of the actuator mechanism.
  • 16. The sensor insertion assembly of claim 1, wherein the analyte sensor is a glucose sensor.
  • 17. The sensor insertion assembly of claim 1, wherein the bridging portion comprises a flexible plastic material.
  • 18. The sensor insertion assembly of claim 1, wherein a diameter of the drive spring is greater than a diameter of the retraction spring.
  • 19. The sensor insertion assembly of claim 1, wherein the analyte sensor includes a distal portion and a proximal portion, the distal portion configured to be in fluid contact with subcutaneous bodily fluid and having a width smaller than a width of the proximal portion.
  • 20. A sensor insertion assembly, comprising: an inserter housing;an analyte sensor;a mounting unit configured to releasably couple with the inserter housing;a shuttle disposed within the inserter housing, the shuttle coupled to an introducer sharp, a drive spring, and a retraction spring, wherein the drive spring, upon release, is configured to displace the shuttle and the introducer sharp in a distal direction and to insert at least a portion of the analyte sensor in fluid contact with a bodily fluid under a skin layer, andwherein the retraction spring, upon release, is configured to displace the shuttle and the introducer sharp in a proximal direction;an actuator mechanism configured to release the drive spring; anda removable safety clip configured to impede actuation of the actuator mechanism, wherein the removable safety clip comprises a first leg portion, a second leg portion, and a bridging portion connecting the first and the second leg portions, andwherein the first leg portion includes a first foot portion, wherein the second leg portion includes a second foot portion, and wherein the first and the second foot portions are configured to releasably engage one or more apertures on an exterior surface of the sensor insertion assembly.
  • 21. The sensor insertion assembly of claim 20, wherein the first and the second leg portions are biased in an inward direction.
  • 22. The sensor insertion assembly of claim 20, wherein the mounting unit includes an adhesive bottom surface.
  • 23. The sensor insertion assembly of claim 20, wherein the mounting unit is configured to receive a sensor electronics unit after the inserter housing is uncoupled from the mounting unit.
  • 24. The sensor insertion assembly of claim 20, wherein the first and the second foot portions are biased in an inward direction.
  • 25. The sensor insertion assembly of claim 20, wherein the actuator mechanism comprises at least one depressible button.
  • 26. The sensor insertion assembly of claim 25, wherein the removable safety clip is further configured to prevent the at least one depressible button from being depressed.
  • 27. The sensor insertion assembly of claim 20, wherein the removable safety clip is configured to disengage from the sensor insertion assembly upon application of one or more forces to the first and the second leg portions.
  • 28. The sensor insertion assembly of claim 20, wherein the first and the second foot portions are configured to disengage from the one or more apertures upon application of one or more forces to the first and the second leg portions.
  • 29. The sensor insertion assembly of claim 20, wherein the one or more forces comprises a squeezing force.
  • 30. The sensor insertion assembly of claim 20, wherein the at least a portion of the analyte sensor is disposed in a channel of the introducer sharp while the drive spring is in a compressed state.
  • 31. The sensor insertion assembly of claim 20, wherein the drive spring and the retraction spring comprise compression springs.
  • 32. The sensor insertion assembly of claim 20, wherein the drive spring and the retraction spring are each in a compressed state prior to the actuation of the actuator mechanism.
  • 33. The sensor insertion assembly of claim 20, wherein the analyte sensor is a glucose sensor.
  • 34. The sensor insertion assembly of claim 20, wherein the mounting unit includes an aperture through which the introducer sharp and the at least portion of the analyte sensor are positioned under a skin layer upon release of the drive spring.
  • 35. The sensor insertion assembly of claim 20, wherein the bridging portion comprises a flexible plastic material.
  • 36. The sensor insertion assembly of claim 20, wherein a diameter of the drive spring is greater than a diameter of the retraction spring.
  • 37. The sensor insertion assembly of claim 20, wherein the analyte sensor includes a distal portion and a proximal portion, the distal portion configured to be in fluid contact with subcutaneous bodily fluid and having a width smaller than a width of the proximal portion.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 14/040,674 filed Sep. 28, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 12/893,974 filed Sep. 29, 2010, now abandoned, which claims priority to U.S. Provisional Application No. 61/246,825 filed Sep. 29, 2009, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 12/795,634 filed Jun. 7, 2010, now U.S. Pat. No. 8,602,991, which is a continuation of U.S. patent application Ser. No. 11/216,932 filed Aug. 30, 2005, now U.S. Pat. No. 7,731,657, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 13/022,616 filed Feb. 7, 2011, which is a continuation of U.S. patent application Ser. No. 11/240,257 filed Sep. 30, 2005, now U.S. Pat. No. 7,883,464, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/552,065 filed Oct. 23, 2006, now U.S. Pat. No. 9,259,175, the disclosure of which is incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 12/129,573 filed May 29, 2008, now U.S. Pat. No. 8,613,703, which claims priority to U.S. Provisional Application No. 60/941,060 filed May 31, 2007, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 12/870,818 filed Aug. 28, 2010, now abandoned, which claims priority to U.S. Provisional Application No. 61/238,159 filed Aug. 29, 2009, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 12/873,301 filed Aug. 31, 2010, now abandoned, which claims priority to U.S. Provisional Application No. 61/238,494 filed Aug. 31, 2009, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 12/873,302 filed Aug. 31, 2010, now abandoned, which claims priority to U.S. Provisional Application Nos. 61/238,537 filed Aug. 31, 2009 and 61/238,483 filed Aug. 31, 2009, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 13/171,401 filed Jun. 28, 2011, now U.S. Pat. No. 9,572,534, which claims priority to U.S. Provisional Application No. 61/359,816 filed Jun. 29, 2010, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 13/434,804 filed Mar. 29, 2012, now U.S. Pat. No. 9,743,862, which claims priority to U.S. Provisional Application No. 61/470,454 filed Mar. 31, 2011, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/026,766 filed Dec. 29, 2004, now abandoned, the disclosure of which is incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 13/252,118 filed Oct. 3, 2011, now U.S. Pat. No. 9,364,149, which is a continuation of U.S. patent application Ser. No. 11/365,334 filed Feb. 28, 2006, now U.S. Pat. No. 8,029,441, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 13/970,397 filed Aug. 19, 2013, now U.S. Pat. No. 9,480,421, which is a continuation of U.S. patent application Ser. No. 11/240,259 filed Sep. 30, 2005, now U.S. Pat. No. 8,512,243, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/530,473 filed Sep. 10, 2006, now U.S. Pat. No. 9,398,882, which is a continuation-in-part of U.S. patent application Ser. No. 11/240,259 filed Sep. 30, 2005, now U.S. Pat. No. 8,512,243, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/380,883 filed Apr. 28, 2006, now abandoned, the disclosure of which is incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 13/717,501 filed Dec. 17, 2012, now U.S. Pat. No. 8,862,198, which is a continuation of U.S. patent application Ser. No. 11/530,472 filed Sep. 10, 2006, now U.S. Pat. No. 8,333,714, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/192,773 filed Jul. 29, 2005, now abandoned, the disclosure of which is incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/552,072 filed Oct. 23, 2006, now U.S. Pat. No. 9,788,771, the disclosure of which is incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/027,230 filed Dec. 29, 2004, now U.S. Pat. No. 8,571,624, the disclosure of which is incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 12/895,015 filed Sep. 30, 2010, now U.S. Pat. No. 9,351,669, which claims priority to U.S. Provisional Application No. 61/247,516 filed Sep. 30, 2009, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/617,698 filed Dec. 28, 2006, now U.S. Pat. No. 8,545,403, which claims priority to U.S. Provisional Application No. 60/754,870 filed Dec. 28, 2005, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 12/571,349 filed Sep. 30, 2009, now U.S. Pat. No. 8,852,101, which is a continuation of U.S. patent application Ser. No. 11/535,983 filed Sep. 28, 2006, now U.S. Pat. No. 7,697,967, which claims priority to U.S. Provisional Application No. 60/754,870 filed Dec. 28, 2005, the disclosures of each of which are incorporated herein by reference for all purposes. The present application is also a continuation-in-part of U.S. patent application Ser. No. 12/032,593 filed Feb. 15, 2008, now U.S. Pat. No. 9,636,450, which claims priority to U.S. Provisional Application No. 60/890,497 filed Feb. 19, 2007, the disclosures of each of which are incorporated herein by reference for all purposes.

US Referenced Citations (1179)
Number Name Date Kind
3123790 Tyler Mar 1964 A
3211001 Petit Oct 1965 A
3260656 Ross, Jr. Jul 1966 A
3581062 Aston May 1971 A
3653841 Klein Apr 1972 A
3719564 Lilly, Jr. et al. Mar 1973 A
3776832 Oswin et al. Dec 1973 A
3837339 Aisenberg et al. Sep 1974 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3972320 Kalman Aug 1976 A
3979274 Newman Sep 1976 A
4008717 Kowarski Feb 1977 A
4016866 Lawton Apr 1977 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4059406 Fleet Nov 1977 A
4076596 Connery et al. Feb 1978 A
4098574 Dappen Jul 1978 A
4100048 Pompei et al. Jul 1978 A
4120292 LeBlanc, Jr. et al. Oct 1978 A
4129128 McFarlane Dec 1978 A
4151845 Clemens May 1979 A
4168205 Danniger et al. Sep 1979 A
4172770 Semersky et al. Oct 1979 A
4178916 McNamara Dec 1979 A
4206755 Klein Jun 1980 A
4224125 Nakamura et al. Sep 1980 A
4240438 Updike et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4247297 Berti et al. Jan 1981 A
4294258 Bernard Oct 1981 A
4327725 Cortese et al. May 1982 A
4340458 Lerner et al. Jul 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4352960 Dormer et al. Oct 1982 A
4356074 Johnson Oct 1982 A
4365637 Johnson Dec 1982 A
4366033 Richter et al. Dec 1982 A
4373527 Fischell Feb 1983 A
4375399 Havas et al. Mar 1983 A
4384586 Christiansen May 1983 A
4390621 Bauer Jun 1983 A
4401122 Clark, Jr. Aug 1983 A
4404066 Johnson Sep 1983 A
4418148 Oberhardt Nov 1983 A
4425920 Bourland et al. Jan 1984 A
4427770 Chen et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4440175 Wilkins Apr 1984 A
4441968 Emmer et al. Apr 1984 A
4450842 Zick et al. May 1984 A
4458686 Clark, Jr. Jul 1984 A
4461691 Frank Jul 1984 A
4469110 Slama Sep 1984 A
4477314 Richter et al. Oct 1984 A
4478976 Goertz et al. Oct 1984 A
4484987 Gough Nov 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4522690 Venkatsetty Jun 1985 A
4524114 Samuels et al. Jun 1985 A
4526661 Steckhan et al. Jul 1985 A
4527240 Kvitash Jul 1985 A
4534356 Papadakis Aug 1985 A
4538616 Rogoff Sep 1985 A
4543955 Schroeppel Oct 1985 A
4545382 Higgins et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4560534 Kung et al. Dec 1985 A
4571292 Liu et al. Feb 1986 A
4573994 Fischell et al. Mar 1986 A
4581336 Malloy et al. Apr 1986 A
4595011 Phillips Jun 1986 A
4619754 Niki et al. Oct 1986 A
4619793 Lee Oct 1986 A
4622966 Beard Nov 1986 A
4627445 Garcia et al. Dec 1986 A
4627842 Katz Dec 1986 A
4627908 Miller Dec 1986 A
4633878 Bombardien Jan 1987 A
4637403 Garcia et al. Jan 1987 A
4650547 Gough Mar 1987 A
4654197 Lilja et al. Mar 1987 A
4655880 Liu Apr 1987 A
4655885 Hill et al. Apr 1987 A
4671288 Gough Jun 1987 A
4679562 Luksha Jul 1987 A
4680268 Clark, Jr. Jul 1987 A
4682602 Prohaska Jul 1987 A
4684537 Graetzel et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685466 Rau Aug 1987 A
4698057 Joishy Oct 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4711247 Fishman Dec 1987 A
4717673 Wrighton et al. Jan 1988 A
4721601 Wrighton et al. Jan 1988 A
4721677 Clark, Jr. Jan 1988 A
4726378 Kaplan Feb 1988 A
4726716 McGuire Feb 1988 A
4729672 Takagi Mar 1988 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4755173 Konopka Jul 1988 A
4757022 Shults et al. Jul 1988 A
4758323 Davis et al. Jul 1988 A
4759371 Franetzki Jul 1988 A
4759828 Young et al. Jul 1988 A
4764416 Ueyama et al. Aug 1988 A
4776944 Janata et al. Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4781683 Wozniak et al. Nov 1988 A
4781798 Gough Nov 1988 A
4784736 Lonsdale et al. Nov 1988 A
4795707 Niiyama et al. Jan 1989 A
4796634 Huntsman et al. Jan 1989 A
4805624 Yao et al. Feb 1989 A
4813424 Wilkins Mar 1989 A
4815469 Cohen et al. Mar 1989 A
4820399 Senda et al. Apr 1989 A
4822337 Newhouse et al. Apr 1989 A
4830959 McNeil et al. May 1989 A
4832797 Vadgama et al. May 1989 A
RE32947 Dormer et al. Jun 1989 E
4840893 Hill et al. Jun 1989 A
4848351 Finch Jul 1989 A
4854322 Ash et al. Aug 1989 A
4865038 Rich et al. Sep 1989 A
4871351 Feingold Oct 1989 A
4871440 Nagata et al. Oct 1989 A
4874500 Madou et al. Oct 1989 A
4890620 Gough Jan 1990 A
4894137 Takizawa et al. Jan 1990 A
4895147 Bodicky et al. Jan 1990 A
4897162 Lewandowski et al. Jan 1990 A
4897173 Nankai et al. Jan 1990 A
4909908 Ross et al. Mar 1990 A
4911794 Parce et al. Mar 1990 A
4917800 Lonsdale et al. Apr 1990 A
4919141 Zier et al. Apr 1990 A
4919767 Vadgama et al. Apr 1990 A
4921199 Villaveces May 1990 A
4923586 Katayama et al. May 1990 A
4925268 Iyer et al. May 1990 A
4927516 Yamaguchi et al. May 1990 A
4934369 Maxwell Jun 1990 A
4935105 Churchouse Jun 1990 A
4935345 Guibeau et al. Jun 1990 A
4938860 Wogoman Jul 1990 A
4944299 Silvian Jul 1990 A
4950378 Nagara Aug 1990 A
4953552 DeMarzo Sep 1990 A
4954129 Giuliani et al. Sep 1990 A
4969468 Byers et al. Nov 1990 A
4970145 Bennetto et al. Nov 1990 A
4974929 Cuny Dec 1990 A
4985142 Laycock Jan 1991 A
4986271 Wilkins Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4994167 Shults et al. Feb 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5002054 Ash et al. Mar 1991 A
5013161 Zaragoza et al. May 1991 A
5019974 Beckers May 1991 A
5035860 Kleingeld et al. Jul 1991 A
5036860 Leigh et al. Aug 1991 A
5047044 Smith et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5058592 Whisler Oct 1991 A
5070535 Hochmair et al. Dec 1991 A
5082550 Rishpon et al. Jan 1992 A
5082786 Nakamoto Jan 1992 A
5089112 Skotheim et al. Feb 1992 A
5095904 Seligman et al. Mar 1992 A
5101814 Palti Apr 1992 A
5106365 Hernandez Apr 1992 A
5108564 Szuminsky et al. Apr 1992 A
5108889 Smith et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5120420 Nankai et al. Jun 1992 A
5122925 Inpyn Jun 1992 A
5126034 Carter et al. Jun 1992 A
5133856 Yamaguchi et al. Jul 1992 A
5135003 Souma Aug 1992 A
5140985 Schroeder et al. Aug 1992 A
5141868 Shanks et al. Aug 1992 A
5161532 Joseph Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5190041 Palti Mar 1993 A
5192416 Wang et al. Mar 1993 A
5193545 Marsoner et al. Mar 1993 A
5198367 Aizawa et al. Mar 1993 A
5202261 Musho et al. Apr 1993 A
5205920 Oyama et al. Apr 1993 A
5208154 Weaver et al. May 1993 A
5209229 Gilli May 1993 A
5217595 Smith et al. Jun 1993 A
5229282 Yoshioka et al. Jul 1993 A
5234835 Nestor et al. Aug 1993 A
5238729 Debe Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5250439 Musho et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264103 Yoshioka et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5264106 McAleer et al. Nov 1993 A
5271815 Wong Dec 1993 A
5279294 Anderson et al. Jan 1994 A
5284156 Schramm et al. Feb 1994 A
5285792 Sjoquist et al. Feb 1994 A
5286362 Hoenes et al. Feb 1994 A
5286364 Yacynych et al. Feb 1994 A
5288636 Pollmann et al. Feb 1994 A
5293546 Tadros et al. Mar 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320098 Davidson Jun 1994 A
5320715 Berg Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5337747 Neftei Aug 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5352348 Young et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5368028 Palti Nov 1994 A
5372133 Esch Dec 1994 A
5372427 Padovani et al. Dec 1994 A
5376251 Kaneko et al. Dec 1994 A
5378628 Gratzel et al. Jan 1995 A
5379238 Stark Jan 1995 A
5387327 Khan Feb 1995 A
5390670 Centa et al. Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5395504 Saurer et al. Mar 1995 A
5400782 Beaubiah Mar 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425361 Fenzlein et al. Jun 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5437999 Diebold et al. Aug 1995 A
5462645 Albery et al. Oct 1995 A
5469846 Khan Nov 1995 A
5472317 Field et al. Dec 1995 A
5484403 Yoakum et al. Jan 1996 A
5489414 Schreiber et al. Feb 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5533977 Matcalf et al. Jul 1996 A
5543326 Heller et al. Aug 1996 A
5545191 Mann et al. Aug 1996 A
5551427 Altman Sep 1996 A
5560357 Faupei et al. Oct 1996 A
5562713 Silvian Oct 1996 A
5565085 Ikeda et al. Oct 1996 A
5567302 Song et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5575563 Chiu et al. Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5582698 Flaherty et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5589326 Deng et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5596150 Amdt et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5613978 Harding Mar 1997 A
5617851 Lipkovker Apr 1997 A
5628310 Rao et al. May 1997 A
5628890 Carter et al. May 1997 A
5632557 Simons May 1997 A
5651869 Yoshioka et al. Jul 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665071 Wyrick Sep 1997 A
5665222 Heller et al. Sep 1997 A
5670031 Hintsche et al. Sep 1997 A
5680858 Hansen et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5695623 Michel et al. Dec 1997 A
5708247 McAleer et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711297 Iliff et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5711862 Sakoda et al. Jan 1998 A
5733044 Rose et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5738220 Geszler Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5746697 Swedlow et al. May 1998 A
5749656 Boehm et al. May 1998 A
5766131 Kondo et al. Jun 1998 A
5771001 Cobb Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5791344 Schulman et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814020 Gross Sep 1998 A
5820551 Hill et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5827184 Netherly et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5842983 Abel et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsais et al. Jan 1999 A
5865804 Bachynsky Feb 1999 A
5871494 Simons et al. Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5899855 Brown May 1999 A
5918603 Brown Jul 1999 A
5924979 Sedlow et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5931868 Gross et al. Aug 1999 A
5938679 Freeman et al. Aug 1999 A
5948006 Mann Sep 1999 A
5951492 Douglas et al. Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5951582 Thome et al. Sep 1999 A
5954643 Van Antwerp Sep 1999 A
5954685 Tierny Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5971941 Simons et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5993411 Choi Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6017335 Bumham Jan 2000 A
6022368 Gavronsky et al. Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6026321 Miyata et al. Feb 2000 A
6027459 Shain et al. Feb 2000 A
6036924 Simons et al. Mar 2000 A
6048352 Douglas et al. Apr 2000 A
6049727 Crothall Apr 2000 A
6056718 Funderburk et al. May 2000 A
6059946 Yukawa et al. May 2000 A
6068399 Tseng May 2000 A
6071294 Simons et al. Jun 2000 A
6071391 Gotoh et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6088605 Griffith et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6099484 Douglas et al. Aug 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6144837 Quy Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6161095 Brown Dec 2000 A
6162611 Heller et al. Dec 2000 A
6168606 Levin et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254536 DeVito Jul 2001 B1
6254586 Mann et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6283982 Levaughn et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6299757 Feldman et al. Oct 2001 B1
6302866 Marggi Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6331244 Lewis et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368141 Antwerp et al. Apr 2002 B1
6368274 Antwerp et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6377894 Deweese et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6409740 Kuhr et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6433743 Massy et al. Aug 2002 B1
6435017 Nowicki, Jr. et al. Aug 2002 B1
6437679 Roques Aug 2002 B1
6440068 Brown et al. Aug 2002 B1
6445374 Albert et al. Sep 2002 B2
6458109 Henley et al. Oct 2002 B1
6461496 Feldman et al. Oct 2002 B1
6472220 Simons et al. Oct 2002 B1
6478736 Mault Nov 2002 B1
6482176 Wich Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6514460 Fendrock Feb 2003 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6522927 Bishay et al. Feb 2003 B1
6540891 Stewart et al. Apr 2003 B1
6546268 Ishikawa et al. Apr 2003 B1
6551494 Heller et al. Apr 2003 B1
6551496 Moles et al. Apr 2003 B1
6554795 Lam et al. Apr 2003 B2
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572566 Effenhauser Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6589229 Connelly et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6600997 Deweese et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6616819 Liamos et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650471 Doi Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6659948 Lebel et al. Dec 2003 B2
6666849 Marshall et al. Dec 2003 B1
6668196 Villegas et al. Dec 2003 B1
6676290 Lu Jan 2004 B1
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6702857 Brauker et al. Mar 2004 B2
6730200 Stewart et al. May 2004 B1
6733446 Lebel et al. May 2004 B2
6736957 Forrow et al. May 2004 B1
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6749740 Liamos et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6758835 Close et al. Jul 2004 B2
6764581 Forrow et al. Jul 2004 B1
6770030 Schaupp et al. Aug 2004 B1
6773671 Lewis et al. Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6830551 Uchigaki et al. Dec 2004 B1
6837858 Cunningham et al. Jan 2005 B2
6837885 Koblish et al. Jan 2005 B2
6837988 Leong et al. Jan 2005 B2
6849052 Ughigaki et al. Feb 2005 B2
6854882 Chen Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6893545 Gotoh et al. May 2005 B2
6895265 Silver May 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932892 Chen et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6959211 Rule et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6971999 Py et al. Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7010356 Jog et al. Mar 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7097637 Triplett et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7335294 Heller et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7340309 Miazga et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7416541 Yuzhakov et al. Aug 2008 B2
7424318 Brister et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7462264 Heller et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7499002 Blasko et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7604592 Freeman et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7666149 Simons et al. Feb 2010 B2
7682338 Griffin Mar 2010 B2
7697967 Stafford Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7727147 Osorio et al. Jun 2010 B1
7731657 Stafford. Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7763042 Iio et al. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7822454 Alden et al. Oct 2010 B1
7866026 Wang et al. Jan 2011 B1
7883464 Stafford Feb 2011 B2
8512243 Stafford Aug 2013 B2
20010034479 Ring et al. Oct 2001 A1
20020002344 Douglas et al. Jan 2002 A1
20020013538 Teller Jan 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020022855 Bobroff et al. Feb 2002 A1
20020023852 Mclvor et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020050250 Peterson et al. May 2002 A1
20020055711 Lavi et al. May 2002 A1
20020057993 Maisey et al. May 2002 A1
20020066764 Perry et al. Jun 2002 A1
20020072720 Hague et al. Jun 2002 A1
20020076966 Carron et al. Jun 2002 A1
20020082487 Kollias et al. Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020119711 VanAntwerp et al. Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020133066 Miller et al. Sep 2002 A1
20020154050 Krupp et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020161290 Chance Oct 2002 A1
20020165462 Westbrook et al. Nov 2002 A1
20020169369 Ward et al. Nov 2002 A1
20020169439 Flaherty et al. Nov 2002 A1
20020198444 Ughigaki et al. Dec 2002 A1
20020198543 Burdulis et al. Dec 2002 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030055380 Flaherty Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030069510 Semler Apr 2003 A1
20030078481 Mclvor et al. Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030083686 Freeman et al. May 2003 A1
20030097092 Flaherty May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030109775 O'Neil et al. Jun 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030135333 Aceti et al. Jul 2003 A1
20030144581 Conn et al. Jul 2003 A1
20030144608 Kojima et al. Jul 2003 A1
20030155656 Chiu et al. Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030199910 Boecker et al. Oct 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225361 Sabra Dec 2003 A1
20030236489 Jacobson et al. Dec 2003 A1
20040002682 Kovelman et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040015131 Flaherty et al. Jan 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040006413 Miller et al. Apr 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040072357 Steine et al. Apr 2004 A1
20040096959 Steine et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say et al. Jun 2004 A1
20040116847 Wall Jun 2004 A1
20040116865 Bengtsson Jun 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040133164 Funderburk Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138544 Ward et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040138688 Giraud Jul 2004 A1
20040140211 Broy et al. Jul 2004 A1
20040147996 Miazga et al. Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040162521 Bengtsson et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171910 Moore-Steele Sep 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040210122 Sleburg Oct 2004 A1
20040223985 Dunfiled et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050006122 Burnette Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050038465 Shraga Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050085872 Yanagihara et al. Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050090850 Thoes et al. Apr 2005 A1
20050096520 Maekawa et al. May 2005 A1
20050101912 Faust et al. May 2005 A1
20050106713 Phan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050149066 Stafford Jul 2005 A1
20050154410 Conway et al. Jul 2005 A1
20050159678 Taniike et al. Jul 2005 A1
20050165404 Miller Jul 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050222518 Dib Oct 2005 A1
20050222599 Czernecki et al. Oct 2005 A1
20050236277 Imran et al. Oct 2005 A9
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050267327 Iizuka et al. Dec 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060004303 Weidenhaupt et al. Jan 2006 A1
20060009727 O'Mahony et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060020300 Nghiem et al. Jan 2006 A1
20060025662 Buse et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060047220 Sakata et al. Mar 2006 A1
20060091006 Wang et al. May 2006 A1
20060095014 Ethelfeld May 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060135908 Liniger et al. Jun 2006 A1
20060155210 Beckman et al. Jul 2006 A1
20060155317 List et al. Jul 2006 A1
20060161664 Motoyama Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060181695 Sage, Jr. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060189939 Gonnelli et al. Aug 2006 A1
20060193375 Lee Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060200181 Fukuzawa et al. Sep 2006 A1
20060200970 Brister et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060258929 Goode, Jr. et al. Nov 2006 A1
20060258939 Pesach et al. Nov 2006 A1
20060258959 Sode Nov 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060276724 Freeman et al. Dec 2006 A1
20060282042 Walters et al. Dec 2006 A1
20060287591 Ocvirk et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070038044 Dobbies et al. Feb 2007 A1
20070056858 Chen et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070068807 Feldman et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070088377 Levaughn et al. Apr 2007 A1
20070093754 Mogensen et al. Apr 2007 A1
20070010613 Sloan et al. May 2007 A1
20070095661 Wang et al. May 2007 A1
20070108048 Wang et al. May 2007 A1
20070110124 Shiraki et al. May 2007 A1
20070123819 Memoe et al. May 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173741 Deshmukh et al. Jul 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070197889 Brister et al. Aug 2007 A1
20070199818 Petyt et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070213611 Simpson et al. Sep 2007 A1
20070219496 Kamen et al. Sep 2007 A1
20070227911 Wang et al. Oct 2007 A1
20070232879 Brister et al. Oct 2007 A1
20070233013 Schoenberg et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244368 Bayloff et al. Oct 2007 A1
20070244379 Boock et al. Oct 2007 A1
20070244398 Lo et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20080004512 Funderburk et al. Jan 2008 A1
20080004573 Kaufmann et al. Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080009805 Ethelfeld Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080027474 Curry et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080033318 Mace et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064941 Funderburk et al. Mar 2008 A1
20080064944 Antwerp et al. Mar 2008 A1
20080065646 Zhang et al. Mar 2008 A1
20080066305 Wang et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080097246 Stafford Apr 2008 A1
20080099332 Scott et al. May 2008 A1
20080102441 Chen et al. May 2008 A1
20080108942 Brister et al. May 2008 A1
20080112848 Huffstodt et al. May 2008 A1
20080114280 Stafford May 2008 A1
20080119707 Stafford May 2008 A1
20080133702 Sharma et al. Jun 2008 A1
20080148873 Wang Jun 2008 A1
20080167572 Stivoric et al. Jul 2008 A1
20080167578 Bryer et al. Jul 2008 A1
20080183061 Goode, Jr. et al. Jul 2008 A1
20080183399 Goode, Jr. et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode, Jr. et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode, Jr. et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195049 Thalmann et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode, Jr. et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080200897 Hoss et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214481 Challoner et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080255440 Eilersen et al. Oct 2008 A1
20080262330 Reynolds et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080267823 Wang et al. Oct 2008 A1
20080269584 Shekalim Oct 2008 A1
20080269673 Butoi et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080283396 Wang et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080294096 Uber et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300476 Stafford Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306434 Dobbies et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20090005659 Kollias et al. Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090036915 Karbowniczek et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090048563 Ethelfeld et al. Feb 2009 A1
20090054866 Teisen-Simony et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069750 Schraga Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076359 Peyser Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090088614 Taub Apr 2009 A1
20090088787 Koike et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090102678 Mazza et al. Apr 2009 A1
20090105569 Stafford Apr 2009 A1
20090124877 Goode et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090124979 Raymond et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090131860 Nielsen May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090171182 Stafford Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090212766 Olson et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090259118 Feldman et al. Oct 2009 A1
20090259201 Hwang et al. Oct 2009 A1
20090259202 Leeflang et al. Oct 2009 A1
20090270765 Ghesquire et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090292184 Funderburk et al. Nov 2009 A1
20090292185 Funderburk et al. Nov 2009 A1
20090294277 Thomas et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299167 Seymour Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100004597 Gryn et al. Jan 2010 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100022863 Mogensen et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100036281 Doi Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049014 Funderburk et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100069728 Funderburk et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100100113 Iio et al. Apr 2010 A1
20100106088 Yodfat et al. Apr 2010 A1
20100113897 Brenneman et al. May 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100168677 Gabriel et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174164 Brister et al. Jul 2010 A1
20100174165 Brister et al. Jul 2010 A1
20100174166 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179402 Goode et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode et al. Jul 2010 A1
20100185069 Brister et al. Jul 2010 A1
20100185070 Brister et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode et al. Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198033 Krulevitch et al. Aug 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100198036 Kamath et al. Aug 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100204653 Gryn et al. Aug 2010 A1
20100212583 Brister et al. Aug 2010 A1
20100213057 Feldman et al. Aug 2010 A1
20100214104 Goode et al. Aug 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100217557 Kamath et al. Aug 2010 A1
20100223013 Kamath et al. Sep 2010 A1
20100223022 Kamath et al. Sep 2010 A1
20100223023 Kamath et al. Sep 2010 A1
20100228109 Kamath et al. Sep 2010 A1
20100228497 Kamath et al. Sep 2010 A1
20100240975 Goode et al. Sep 2010 A1
20100240976 Goode et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100262201 He et al. Oct 2010 A1
20100274107 Boock et al. Oct 2010 A1
20100280341 Boock et al. Nov 2010 A1
20100286496 Simpson et al. Nov 2010 A1
20100298684 Leach et al. Nov 2010 A1
20100313105 Nekoomaram et al. Dec 2010 A1
20100317952 Budiman et al. Dec 2010 A1
20100324392 Yee et al. Dec 2010 A1
20100324403 Brister et al. Dec 2010 A1
20100326842 Mazza et al. Dec 2010 A1
20100331642 Bruce et al. Dec 2010 A1
20100331644 Neale et al. Dec 2010 A1
20100331647 Shah et al. Dec 2010 A1
20100331648 Kamath et al. Dec 2010 A1
20100331653 Stafford Dec 2010 A1
20100331656 Mensinger et al. Dec 2010 A1
20100331657 Mensinger et al. Dec 2010 A1
20110004085 Mensinger et al. Jan 2011 A1
20110009727 Mensinger et al. Jan 2011 A1
20110021889 Hoss et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110040256 Bobroff et al. Feb 2011 A1
20110040263 Hordum et al. Feb 2011 A1
20110046456 Hordum et al. Feb 2011 A1
20110046467 Simpson et al. Feb 2011 A1
20110054275 Stafford Mar 2011 A1
20110060196 Stafford Mar 2011 A1
20110073475 Kastanos et al. Mar 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110077659 Mandecki et al. Mar 2011 A1
20110082484 Saravia et al. Apr 2011 A1
20110106126 Love et al. May 2011 A1
20110118579 Goode et al. May 2011 A1
20110118580 Goode et al. May 2011 A1
20110124992 Brauker et al. May 2011 A1
20110124997 Goode et al. May 2011 A1
20110125410 Goode et al. May 2011 A1
20110130970 Goode et al. Jun 2011 A1
20110130971 Goode et al. Jun 2011 A1
20110130998 Goode et al. Jun 2011 A1
20110137257 Gym et al. Jun 2011 A1
20110144465 Shults et al. Jun 2011 A1
20110178378 Brister et al. Jul 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110184258 Stafford Jul 2011 A1
20110190603 Stafford Aug 2011 A1
20110190614 Brister et al. Aug 2011 A1
20110191044 Stafford Aug 2011 A1
20110201910 Rasdal et al. Aug 2011 A1
20110201911 Johnson et al. Aug 2011 A1
20110213225 Bernstein et al. Sep 2011 A1
20110218414 Kamath et al. Sep 2011 A1
20110231107 Brauker et al. Sep 2011 A1
20110231140 Goode et al. Sep 2011 A1
20110231141 Goode et al. Sep 2011 A1
20110231142 Goode et al. Sep 2011 A1
20110253533 Shults et al. Oct 2011 A1
20110257495 Hoss et al. Oct 2011 A1
20110257521 Fraden Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110270062 Goode et al. Nov 2011 A1
20110270158 Brauker et al. Nov 2011 A1
20110275919 Petisce et al. Nov 2011 A1
20110288574 Cuny et al. Nov 2011 A1
20110290645 Brister et al. Dec 2011 A1
20110313543 Brauker et al. Dec 2011 A1
20110319729 Donnay et al. Dec 2011 A1
20110319733 Stafford Dec 2011 A1
20110319738 Woodruff et al. Dec 2011 A1
20110319739 Kamath et al. Dec 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120010642 Lee et al. Jan 2012 A1
20120035445 Boock et al. Feb 2012 A1
20120040101 Tapsak et al. Feb 2012 A1
20120046534 Simpson et al. Feb 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120108934 Valdes et al. May 2012 A1
20120108983 Banet et al. May 2012 A1
20120123385 Edwards et al. May 2012 A1
20120184909 Gym et al. Jul 2012 A1
20120296327 Hutchins et al. Nov 2012 A1
20130047981 Bacon Feb 2013 A1
Foreign Referenced Citations (53)
Number Date Country
4401400 Jul 1995 DE
0098592 Jan 1984 EP
0127958 Dec 1984 EP
0320109 Jun 1989 EP
0353328 Feb 1990 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
0286118 Jan 1995 EP
1048264 Nov 2000 EP
1177802 Feb 2002 EP
0987982 Jan 2007 EP
2060284 May 2009 EP
2201969 Jun 2010 EP
2327362 Jun 2011 EP
2335587 Jun 2011 EP
11-506629 Jun 1999 JP
2004-520103 Jul 2004 JP
2004-520898 Jul 2004 JP
WO-1996039977 May 1996 WO
WO-1996025089 Aug 1996 WO
WO-1996035370 Nov 1996 WO
WO-1997021457 Jun 1997 WO
WO-1998035053 Aug 1998 WO
WO-1998056293 Dec 1998 WO
WO-1999033504 Jul 1999 WO
WO-1999056613 Nov 1999 WO
WO-2000049940 Aug 2000 WO
WO-2000059370 Oct 2000 WO
WO-2000078992 Dec 2000 WO
WO-2001052935 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2002016905 Feb 2002 WO
WO-2002050534 Jun 2002 WO
WO-2002058537 Aug 2002 WO
WO-2003028784 Apr 2003 WO
WO-2003073936 Sep 2003 WO
WO-2003076893 Sep 2003 WO
WO-2003082091 Oct 2003 WO
WO-2004054445 Jul 2004 WO
WO-2004060436 Jul 2004 WO
WO-2004061420 Jul 2004 WO
WO-2005037184 Apr 2005 WO
WO-2005084534 Sep 2005 WO
WO-2005089103 Sep 2005 WO
WO-2006042811 Apr 2006 WO
WO-2006108809 Oct 2006 WO
WO-2007097754 Aug 2007 WO
WO-2007140783 Dec 2007 WO
WO-2008065646 Jun 2008 WO
WO-2008133702 Nov 2008 WO
WO-2009062675 May 2009 WO
WO-2010112521 Oct 2010 WO
WO-2011002815 Jan 2011 WO
Non-Patent Literature Citations (291)
Entry
Alcock, S. J., et al., “Continuous Analyte Monitoring to Aid Clinical Practice”, IEEE Engineering in Medicine and Biology Magazine, 1994, pp. 319-325.
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1071.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Bindra, D. S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring”, Analytical Chemistry, vol. 63, No. 17, 1991, pp. 1692-1696.
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.
Bobbioni-Harsch, E., et al., “Lifespan of Subcutaneous Glucose Sensors and Their Performances During Dynamic Glycaemia Changes in Rats”, Journal of Biomedical Engineering, vol. 15, 1993, pp. 457-463.
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56.
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Dexcom, “STS User's Guide”, DexCom, Inc., 2006, pp. 1-111.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Gregg, B. A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Bionsensor Applications”, Analytical Chemistry, vol. 62, No. 3, 1990, pp. 258-263.
Gunasingham, et al., “Electrochemically Modulated Optrode for Glucose”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 353-359.
Harrison, D. J., et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniatureized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Analytical Chemistry, vol. 60, No. 19, 1988, pp. 2002-2007.
Heller, A., “Electrical Connection Enzyme Redox Centers to Electrodes”, Journal of Physical Chemistry, vol. 96, No. 9, 1990, pp. 3579-3587.
Ikeda, T., et al., “Artificial Pancreas—Investigation of the Stability of Glucose Sensors Using a Telemetry System” (English language translation of abstract), Jpn. J. Artif. Organs, vol. 19, No. 2, 1990, pp. 889-892.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, K. W., et al., “In vivo Evaluation of an Electroenzymatic Glucose Sensor Implanted in Subcutaneous Tissue”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 709-714.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Lortz, J., et al., “What is Bluetooth? We Explain The Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Maidan, R., et al., “Elimination of Electrooxidizable Interferant-Produced Currents in Amperometric Biosensors”, Analytical Chemistry, vol. 64, No. 23, 1992, pp. 2889-2896.
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
Mastrototaro, J. J., et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate”, Sensors and Actuators B, vol. 5, 1991, pp. 139-144.
Mcgarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages.
Mcgarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
Mckean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Minimed Technologies, “Tape Tips and Other Infusion Site Information”, 1995.
Moatti-Sirat, D., et al., “Towards Continuous Glucose Monitoring: In Vivo Evaluation of a Miniaturized Glucose Sensor Implanted for Several Days in Rat Subcutaneous Tissue”, Diabetologia, vol. 35, 1992, pp. 224-330.
Ohara, T. J., et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2C1]+/2+ Complexed Poly(1-Vinylimidazole) Films”, Analytical Chemistry, vol. 65, No. 23, 1993, pp. 3512-3517.
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Poitout, V., et al., “In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor”, ASAIO Transactions, vol. 37, No. 3, 1991, pp. M298-M300.
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Reach, G., et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?”, Analytical Chemistry, vol. 64, No. 6, 1992, pp. 381-386.
Rebrin, K., et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs”, Diabetologia, vol. 32, 1989, pp. 573-576.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidt, F. J., et al., “Calibration of a Wearable Glucose Sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115.
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Ye, L., et al., “High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode”, Analytical Chemistry, vol. 65, No. 3, 1993, pp. 238-241.
Australian Patent Application No. 2007309066, Examination Report dated Aug. 16, 2013.
Australian Patent Application No. 2007309066, Examination Report dated Jul. 12, 2012.
Canadian Patent Application No. 2617192, Examiner's Report dated Oct. 22, 2012.
Canadian Patent Application No. 2624247, Examiner's Report dated Mar. 27, 2013.
Canadian Patent Application No. 2872576, Examiner's Report dated Feb. 17, 2015.
Canadian Patent Application No. 2872576, Examiner's Report dated Feb. 19, 2016.
Chinese Patent Application No. 200780039416.2, Original Language and English Translation of Office Action dated Apr. 25, 2012.
Chinese Patent Application No. 200780039416.2, Original Language and English Translation of Office Action dated Mar. 30, 2011.
Chinese Patent Application No. 20078004373.9, Original Language and English Translation of Notice of Allowance dated May 18, 2011.
Chinese Patent Application No. 20078004373.9, Original Language and English Translation of Office Action dated Apr. 14, 2010.
Chinese Patent Application No. 20088005388.7, Original Language and English Translation of Office Action dated Jul. 25, 2011.
Chinese Patent Application No. 20088005388.7, Original Language and English Translation of Office Action dated May 15, 2012.
European Patent Application No. 08730066.1, Extended European Search Report dated Oct. 5, 2012.
European Patent Application No. EP-06788869.3, Examination Report dated Sep. 25, 2012.
European Patent Application No. EP-06788869.3, Extended European Search Report dated Mar. 18, 2010.
European Patent Application No. EP-06804122.7, Decision to Refuse the Application dated Feb. 25, 2013.
European Patent Application No. EP-06804122.7, Extended European Search Report dated Sep. 28, 2009.
European Patent Application No. EP-06804122.7, Official Letter dated Jan. 25, 2011.
European Patent Application No. EP-06804122.7, Official Letter dated Nov. 30, 2011.
European Patent Application No. EP-06813967.4, Extended European Search Report dated Mar. 4, 2010.
European Patent Application No. EP-06815715.5, Extended European Search Report dated Oct. 30, 2009.
European Patent Application No. EP-06851063.5, Extended European Search Report dated Sep. 21, 2009.
European Patent Application No. EP-07842173.2, Examination Report dated Mar. 21, 2013.
European Patent Application No. EP-07842173.2, Extended European Search Report dated Dec. 29, 2010.
European Patent Application No. EP-07842180.7, Examination Report dated Oct. 23, 2012.
European Patent Application No. EP-07842180.7, Extended Search Report dated Sep. 28, 2009.
European Patent Application No. EP-07842180.7, Official Letter dated Dec. 14, 2011.
European Patent Application No. EP-07842180.7, Second Office Action dated Feb. 23, 2011.
European Patent Application No. EP-07843396.8, Extended European Search Report dated Dec. 22, 2010.
European Patent Application No. EP-07843396.8, Intention to Grant a European Patent dated Sep. 17, 2012.
European Patent Application No. EP-07854298.2, Extended European Search Report dated Mar. 29, 2010.
European Patent Application No. EP-13000104.3, Extended European Search Report dated Mar. 12, 2013.
European Patent Application No. EP-14179905.6, Notice of Opposition filed May 19, 2016.
European Patent Application No. EP-15002441.2, Extended European Search Report dated Dec. 18, 2015.
Israeli Patent Application No. 198329, Original Language and English Translation of Office Action dated Mar. 5, 2012.
Japanese Patent Application No. 2009-534798, Original Language and English Translation of Office Action dated Sep. 25, 2012.
Japanese Patent Application No. 2009-534799, English Translation of Office Action dated Sep. 27, 2011.
Japanese Patent Application No. 2009-534799, Original Language and English Translation of Office Action dated Feb. 19, 2013.
Mexican Patent Application No. MX/a/2009/004322, English Translation of Office Action dated Mar. 11, 2013.
Mexican Patent Application No. MX/a/2009/004322, English Translation of Office Action dated Sep. 19, 2012.
Mexican Patent Application No. MX/a/2009/004398, Original Language and English Translation of Office Action dated Sep. 24, 2012.
PCT Application No. PCT/US2006/029541 International Search Report and Written Opinion of the International Searching Authority dated Apr. 24, 2001.
PCT Application No. PCT/US2006/029541, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Feb. 7, 2008.
PCT Application No. PCT/US2006/033885, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 13, 2008.
PCT Application No. PCT/US2006/033885, International Search Report and Written Opinion of the International Searching Authority dated Aug. 3, 2007.
PCT Application No. PCT/US2006/037312, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 11, 2008.
PCT Application No. PCT/US2006/037312, International Search Report and Written Opinion of the International Searching Authority dated Apr. 17, 2007.
PCT Application No. PCT/US2006/037928, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 19, 2009.
PCT Application No. PCT/US2006/037928, International Search Report and Written Opinion of the International Searching Authority dated Jul. 11, 2008.
PCT Application No. PCT/US2006/062690, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Oct. 7, 2008.
PCT Application No. PCT/US2006/062690, International Search Report and Written Opinion of the International Searching Authority dated Dec. 28, 2006.
PCT Application No. PCT/US2007/078065, International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2008.
PCT Application No. PCT/US2007/078073, International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2008.
PCT Application No. PCT/US2007/079774, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 9, 2009.
PCT Application No. PCT/US2007/079774, International Search Report and Written Opinion of the International Searching Authority dated Mar. 13, 2008.
PCT Application No. PCT/US2007/082114, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated May 7, 2009.
PCT Application No. PCT/US2007/082114, International Search Report and Written Opinion of the International Searching Authority dated May 9, 2008.
PCT Application No. PCT/US2007/082121, International Search Report and Written Opinion of the International Searching Authority dated May 9, 2008.
PCT Application No. PCT/US2007/082121, Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated May 7, 2009.
PCT Application No. PCT/US2008/054186, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Aug. 27, 2009.
PCT Application No. PCT/US2008/054186, International Search Report and Written Opinion of the International Searching Authority dated Aug. 8, 2008.
PCT Application No. PCT/US2008/065154, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Dec. 10, 2009.
PCT Application No. PCT/US2008/065154, International Search Report and Written Opinion of the International Searching Authority dated Sep. 3, 2008.
PCT Application No. PCT/US2010/022860, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Aug. 18, 2011.
PCT Application No. PCT/US2010/022860, International Search Report and Written Opinion of the International Searching Authority dated Mar. 10, 2010.
PCT Application No. PCT/US2010/047065, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 15, 2012.
PCT Application No. PCT/US2010/047065, International Search Report and Written Opinion of the International Searching Authority dated Dec. 21, 2010.
PCT Application No. PCT/US2010/047381, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 15, 2012.
PCT Application No. PCT/US2010/047381, International Search Report and Written Opinion of the International Searching Authority dated Oct. 15, 2010.
PCT Application No. PCT/US2010/047414, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 15, 2012.
PCT Application No. PCT/US2010/047414, International Search Report and Written Opinion of the International Searching Authority dated Dec. 27, 2010.
PCT Application No. PCT/US2010/047415, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Mar. 15, 2012.
PCT Application No. PCT/US2010/047415, International Search Report and Written Opinion of the International Searching Authority dated Oct. 25, 2010.
PCT Application No. PCT/US2010/050772, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 12, 2012.
PCT Application No. PCT/US2010/050772, International Search Report and Written Opinion of the International Searching Authority dated Dec. 3, 2010.
PCT Application No. PCT/US2010/050888, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 12, 2012.
PCT Application No. PCT/US2010/050888, International Search Report and Written Opinion of the International Searching Authority dated Nov. 29, 2010.
PCT Application No. PCT/US2010/051861, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Apr. 19, 2012.
PCT Application No. PCT/US2010/051861, International Search Report and Written Opinion of the International Searching Authority dated Nov. 30, 2010.
Russian Patent Application No. 2009-119430, Original Language and English Translation of Office Action dated Jun. 5, 2011.
Russian Patent Application No. 2009135048, Original Language and English Translation of Office Action dated Dec. 20, 2011.
U.S. Appl. No. 11/026,766, Office Action dated Apr. 28, 2011.
U.S. Appl. No. 11/026,766, Office Action dated Apr. 4, 2009.
U.S. Appl. No. 11/026,766, Office Action dated Dec. 24, 2009.
U.S. Appl. No. 11/026,766, Office Action dated Feb. 8, 2012.
U.S. Appl. No. 11/026,766, Office Action dated Jan. 26, 2007.
U.S. Appl. No. 11/026,766, Office Action dated Jul. 12, 2013.
U.S. Appl. No. 11/026,766, Office Action dated Jul. 21, 2008.
U.S. Appl. No. 11/026,766, Office Action dated May 9, 2006.
U.S. Appl. No. 11/026,766, Office Action dated Oct. 15, 2007.
U.S. Appl. No. 11/026,766, Office Action dated Oct. 19, 2011.
U.S. Appl. No. 11/026,766, Office Action dated Oct. 28, 2010.
U.S. Appl. No. 11/027,230, Advisory Action dated Aug. 27, 2012.
U.S. Appl. No. 11/027,230, Advisory Action dated Jul. 29, 2010.
U.S. Appl. No. 11/027,230, Notice of Allowance dated Aug. 14, 2013.
U.S. Appl. No. 11/027,230, Office Action dated Apr. 11, 2012.
U.S. Appl. No. 11/027,230, Office Action dated Apr. 24, 2013.
U.S. Appl. No. 11/027,230, Office Action dated Dec. 4, 2009.
U.S. Appl. No. 11/027,230, Office Action dated Jun. 24, 2008.
U.S. Appl. No. 11/027,230, Office Action dated Mar. 20, 2009.
U.S. Appl. No. 11/027,230, Office Action dated May 6, 2010.
U.S. Appl. No. 11/027,230, Office Action dated Oct. 1, 2012.
U.S. Appl. No. 11/192,773, Advisory Action dated Aug. 19, 2009.
U.S. Appl. No. 11/192,773, Office Action dated Apr. 4, 2007.
U.S. Appl. No. 11/192,773, Office Action dated Apr. 16, 2009.
U.S. Appl. No. 11/192,773, Office Action dated Aug. 2, 2011.
U.S. Appl. No. 11/192,773, Office Action dated Dec. 12, 2007.
U.S. Appl. No. 11/192,773, Office Action dated Dec. 17, 2009.
U.S. Appl. No. 11/192,773, Office Action dated Jan. 31, 2012.
U.S. Appl. No. 11/192,773, Office Action dated Jul. 16, 2010.
U.S. Appl. No. 11/192,773, Office Action dated Jul. 21, 2008.
U.S. Appl. No. 11/192,773, Office Action dated Mar. 29, 2013.
U.S. Appl. No. 11/192,773, Office Action dated Oct. 28, 2010.
U.S. Appl. No. 11/216,932, Notice of Allowance dated Mar. 11, 2010.
U.S. Appl. No. 11/216,932, Office Action dated Feb. 25, 2008.
U.S. Appl. No. 11/216,932, Office Action dated Jul. 9, 2008.
U.S. Appl. No. 11/216,932, Office Action dated May 24, 2007.
U.S. Appl. No. 11/240,257, Notice of Allowance dated Dec. 16, 2010.
U.S. Appl. No. 11/240,257, Office Action dated Apr. 17, 2009.
U.S. Appl. No. 11/240,257, Office Action dated Dec. 24, 2009.
U.S. Appl. No. 11/240,257, Office Action dated Jul. 12, 2010.
U.S. Appl. No. 11/240,257, Office Action dated Jun. 27, 2008.
U.S. Appl. No. 11/240,257, Office Action dated Oct. 18, 2010.
U.S. Appl. No. 11/240,259, Notice of Allowance dated Jun. 3, 2013.
U.S. Appl. No. 11/240,259, Office Action dated Jun. 5, 2009.
U.S. Appl. No. 11/240,259, Office Action dated Nov. 29, 2007.
U.S. Appl. No. 11/240,259, Office Action dated Nov. 30, 2009.
U.S. Appl. No. 11/240,259, Office Action dated Oct. 6, 2008.
U.S. Appl. No. 11/365,334, Advisory Action dated Jul. 29, 2009.
U.S. Appl. No. 11/365,334, Notice of Allowance dated Jul. 14, 2011.
U.S. Appl. No. 11/365,334, Office Action dated Apr. 20, 2009.
U.S. Appl. No. 11/365,334, Office Action dated Dec. 28, 2009.
U.S. Appl. No. 11/365,334, Office Action dated Feb. 7, 2011.
U.S. Appl. No. 11/365,334, Office Action dated Jun. 30, 2008.
U.S. Appl. No. 11/365,334, Office Action dated May 14, 2010.
U.S. Appl. No. 11/380,883, Office Action dated Jul. 19, 2010.
U.S. Appl. No. 11/380,883, Office Action dated Jul. 7, 2008.
U.S. Appl. No. 11/380,883, Office Action dated Nov. 12, 2009.
U.S. Appl. No. 11/380,883, Office Action dated Oct. 3, 2008.
U.S. Appl. No. 11/530,472, Advisory Action dated Apr. 20, 2009.
U.S. Appl. No. 11/530,472, Advisory Action dated Apr. 21, 2010.
U.S. Appl. No. 11/530,472, Notice of Allowance dated Aug. 17, 2012.
U.S. Appl. No. 11/530,472, Office Action dated Dec. 14, 2010.
U.S. Appl. No. 11/530,472, Office Action dated Feb. 2, 2010.
U.S. Appl. No. 11/530,472, Office Action dated Jan. 14, 2008.
U.S. Appl. No. 11/530,472, Office Action dated Jun. 1, 2012.
U.S. Appl. No. 11/530,472, Office Action dated May 14, 2009.
U.S. Appl. No. 11/530,472, Office Action dated May 18, 2011.
U.S. Appl. No. 11/530,472, Office Action dated Nov. 21, 2008.
U.S. Appl. No. 11/530,472, Office Action dated Sep. 10, 2011.
U.S. Appl. No. 11/530,473, Office Action dated Dec. 11, 2009.
U.S. Appl. No. 11/530,473, Office Action dated Jan. 10, 2008.
U.S. Appl. No. 11/530,473, Office Action dated Jun. 25, 2010.
U.S. Appl. No. 11/530,473, Office Action dated May 14, 2009.
U.S. Appl. No. 11/530,473, Office Action dated Oct. 6, 2008.
U.S. Appl. No. 11/535,983, Notice of Allowance dated Feb. 19, 2010.
U.S. Appl. No. 11/535,983, Office Action dated Jun. 26, 2009.
U.S. Appl. No. 11/535,983, Office Action dated Oct. 3, 2008.
U.S. Appl. No. 11/552,065, Advisory Action dated Sep. 5, 2012.
U.S. Appl. No. 11/552,065, Office Action dated Jun. 28, 2012.
U.S. Appl. No. 11/552,065, Office Action dated Nov. 17, 2011.
U.S. Appl. No. 11/552,072, Office Action dated Jan. 20, 2010.
U.S. Appl. No. 11/552,072, Office Action dated Jul. 23, 2009.
U.S. Appl. No. 11/552,072, Office Action dated Oct. 3, 2008.
U.S. Appl. No. 11/617,698, Notice of Allowance dated May 24, 2013.
U.S. Appl. No. 11/617,698, Office Action dated Dec. 17, 2009.
U.S. Appl. No. 11/617,698, Office Action dated Jun. 21, 2010.
U.S. Appl. No. 11/617,698, Office Action dated Jun. 26, 2009.
U.S. Appl. No. 11/617,698, Office Action dated Nov. 29, 2010.
U.S. Appl. No. 11/617,698, Office Action dated Oct. 2, 2012.
U.S. Appl. No. 11/617,698, Office Action dated Oct. 3, 2008.
U.S. Appl. No. 12/032,593, Advisory Action dated Nov. 24, 2010.
U.S. Appl. No. 12/032,593, Office Action dated Mar. 26, 2010.
U.S. Appl. No. 12/032,593, Office Action dated Sep. 17, 2010.
U.S. Appl. No. 12/129,573, Notice of Allowance dated Aug. 22, 2013.
U.S. Appl. No. 12/129,573, Office Action dated Apr. 13, 2012.
U.S. Appl. No. 12/129,573, Office Action dated Mar. 11, 2013.
U.S. Appl. No. 12/129,573, Office Action dated Oct. 22, 2012.
U.S. Appl. No. 12/129,573, Office Action dated Sep. 29, 2011.
U.S. Appl. No. 12/571,349, Office Action dated Apr. 29, 2011.
U.S. Appl. No. 12/571,349, Office Action dated Nov. 10, 2010.
U.S. Appl. No. 12/571,349, Office Action dated Oct. 11, 2013.
U.S. Appl. No. 12/795,634, Notice of Allowance dated Oct. 2, 2013.
U.S. Appl. No. 12/795,634, Notice of Allowance dated Sep. 16, 2013.
U.S. Appl. No. 12/795,634, Office Action dated May 23, 2013.
U.S. Appl. No. 12/826,662, Advisory Action dated Sep. 12, 2012.
U.S. Appl. No. 12/826,662, Office Action dated Dec. 22, 2011.
U.S. Appl. No. 12/826,662, Office Action dated Jul. 2, 2012.
U.S. Appl. No. 12/826,662, Office Action dated Nov. 4, 2013.
U.S. Appl. No. 12/870,818, Office Action dated May 23, 2013.
U.S. Appl. No. 12/870,818, Office Action dated Nov. 29, 2013.
U.S. Appl. No. 12/873,301, Office Action dated Aug. 27, 2012.
U.S. Appl. No. 12/873,301, Office Action dated Oct. 29, 2013.
U.S. Appl. No. 12/873,302, Office Action dated Mar. 14, 2013.
U.S. Appl. No. 12/873,302, Office Action dated Oct. 15, 2012.
U.S. Appl. No. 12/873,302, Office Action dated Sep. 12, 2013.
U.S. Appl. No. 12/893,974, Office Action dated Dec. 19, 2013.
U.S. Appl. No. 12/893,974, Office Action dated Mar. 28, 2013.
U.S. Appl. No. 13/022,616, Office Action dated Feb. 26, 2014.
U.S. Appl. No. 13/252,118, Office Action dated May 19, 2013.
U.S. Appl. No. 13/717,501, Office Action dated Jan. 10, 2014.
U.S. Patent Reexamination U.S. Appl. No. 90/008,172, Request for Reexamination of U.S. Pat. No. 6,990,366, filed Aug. 16, 2006.
U.S. Patent Reexamination U.S. Appl. No. 90/008,457, Notice of Intent to Issue Reexamination Certificate dated Mar. 13, 2008.
U.S. Patent Reexamination U.S. Appl. No. 90/008,457, Order Granting Request for Reexamination dated Feb. 23, 2007.
U.S. Patent Reexamination U.S. Appl. No. 90/008,457, Request for Reexamination of U.S. Pat. No. 6,990,366, filed Jan. 23, 2007.
U.S. Patent Reexamination U.S. Appl. Nos. 90/009,328 & 90/009,328, Notice of Intent to Issue Reexamination Certificate dated Nov. 20, 2009.
U.S. Patent Reexamination U.S. Appl. Nos. 90/009,328 & 90/009,328, Office Action dated Aug. 4, 2009.
U.S. Patent Reexamination U.S. Appl. Nos. 90/009,328 & 90/009,328, Office Action dated Sep. 30, 2009.
U.S. Patent Reexamination U.S. Appl. No. 90/009,104, Office Action dated Oct. 16, 2008.
U.S. Patent Reexamination U.S. Appl. No. 90/009,104, Order Granting Request for Reexamination dated Jun. 5, 2008.
U.S. Patent Reexamination U.S. Appl. No. 90/009,104, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Apr. 8, 2008.
U.S. Patent Reexamination U.S. Appl. No. 90/009,328, Order Granting Request for Reexamination dated Dec. 9, 2008.
U.S. Patent Reexamination U.S. Appl. No. 90/009,328, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Nov. 10, 2008.
U.S. Patent Reexamination U.S. Appl. No. 90/010,791, Notice of Intent to Issue Reexamination Certificate dated May 17, 2011.
U.S. Patent Reexamination U.S. Appl. No. 90/010,791, Office Action dated Dec. 17, 2010.
U.S. Patent Reexamination U.S. Appl. No. 90/010,791, Office Action dated May 28, 2010.
U.S. Patent Reexamination U.S. Appl. No. 90/010,791, Order Granting Request for Reexamination dated Feb. 22, 2010.
U.S. Patent Reexamination U.S. Appl. No. 90/010,791, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Dec. 22, 2009.
U.S. Patent Reexamination U.S. Appl. No. 90/011,730, Notice of Intent to Issue Reexam Certificate for U.S. Pat. No. 6,990,366 dated Apr. 5, 2012.
U.S. Patent Reexamination U.S. Appl. No. 90/011,730, Office Action dated Jan. 11, 2012.
U.S. Patent Reexamination U.S. Appl. No. 90/011,730, Order Granting Request for Reexamination of U.S. Pat. No. 6,990,366 dated Aug. 24, 2011
U.S. Patent Reexamination U.S. Appl. No. 90/011,730, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Jun. 3, 2011.
U.S. Patent Reexamination U.S. Appl. No. 95/002,113, Order Denying Request for Reexamination of U.S. Pat. No. 6,990,366 dated Nov. 13, 2012.
U.S. Patent Reexamination U.S. Appl. No. 95/002,113, Petition for Review of the Order Denying Request Reexamination of U.S. Pat. No. 6,990,366 dated Dec. 13, 2012.
U.S. Patent Reexamination U.S. Appl. No. 95/002,113, Request for Reexamination of U.S. Pat. No. 6,990,366 filed Aug. 30, 2012.
U.S. Patent Reexamination U.S. Appl. No. 95/002,162, Order Denying Request for Reexamination of U.S. Pat. No. 8,175,673 dated Nov. 13, 2012.
U.S. Patent Reexamination U.S. Appl. No. 95/002,162, Petition for Review of the Order Denying Request Reexamination of U.S. Pat. No. 8,175,673 dated Dec. 13, 2012.
U.S. Patent Reexamination U.S. Appl. No. 95/002,162, Request for Reexamination of U.S. Pat. No. 8,175,673 filed Sep. 7, 2012.
Related Publications (1)
Number Date Country
20190365297 A1 Dec 2019 US
Provisional Applications (12)
Number Date Country
61470454 Mar 2011 US
61359816 Jun 2010 US
61247516 Sep 2009 US
61246825 Sep 2009 US
61238537 Aug 2009 US
61238483 Aug 2009 US
61238494 Aug 2009 US
61238159 Aug 2009 US
60754870 Dec 2005 US
60941060 May 2007 US
60890497 Feb 2007 US
60754870 Dec 2005 US
Continuations (7)
Number Date Country
Parent 14040674 Sep 2013 US
Child 16263155 US
Parent 11240259 Sep 2005 US
Child 13970397 US
Parent 11530472 Sep 2006 US
Child 13717501 US
Parent 11240257 Sep 2005 US
Child 13022616 US
Parent 11216932 Aug 2005 US
Child 12795634 US
Parent 11535983 Sep 2006 US
Child 12571349 US
Parent 11365334 Feb 2006 US
Child 13252118 US
Continuation in Parts (24)
Number Date Country
Parent 13970397 Aug 2013 US
Child 14040674 US
Parent 13717501 Dec 2012 US
Child 14040674 Sep 2013 US
Parent 13434804 Mar 2012 US
Child 14040674 Sep 2013 US
Parent 13171401 Jun 2011 US
Child 13434804 US
Parent 13022616 Feb 2011 US
Child 13171401 US
Parent 12895015 Sep 2010 US
Child 14040674 Sep 2013 US
Parent 12893974 Sep 2010 US
Child 12895015 US
Parent 12873302 Aug 2010 US
Child 12893974 US
Parent 12873301 Aug 2010 US
Child 12873302 US
Parent 12870818 Aug 2010 US
Child 12873301 US
Parent 12795634 Jun 2010 US
Child 12870818 US
Parent 12571349 Sep 2009 US
Child 14040674 Sep 2013 US
Parent 12129573 May 2008 US
Child 14040674 Sep 2013 US
Parent 12032593 Feb 2008 US
Child 12129573 US
Parent 11617698 Dec 2006 US
Child 12032593 US
Parent 11552072 Oct 2006 US
Child 11617698 US
Parent 11552065 Oct 2006 US
Child 11552072 US
Parent 11530473 Sep 2006 US
Child 11552065 US
Parent 11240259 Sep 2005 US
Child 11530473 US
Parent 11192773 Jul 2005 US
Child 14040674 Sep 2013 US
Parent 11027230 Dec 2004 US
Child 11192773 US
Parent 11026766 Dec 2004 US
Child 11027230 US
Parent 13252118 Oct 2011 US
Child 11026766 US
Parent 11380883 Apr 2006 US
Child 14040674 Sep 2013 US