Sensor insertion devices and methods of use

Information

  • Patent Grant
  • 11234621
  • Patent Number
    11,234,621
  • Date Filed
    Wednesday, August 29, 2018
    5 years ago
  • Date Issued
    Tuesday, February 1, 2022
    2 years ago
Abstract
An automatic sensor inserter is disclosed for placing a transcutaneous sensor into the skin of a living body. According to aspects of the invention, characteristics of the insertion such as sensor insertion speed may be varied by a user. In some embodiments, insertion speed may be varied by changing an amount of drive spring compression. The amount of spring compression may be selected from a continuous range of settings and/or it may be selected from a finite number of discrete settings. Methods associated with the use of the automatic inserter are also covered.
Description
FIELD OF THE INVENTION

The present invention relates to medical devices for monitoring analytes in a living body, such as monitoring glucose levels in people with diabetes. More particularly, the invention relates to automatic devices for inserting analyte sensors into the skin of a patient.


BACKGROUND OF THE INVENTION

In recent years, people with diabetes have typically measured their blood glucose level by lancing a fingertip or other body location to draw blood, applying the blood to a disposable test strip in a hand-held meter and allowing the meter and strip to perform an electrochemical test of the blood to determine the current glucose concentration. Such discrete, in vitro testing is typically conducted at least several times per day. Continuous in vivo glucose monitoring devices are currently being developed to replace in vitro devices. Some of these continuous systems employ a disposable, transcutaneous sensor that is inserted into the skin to measure glucose concentrations in interstitial fluid. A portion of the sensor protrudes from the skin and is coupled with a durable controller and transmitter unit that is attached to the skin with adhesive. A wireless handheld unit is used in combination with the skin-mounted transmitter and sensor to receive glucose readings periodically, such as once a minute. Every three, five or seven days, the disposable sensor is removed and replaced with a fresh sensor which is again coupled to the reusable controller and transmitter unit. With this arrangement, a person with diabetes may continuously monitor their glucose level with the handheld unit. Detailed descriptions of such a continuous glucose monitoring system and its use are provided in U.S. Pat. No. 6,175,752, issued to Abbott Diabetes Care Inc., formerly known as TheraSense, Inc. on Jan. 16, 2001, which is incorporated by reference herein in its entirety.


Transcutaneous analyte sensors may be inserted into the user's skin using an automatic introducer or inserter device, such as those described in U.S. patent application Ser. No. 10/703,214, published Jul. 8, 2004 under publication number 2004/0133164, now U.S. Pat. No. 7,381,184, incorporated herein by reference in its entirety. Most sensor inserter devices described in the above published patent application have two springs, one for driving an introducer sharp and a sensor into the skin of a patient, and another for retracting the introducer sharp, leaving the sensor behind in the patient's skin. The spring arrangements are chosen to provide an introducer sharp and sensor speed optimized to insert the sensor into a typical patient.


SUMMARY OF THE INVENTION

According to aspects of some embodiments of the present invention, it is recognized that a sensor introducer having variable insertion speeds, insertion forces, travel distances, accelerations and/or other characteristics of sensor insertion that may be adjusted for different situations and/or different patients may be desirable. For example, due to physiological factors and trauma that may result from high speed automatic insertion of an analyte sensor, there may be a need to slow down and control the velocity of the puncturing apparatus. In other situations, such as for patients with different skin characteristics such as higher than average skin thickness and/or skin density, it may be desirable to speed up the velocity of the puncturing device. Alternatively, situations involving inserting sensors into different locations on a patient, such as the arm, torso or thigh, may benefit from the use of a single inserter or single inserter type with a sensor insertion velocity that may be sped up or slowed down. According to other aspects of the invention, a single inserter type may be configured to alternately insert different types of sensors and/or other devices, in which case an insertion setting may be set depending on which type of sensor or device is currently being inserted.


According to other aspects of the invention, a sensor insertion device may be provided with an adjustable feature allowing a user to adjust the sensor insertion speed prior to use.


According to other aspects of the invention, a sensor insertion device may be provided with an adjustment feature allowing the insertion speed to be variably adjusted over a range of velocities.


According to other aspects of the invention, a sensor insertion device may be provided with an adjustment feature allowing the insertion speed to be selected from among a finite number of discrete settings.


According to other aspects of the invention, a sensor insertion device may be provided with an adjustment feature allowing the insertion speed to be adjusted by changing the amount of compression of a drive spring. In one embodiment, a spring compression may be adjusted by using a knob. In another embodiment, a spring compression may be adjusted by turning a thumbwheel. In another embodiment, a spring compression may be adjusted by changing the orientation of a component of the inserter. In another embodiment, a spring compression may be adjusted by using one or more magnets.


Various analytes may be monitored by sensors inserted into a patient according to aspects of the present invention. These analytes may include, but are not limited to, lactate, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth honnones, hematocrit, hemoglobin (e.g. HbAlc), honnones, ketones, lactate, oxygen, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin, in samples of body fluid. Monitoring systems may also be configured to determine the concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, warfarin and the like. Such analytes may be monitored in blood, interstitial fluid and other bodily fluids.


In certain embodiments, other types of sensors may be inserted into a body using an inserter constructed according to aspects of the present invention. Such sensors may include, but are not limited to, devices for measuring physiologic parameters such as temperatures, pressures, respiration, pulse, movement and electrical signals, through means such as mechanical, chemical, electrical, optical or otherwise. In addition to or instead of inserting a sensor(s) into a body, an inserter constructed according to aspects of the present invention may insert medicine, fluid delivery devices such as infusion sets, cannulas or needles, or other medical devices.





BRIEF DESCRIPTION OF THE DRAWINGS

Each of the figures diagrammatically illustrates aspects of the invention. Of these:



FIG. 1 is a perspective view showing an exemplary embodiment of a sensor inserter and adhesive mount constructed according to aspects of the present invention.



FIG. 2 is a perspective view of an adhesive mount and sensor attached to a patient's skin.



FIG. 3 is a perspective view of a transmitter attached to an adhesive mount and transmitting to a handheld receiver.



FIG. 4 is an exploded perspective view of the embodiment shown in FIG. 1.



FIG. 5 is a side elevation view of the embodiment shown in FIG. 1.



FIG. 6 is an end elevation view of the embodiment shown in FIG. 1.



FIG. 7 is a cross-sectional view taken along line 7-7 in FIG. 6.



FIG. 8 is a cross-sectional view taken along line 8-8 in FIG. 5.



FIG. 9 is a broken away view similar to FIG. 8, showing a shuttle in a neutral position.



FIG. 10 is a broken away view similar to FIG. 8, showing a shuttle in a cocked position.



FIG. 11 is a broken away view similar to FIG. 8, showing a shuttle in an insertion position.



FIG. 12 is a cross-sectional view taken along line 12-12 in FIG. 5.



FIG. 13 is a perspective view of a transcutaneously implantable sensor.



FIG. 14A is a perspective view of a sensor introducer.



FIG. 14B is a bottom view of the introducer shown in FIG. 14A.



FIG. 15 is a perspective view of a shuttle member.



FIG. 16A is a perspective view of an alternative embodiment of a sensor inserter kit.



FIG. 16B is an exploded view of some of the components shown assembled in FIG. 16A.



FIG. 17 is a side elevation view schematically showing an alternative embodiment of a sensor inserter.



FIG. 18A is a side elevation view schematically showing an alternative embodiment of a sensor inserter.



FIG. 18B is a top view schematically showing the sensor inserter of FIG. 18A.



FIG. 19A is a side elevation view schematically showing an alternative embodiment of a sensor inserter.



FIG. 19B is a top view schematically showing the sensor inserter of FIG. 19A.



FIG. 20A is a side elevation view schematically showing an alternative embodiment of a sensor inserter.



FIG. 20B is a top view schematically showing the sensor inserter of FIG. 20A.





Variation of the invention from that shown in the figures is contemplated.


DETAILED DESCRIPTION

The following description focuses on several variations of the present invention. The variations of the invention are to be taken as non-limiting examples. It is to be understood that the invention is not limited to particular variation(s) set forth and may, of course, vary. Changes may be made to the invention described and equivalents may be substituted (both presently known and future-developed) without departing from the true spirit and scope of the invention. In addition, modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention.


Referring to FIGS. 1-20, exemplary embodiments of a sensor inserter constructed according to some aspects of the invention will be described. FIG. 1 shows an overall perspective view of a sensor inserter kit 300 comprising a single-use sensor inserter 310 and a single-use adhesive mount 312 removably attached to the bottom thereof.


As an overview of the operation of this embodiment of an inserter kit 300, the kit may come packaged generally as shown in FIG. 1 with a sensor 314 (best seen in FIGS. 4 and 13) preloaded within inserter 310 and with inserter 310 in a “cocked” state. After preparing an insertion site on the skin, typically in the abdominal region, the patient may remove an upper liner 316 and a lower liner 318 from adhesive mount 312 to expose the bottom surface and a portion of the top surface of an adhesive tape 320 (best seen in FIG. 4) located beneath mount 312. Mount 312, with inserter 310 attached, may then be applied to the patient's skin at the insertion site. Safety lock tabs 322 may be squeezed together to allow actuator button 324 to be pressed causing inserter 310 to fire, thereby inserting sensor 314 into the patient's skin with a predetermined velocity and force. Once sensor 314 has been inserted into the skin, the patient may remove inserter 310 from mount 312 by pressing release tabs 326 on opposite sides of inserter 310 and lifting inserter 310 away from mount 312


Referring to FIGS. 2 and 3, mount 312 is shown adhered to a patient's skin 328 with sensor 314 already inserted, according to this exemplary embodiment. Once inserter 310 is removed from mount 312, transmitter 330 may be slid into place. The circuitry 442 of transmitter 330 may then make electrical contact with the contact pads on sensor 314 after transmitter 330 is fully seated on mount 312. Once initialization and synchronization procedures are completed, electrochemical measurements from sensor 314 may be sent wirelessly from transmitter 330 to a portable receiver 332, as shown in FIG. 3. Sensor 314, mount 312 and transmitter 330 may remain in place on the patient for a predetermined period, such as three, five or seven days. These components may then be removed so that sensor 314 and mount 312 may be properly discarded. The entire procedure above may then be repeated with a new inserter 310, sensor 314 and mount 312, reusing transmitter 330 and receiver 332.


Referring to FIG. 4, inserter kit 300 may be assembled as shown from the following components: housing 334, actuator button 324, drive spring 336, shuttle 338, introducer sharp 340, sensor 314, retraction spring 342, inserter base 344, upper liner 316, adhesive mount 312, adhesive tape 320, and lower liner 318.


Sensor 314 may have a main surface 346 slidably mounted between U-shaped rails 348 of introducer sharp 340 and releasably retained there by sensor dimple 350 which engages introducer dimple 352. Introducer sharp 340 may be mounted to face 354 of shuttle 338, such as with adhesive, heat stake or ultrasonic weld. Sensor 314 may also have a surface 356 that extends orthogonally from main surface 346 and just beneath a driving surface 358 of shuttle 338 when mounted thereon (details of these features are better shown in FIGS. 7 and 13-15.)


Shuttle 338 may be slidably and non-rotatably constrained on base 344 by arcuate guides 360. As best seen in FIGS. 7, 12 and 15, shuttle 338 may be generally formed by an outer ring 362 and an inner cup-shaped post 364 connected by two bridges 366. Bridges 366 slide between the two slots 368 formed between guides 360 and allow shuttle 338 to travel along guides 360 without rotating. Retraction spring 342 may be captivated at its outer circumference by guides 360, at its bottom by the floor 370 of base 344, at its top by bridges 366, and/or at its inner circumference by the outer surface of shuttle post 364. Drive spring 336 may be captivated at its bottom and outer circumference by the inside surface of shuttle post 364, at its top by the ceiling 372 inside actuator button 324, and/or at its inner circumference by stem 374 depending from ceiling 372. When drive spring 336 is compressed between actuator button 324 and shuttle 338 it urges shuttle 338 towards base 344. When retraction spring 342 is compressed between shuttle 338 and base 344, it urges shuttle 338 towards actuator button 324.


Actuator button 324 may be slidably received within housing 334 from below and reside in opening 376 at the top of housing 334 with limited longitudinal movement. Arms 378 on each side of actuator button 324 may travel in channels 380 along the inside walls of housing 334, as best seen in FIG. 8. Longitudinal movement of actuator button 324 may be limited in one direction by the base of arms 378 contacting the edge of opening 376 at the top of housing 334, and in the other direction by the distal ends 384 of arms 378 contacting stops 386 in channels 380. In this embodiment, slots 388 are provided in the top of housing 334 for ease of housing manufacture and so tools may be inserted to inwardly compress areas 378 beyond stops 386 to allow actuator button 324 to be removed from housing 334 if needed.


When sensor 314, introducer 340, shuttle 338, retraction spring 342, drive spring 336 and actuator button 324 are assembled between base 344 and housing 334 as shown in FIG. 4 and described above, housing 334 may be snapped into place on base 344. Base 344 may be held onto housing 334 by upper base barbs 390 that engage upper openings 392 in housing 334, and lower base barbs 394 (best seen in FIG. 5) that engage lower openings 396 in housing 334. In this embodiment, slots 398 and 400 are provided for ease of manufacture of housing 334, and base 344 is removable from housing 334 with tools if needed.


Referring to FIG. 7, actuator button 324 may be provided with safety lock tabs 322 hingedly formed on opposite ends. Tabs 322 may be urged from a relaxed outward position to a flexed inward position. When in the normal outward position, shoulders 402 on the outer surfaces of tabs 322 engage the rim 404 of opening 376 to prevent the actuator button 324 from being depressed, thereby avoiding accidental firing of inserter 310. Tabs 322 maybe squeezed inward just enough to clear the rim 404 of opening 376 while pressing the actuator button 324 down to fire the inserter. Alternatively, tabs 322 may be squeezed further inward so that barbs 406 on the inside edges engage catches 408 located on a center portion of actuator button 324, thereby defeating the safety lock to allow later firing by simply pressing down on the actuator button 324. In this embodiment, upwardly extending grips are provided on tabs 322 for better visual indication of safety lock status and actuation control.


Referring to FIG. 8, shuttle 338 may be provided with laterally extending barbed fingers 412 which travel in channels 380 along the inside walls of housing 334. When shuttle 338 is inserted up into housing 334 far enough in this embodiment, barbed fingers 412 momentarily deflect inward and then snap outward again to catch on stops 386. In this “cocked” position as shown, drive spring 336 may be compressed and urging shuttle 338 towards base 344, but barbed fingers 412 catching on stops 386 prevent such travel.


Referring to FIGS. 9-11, the sequence of loading, cocking, arming, firing, and automatic retraction of exemplary inserter 310 will be described. According to aspects of the invention, during production inserters 310 may be fabricated and fully assembled by one vendor, except for sensor 314, which may be supplied and installed by a second vendor in a sterile environment. Accordingly, inserter 310 may be manufactured and shipped to the sensor vendor in a neutral state, as shown in FIG. 9. A hole 414 provided through the center of actuator button 324 allows the sensor vendor to insert a pin (manually or by automated machinery, not shown) through hole 414 to drive shuttle 338 towards base 344 in a controlled fashion and hold it there against the force of retraction spring 342. This will allow introducer sharp 340 to be extended through base 344 (as shown in FIG. 11) so that sensor 314 may be loaded into introducer 340. When the pin is removed, shuttle 338, introducer 340 and sensor 314 may be allowed to retract to the neutral position. The sensor vendor may then cock the loaded inserter 310 before shipment by pushing another pin (not shown) from the opposite direction through a central hole 416 in base 344 (with mount 312 removed) until the pin contacts dimple 418 formed in the bottom of shuttle 338. By pushing shuttle 338 towards actuator button 324 until barbed fingers 412 clear stops 386, the inserter 310 may be cocked (as shown in FIG. 10.)


Referring to FIG. 10, inserter 310 may be received by the patient in the cocked position as shown. To use inserter 310, the patient may apply mount 312 to the mounting site and may disable the safety mechanism as previously described, and may then push actuator button 324 against the force of drive spring 336. As actuator button 324 travels toward base 344, drive cam surfaces 420 on arms 378 contact ramped surfaces 422 of barbed fingers 412 and urge them inward. When fingers 412 are driven inward enough to clear stops 386, shuttle 338 may be driven by drive spring 336 with a predetermined speed and force to an insertion position, as shown in FIG. 11.


Referring to FIG. 11, exemplary inserter 310 is shown in the insertion position with the tail 424 of introducer sharp 340 extending through base 344 and mount 312 into the skin of the patient. FIG. 11 shows shuttle 338 in a fully extended position with its lower surface 426 (see FIG. 15) bottomed out on base 344. However, in this embodiment, the lower orthogonal surface 356 of sensor 314 will contact an exposed sensor contact portion 428 (best seen in FIGS. 2 and 4) on top of adhesive tape 320 supported from below by the patient's skin, and therefore will typically stop traveling before reaching the fully bottomed out position shown. Tail 424 of introducer sharp 340 may provide rigidity and a skin piercing edge 430 for allowing the flexible tail 431 (FIG. 13) of sensor 314 to be implanted in the patient's skin. After providing this function, introducer sharp 340 may be immediately removed from the patient and retracted into a safe position inside housing 334 as retraction spring 342 (which has been compressed by the travel of the shuttle) pushes shuttle 338 back towards actuator cap. Sensor 314 may be pulled from introducer 340 and held in place by the sensor contact portion 428 on top of adhesive tape 320 adhering to orthogonal surface 356 of sensor 314. The geometries of sensor dimple 350 (FIG. 13) and mating introducer dimple 352 (FIG. 14A) may be chosen to create a separation force between them that is less than the adhesion force of tape 320 on orthogonal surface 356, but great enough to retain sensor 314 in introducer 340 during typical shipping and product handling shock loads. Driving surface 358 beneath shuttle 338 may press down on top of orthogonal surface 356 to ensure good contact with adhesive tape 320 before shuttle 338 retracts within introducer 340. Barb(s) on sensor tail 431 may be employed to further anchor the sensor in its operating position.


Referring again to FIG. 9, in this embodiment retraction spring 342 will return shuttle 338 to the neutral position as shown after firing, but without sensor 314 which remains inserted in patient's skin (not still in introducer 340 as shown here). Drive spring 336 may be designed to be stiffer than retraction spring 342 so that shuttle 338 oscillations are quickly dampened out, and so introducer sharp 340 does not return to sensor 314 or the patient to cause injury. With sensor 314 now inserted in the patient's skin, inserter 310 may be removed from mount 312 by inwardly flexing release tabs 326 on opposite sides of inserter 310 to remove latch hooks 432 (see FIG. 8) from mount channels 434 (FIG. 8) and then lifting inserter 310 away from mount 312. Introducer sharp 340 remains protected inside housing 334 during disposal of inserter 310. Transmitter 330 may now be slid into place on mount 312 as previously described.


In one embodiment, sensor 314 may be made from a 0.005 inch thick Mylar substrate, such as Dupont Melinex ST-505, print treated both sides, heat stabilized and bi-axially oriented. In this embodiment, main surface 346 is 0.315 inches tall by 0.512 inches wide, and orthogonal surface 356 is 0.374 inches wide by 0.202 inches deep. Sensor tail 431 is 0.230 inches long by 0.023 inches wide. Semispherical sensor dimple 350 is 0.050 inches wide and 0.026 inches deep. Introducer 340 is made from SUS 301 medical grade stainless steel, 0.004 inches thick, having a surface roughness less than or equal to 0.5 micrometers. The height of the main portion of introducer 340 is 0.614 inches, and the inside width is 0.513 inches. The overall thickness of rolled rails 348 is 0.026 inches. The length and width of introducer tail 424 are 0.354 and 0.036 inches, respectively. The preferred angle of the sharp 340 is 21 degrees. Semispherical introducer dimple 352 has a radius of 0.024 inches. Also, in this embodiment, shuttle 338 has an average speed of at least 1 meter/second, and has a momentum at its end of travel of about 2.65 lb-m/sec.


In the above exemplary embodiment, housing 334, button 324, shuttle 338, base 344 and mount 312 are all injection molded from G.E. Lexan PC. Inside and outside working surfaces of arms 378 on button 324 are lubricated with Dow Corning 360 Medical Fluid. Drive spring 336 has a free length of 1.25 inches, a working length of 1.00 inch, and a rate between 20 and 30 pounds per inch. Retraction spring 342 has a free length of 1.5 inches, a working length of 0.35 inches, and a rate between 0.15 and 0.35 pounds per inch. Adhesive tape 320 is medical grade acrylic adhesive on polyester film (such as Acutek 0396013) with a semi-bleached kraft liner having silicon release.


The following enhancements may be added to the inserter kit 300 described above in an effort to increase the reliability of sensor insertion. First, a sensor flap may be formed along the top edge of sensor 314 (FIG. 13). When sensor 314 reaches the extended, delivered position as shown in FIG. 11, the sensor flap catches on a bottom edge of base 344 to ensure that sensor 314 separates from introducer 340 as shuttle 338 returns upward to the retracted position. Adhesive may also be located on the bottom of orthogonal sensor surface 356 to ensure that sensor 314 adheres to the sensor contact portion 428 on the top of adhesive mount tape 320, as shown in FIG. 4.


Referring to FIGS. 16A and 16B, an alternative embodiment of inserter kit 300′ is shown. Actuator button 324′ may be made easier for elderly patients to push by anchoring the upper end of drive spring 336 on a housing bridge 470 instead of button 324. This option may also make the insertion force of inserter 310 more consistent, and may allow stronger spring forces to be used if desired. Bridge 470 may span across opening 376′ and divide it into two openings 472 in the top of housing 334′. The top portion of button 324′ may be bifurcated into two protrusions 474 that each extend through an opening 472. A clearance hole (not shown) may be provided through the center of button 324′ to allow drive spring 336 to pass through and secure around a post (not shown) depending from the bottom center of bridge 470.


Safety lock key 476 may be provided to prevent actuator button 324′ from being pressed until key 476 is removed. Aperture 478 may be provided in the top center of bridge 470 for receiving boss 480 located at the bottom of key 476, thereby allowing key 476 to rotate. When key handle 482 is rotated perpendicular to button protrusions 474 in the embodiment shown in FIGS. 16A and 16B, two opposing perpendicular fins 484 on key 476 swing into inwardly facing slots (not shown) on the inside of protrusions 474 and prevent button 324′ from being actuated. When key handle 482 and fins 484 are rotated parallel to button protrusions 474 such that fins 484 disengage therefrom, key 476 may be removed and button 324′ may then be actuated. Other than these modifications, this alternative embodiment inserter kit 300′ functions the same as the embodiments previously described.


In another embodiment, less aggressive finger engagement with stops 386 may be employed to provide an easier and more consistent release of shuttle 338 by actuator button 324 or 324′. Alternatively, the above designs may be modified to have a single, more centrally located shuttle release finger (not shown) instead of the two outboard fingers 412 shown.


Referring to FIGS. 17-20, various alternative embodiments are shown comprising features which allow the sensor insertion velocity to be changed. Referring first to FIG. 17, an inserter 500 embodiment having a micrometer style head or knob 502 is shown, similar in arrangement to inserter embodiments described above. Knob 502 may be attached to a threaded rod 504. Threaded rod 504 may be received through a threaded hole or inserted in fixed housing cross member 506. A distal end of threaded rod 504 may be rotatably or fixedly attached to compression member 508. Compression member 508 may be movable with respect to carrier or shuttle 510 for compressing drive spring 512 therebetween.


Shuttle 510 may be provided with barbed fingers 514 for engaging stops 516 within housing 518 to releasably retain shuttle 510 in a cocked position, similar to the arrangements of embodiments described above. Inserter 500 may be provided with an actuator button (such as 324 shown in FIG. 1) for releasing barbed fingers 514 from stops 516 as also previously described, allowing drive spring 512 to drive shuttle 510 downward with introducer sharp and/or sensor 520 to be inserted into the patient's skin. A return spring 522 may also be provided to retract shuttle 510 into housing 518 after sensor insertion.


The driving force, travel distance, velocity, acceleration and/or other characteristics of sensor insertion may be adjusted according to aspects of the present invention. In this embodiment, the user may turn knob 502 causing threaded rod 504 to rotate within the threaded hole or insert in housing cross member 506. Turning knob 502 in one direction causes knob 502, rod 504 and compression member 508 to move downward, thereby further compressing drive spring 512 against shuttle 510. Turning knob 502 in the opposite direction reduces the compression of drive spring 512. By turning knob 502 prior to firing inserter 500, a user may increase or decrease the insertion speed and/or other characteristics of sensor insertion.


Knob 502, rod 504 and/or housing 518 may be provided with numbers, lines, pointers or other indicia to aid a user in setting knob 502 in a desired location. In this particular embodiment, a user may adjust knob 502 prior to cocking inserter 500 to reduce the amount of force needed to turn knob 502, since drive spring 512 may not be compressed or as compressed in an uncocked state. Alternatively, knob 502 may be turned after inserter 500 has been cocked. This scenario may provide the user with feedback during adjustment, as inserter 500 may be designed to allow the user to feel more resistance in turning knob 502 as drive spring 512 is further compressed. It should be noted that in this embodiment, a user is allowed to variably adjust an insertion characteristic such as insertion speed across a range of speeds by turning knob 502 through a range of positions. In one embodiment, inserter 500 is provided to a user with knob 502 set in a middle of a range so that the user may either increase or decrease the insertion speed, or leave it at its default setting.


In an alternative embodiment (not shown), which is a variation of the embodiment shown in FIG. 17, knob 502 may be arranged so that it remains in a fixed location while being free to turn. In this embodiment, a threaded hole or insert may be provided within either knob 502 or compression plate 508, and threaded rod 504 may be fixed attached to the other. This arrangement may operate in a similar fashion to the embodiment shown in FIG. 17 and allow fixed housing cross member 506 to be eliminated.


In another alternative embodiment (not shown), which is another variation of the embodiment shown in FIG. 17, knob 502, threaded rod 504 and compression member 508 may be replaced with a housing cap that rotatably engages with the main housing, such as with a threaded coupling. The drive spring may be captured between the cap and shuttle 510. As the cap is threaded into further engagement with the main housing, the drive spring is further compressed. Conversely, the cap may be backed away from the main housing to reduce the compression of the drive spring. As before, the compression setting of the drive spring may affect characteristics of sensor insertion, such as sensor delivery speed.


Referring now to FIGS. 18A and 18B, another alternative inserter 600 embodiment is shown. Inserter 600 may include a thumbwheel 602. Thumbwheel 602 may protrude from housing 604 as shown to allow a user to easily turn it for adjusting a parameter(s) of sensor insertion. Thumbwheel 602 may drive threaded rod 606 directly, or indirectly by rotatably engaging pinion 608. Pinion 608 or compression member 610 may include a threaded hole or insert for receiving threaded rod 606. With this arrangement, rotation of thumbwheel 602 causes threaded rod 606 to lower or raise compression plate 610, thereby further compressing or decompressing drive spring 612, respectively. Thumbwheel 602 and/or housing 604 may be provided with numbers, lines, pointers or other indicia to aid a user in setting thumbwheel 602 in a desired position. A window may be provided atop housing 604 to allow one or more indicia on thumbwheel 602 to be viewed. In all other respects, inserter 600 shown in FIGS. 18A and 18B may operate in a similar manner to that of inserter 500 shown in FIG. 17.


Referring now to FIGS. 19A and 19B, another alternative inserter 700 embodiment is shown. Inserter 700 includes a shuttle 702 that may be rotated to affect compression of drive spring 704. As seen in FIG. 19A, barbed fingers 706 may engage with a first pair of stops 708 to hold shuttle 702 in a cocked position at a first height. As seen in FIG. 19B, inserter 700 may be provided with a second pair of stops 710. The second pair of stops 710 may be located within housing 712 at a second height which is lower than the first height. Inserter may be provided with provisions to allow shuttle 702 to be rotated 90 degrees so that barbed fingers 706 may engage with either the first pair of stops 708 or the second pair of stops 710 when shuttle 702 is cocked. In this embodiment, when barbed fingers 706 are engaged with the higher first pair of stops 708 as shown in FIGS. 19A and 19B, drive spring 704 is compressed more than when barbed fingers 706 are engaged with the lower second pair of stops 710, which may result in a higher sensor velocity when inserter 700 is actuated. It should be noted that this embodiment may provide the user with individual, discrete adjustment settings as opposed to a continuously variable range of settings as may be provided with the previously described embodiments.


In alternative embodiments (not shown), more than two pairs of stops may be provided to provide additional positions of drive spring compression. Such arrangements may be used with square, round or other shapes of housings. In other embodiments, one pair of stops 708 may be provided on housing 712, and multiple pairs of barbed fingers 706 may be located at different heights on shuttle 702 for alternating engagement with the pair of stops 708. Alternatively or in conjunction with this embodiment, stop(s) 708 may be located on shuttle 702 while barbed finger(s) 706 may be located on housing 712. Other variations of these embodiments may occur to those skilled in the art without departing from the scope of the present invention.


Referring now to FIGS. 20A and 20B, another alternative inserter 800 embodiment is shown. Inserter 800 includes at least one magnet 802 which may affect the compression of drive spring 804. Drive spring 804 may be located between shuttle 806 and a top portion 808 of housing 810. Shuttle 806 may include a ferrous material and/or one or more magnets (not shown) for attracting shuttle 806 to magnet 802. Magnet 802 may be located above shuttle 806 on pivot arm 812, which may pivot about hinge 814. In this embodiment, a magnetic attraction between magnet 802 and shuttle 806 compresses drive spring 804 and holds shuttle 806 in a cocked position. Pressing on firing tab 816 causes arm 812 to pivot about hinge 814 in the direction shown by Arrow A and raises magnet 802 away from shuttle 806. The increased separation between magnet 802 and shuttle 806 decreases the magnetic attraction between the two until the force of compressed drive spring 804 exceeds the force of magnetic attraction. At this point, drive spring 804 is allowed to extend, firing sensor 818 into the user's skin.


The degree of magnetic attraction between shuttle 806 and magnet(s) 802 may be varied by the size, number, location and/or polarity of magnet(s) 802. For example, a user may place additional magnets 802 on top of pivot arm 812 to further compress drive spring 804. This in turn may provide a higher sensor insertion velocity. In alternative embodiments, magnet(s) may be used in conjunction with previously described embodiments to affect spring compression. In such embodiments, no magnet may be used for a low speed setting, and one or more magnets may be used for higher speed setting(s).


In other embodiments (not shown), separate cartridges may alternately be installed by a user, each cartridge having a different spring rate for providing different insertion characteristics. Alternatively, a wind-up type constant force spring may be utilized to vary the spring force. Such an arrangement may also use a ratchet and lock type mechanism to affect the winding. In yet other embodiments, internal dampeners or other features may be used to allow adjustment of the firing characteristics of the inserter. For example, air bladders, movable walls or contact areas can be employed to increase, decrease or remove friction, thereby allowing sensor shuttle speed to be varied.


In the embodiments described above, a force or forces to drive a sensor or other object into a body may come from a compression spring, an extension spring, a torsion spring, a pneumatic or hydraulic cylinder or bladder, a magnet, an electromagnet or other prime mover or device for storing potential energy known to those skilled in the art.


In the embodiments described above, the entire insertion device or portions thereof can be either disposable or reusable.


As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims
  • 1. A sensor insertion assembly, comprising: a housing comprising a shuttle coupled with a sharp;a drive mechanism configured to move the shuttle in a distal direction toward a skin surface of a user, wherein the drive mechanism comprises a windable spring;a retraction mechanism configured to move the shuttle in a proximal direction away from the skin surface, wherein the retraction mechanism comprises a compression spring;a control mechanism coupled with the drive mechanism, the control mechanism configured to be operated to cause the windable spring to release stored potential energy; anda ratchet and lock mechanism coupled with the drive mechanism, the ratchet and lock mechanism configured to affect a movement of the drive mechanism.
  • 2. The sensor insertion assembly of claim 1, wherein the control mechanism is further configured to vary a driving force of the windable spring over a continuous range of settings.
  • 3. The sensor insertion assembly of claim 1, wherein the control mechanism is further configured to alternately set a driving force of the windable spring to one of a plurality of discrete settings.
  • 4. The sensor insertion assembly of claim 1, wherein the control mechanism is solely mechanical.
  • 5. The sensor insertion assembly of claim 1, wherein the control mechanism comprises a knob configured to be twisted by the user such that twisting of the knob varies a driving force of the windable spring.
  • 6. The sensor insertion assembly of claim 1, wherein the control mechanism comprises a thumbwheel configured to be turned by the user such that turning of the thumbwheel varies a driving force of the windable spring.
  • 7. The sensor insertion assembly of claim 1, wherein the control mechanism comprises a threaded rod.
  • 8. The sensor insertion assembly of claim 1, wherein the control mechanism comprises a component configured to be set to one of a plurality of discrete, alternate shuttle orientations by the user, wherein each shuttle orientation varies a driving force of the windable spring.
  • 9. The sensor insertion assembly of claim 1, wherein the windable spring is a torsion spring.
  • 10. The sensor insertion assembly of claim 1, wherein the drive mechanism is coupled with a first portion of the shuttle.
  • 11. The sensor insertion assembly of claim 10, wherein the retraction mechanism is coupled with a second portion of the shuttle.
  • 12. A method of inserting at least a portion of an analyte sensor in a user, the method comprising: operating a control mechanism of a sensor insertion assembly to vary a load of a windable spring of a drive mechanism while maintaining a shuttle of the sensor insertion assembly in a stationary position, wherein the sensor insertion assembly includes a ratchet and lock mechanism coupled with the drive mechanism;placing the sensor insertion assembly against a skin surface;firing the at least a portion of the analyte sensor into a skin surface of the user by using the control mechanism to release potential energy stored in the windable spring; andretracting the shuttle to a location within the sensor insertion assembly by releasing potential energy stored in a compression spring.
  • 13. The method of claim 12, wherein operating the control mechanism on the sensor insertion assembly is performed before placing the sensor insertion assembly against a skin layer.
  • 14. The method of claim 12, wherein firing the at least a portion of the analyte sensor into the skin surface comprises depressing an actuator button of the control mechanism.
  • 15. The method of claim 14, further comprising deactivating a safety mechanism before depressing the actuator button.
  • 16. The method of claim 12, wherein firing the at least a portion of the analyte sensor into the skin surface further comprises displacing the control mechanism to one of a plurality of discrete settings.
  • 17. The method of claim 12, wherein the control mechanism is solely mechanical.
  • 18. The method of claim 12, wherein the control mechanism comprises a knob configured to be twisted by the user such that twisting of the knob varies the potential energy stored in the windable spring.
  • 19. The method of claim 12, wherein the control mechanism comprises a thumbwheel configured to be turned by the user such that turning of the thumbwheel varies the potential energy stored in the windable spring.
  • 20. The method of claim 12, wherein the windable spring comprises a torsion spring.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/729,572, filed Oct. 10, 2017, which is a continuation of U.S. patent application Ser. No. 11/552,072, filed Oct. 23, 2006, now U.S. Pat. No. 9,788,771, all of which are incorporated by reference herein in their entireties for all purposes.

US Referenced Citations (1107)
Number Name Date Kind
3123790 Tyler Mar 1964 A
3211001 Petit Oct 1965 A
3260656 Ross, Jr. Jul 1966 A
3581062 Aston May 1971 A
3653841 Klein Apr 1972 A
3719564 Lilly, Jr. et al. Mar 1973 A
3776832 Oswin et al. Dec 1973 A
3837339 Aisenberg et al. Sep 1974 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3972320 Kalman Aug 1976 A
3979274 Newman Sep 1976 A
4008717 Kowarski Feb 1977 A
4016866 Lawton Apr 1977 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4059406 Fleet Nov 1977 A
4076596 Connery et al. Feb 1978 A
4098574 Dappen Jul 1978 A
4100048 Pompei et al. Jul 1978 A
4120292 LeBlanc, Jr. et al. Oct 1978 A
4129128 McFarlane Dec 1978 A
4151845 Clemens May 1979 A
4168205 Danninger et al. Sep 1979 A
4172770 Semersky et al. Oct 1979 A
4178916 McNamara Dec 1979 A
4206755 Klein Jun 1980 A
4224125 Nakamura et al. Sep 1980 A
4240438 Updike et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4247297 Berti et al. Jan 1981 A
4294258 Bernard Oct 1981 A
4327725 Cortese et al. May 1982 A
4340458 Lerner et al. Jul 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4352960 Dormer et al. Oct 1982 A
4356074 Johnson Oct 1982 A
4365637 Johnson Dec 1982 A
4366033 Richter et al. Dec 1982 A
4373527 Fischell Feb 1983 A
4375399 Havas et al. Mar 1983 A
4384586 Christiansen May 1983 A
4390621 Bauer Jun 1983 A
4401122 Clark, Jr. Aug 1983 A
4404066 Johnson Sep 1983 A
4418148 Oberhardt Nov 1983 A
4425920 Bourland et al. Jan 1984 A
4427770 Chen et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4440175 Wilkins Apr 1984 A
4441968 Emmer et al. Apr 1984 A
4450842 Zick et al. May 1984 A
4458686 Clark, Jr. Jul 1984 A
4461691 Frank Jul 1984 A
4469110 Slama Sep 1984 A
4477314 Richter et al. Oct 1984 A
4478976 Goertz et al. Oct 1984 A
4484987 Gough Nov 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4522690 Venkatasetty Jun 1985 A
4524114 Samuels et al. Jun 1985 A
4526661 Steckhan et al. Jul 1985 A
4527240 Kvitash Jul 1985 A
4534356 Papadakis Aug 1985 A
4538616 Rogoff Sep 1985 A
4543955 Schroeppel Oct 1985 A
4545382 Higgins et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4560534 Kung et al. Dec 1985 A
4571292 Liu et al. Feb 1986 A
4573994 Fischell et al. Mar 1986 A
4581336 Malloy et al. Apr 1986 A
4595011 Phillips Jun 1986 A
4619754 Niki et al. Oct 1986 A
4619793 Lee Oct 1986 A
4627445 Garcia et al. Dec 1986 A
4627908 Miller Dec 1986 A
4633878 Bombardieri Jan 1987 A
4637403 Garcia et al. Jan 1987 A
4650547 Gough Mar 1987 A
4654197 Lilja et al. Mar 1987 A
4655880 Liu Apr 1987 A
4655885 Hill et al. Apr 1987 A
4671288 Gough Jun 1987 A
4679562 Luksha Jul 1987 A
4680268 Clark, Jr. Jul 1987 A
4682602 Prohaska Jul 1987 A
4684537 Graetzel et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685466 Rau Aug 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4711247 Fishman Dec 1987 A
4717673 Wrighton et al. Jan 1988 A
4721601 Wrighton et al. Jan 1988 A
4721677 Clark, Jr. Jan 1988 A
4726378 Kaplan Feb 1988 A
4726716 McGuire Feb 1988 A
4729672 Takagi Mar 1988 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4755173 Konopka Jul 1988 A
4757022 Shults et al. Jul 1988 A
4758323 Davis et al. Jul 1988 A
4759371 Franetzki Jul 1988 A
4759828 Young et al. Jul 1988 A
4764416 Ueyama et al. Aug 1988 A
4776944 Janata et al. Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4781683 Wozniak et al. Nov 1988 A
4781798 Gough Nov 1988 A
4784736 Lonsdale et al. Nov 1988 A
4795707 Niiyama et al. Jan 1989 A
4796634 Huntsman et al. Jan 1989 A
4805624 Yao et al. Feb 1989 A
4813424 Wilkins Mar 1989 A
4815469 Cohen et al. Mar 1989 A
4820399 Senda et al. Apr 1989 A
4822337 Newhouse et al. Apr 1989 A
4830959 McNeil et al. May 1989 A
4832797 Vadgama et al. May 1989 A
RE32947 Dormer et al. Jun 1989 E
4840893 Hill et al. Jun 1989 A
4848351 Finch Jul 1989 A
4854322 Ash et al. Aug 1989 A
4865038 Rich et al. Sep 1989 A
4871351 Feingold Oct 1989 A
4871440 Nagata et al. Oct 1989 A
4874500 Madou et al. Oct 1989 A
4890620 Gough Jan 1990 A
4894137 Takizawa et al. Jan 1990 A
4895147 Bodicky et al. Jan 1990 A
4897162 Lewandowski et al. Jan 1990 A
4897173 Nankai et al. Jan 1990 A
4909908 Ross et al. Mar 1990 A
4911794 Parce et al. Mar 1990 A
4917800 Lonsdale et al. Apr 1990 A
4919141 Zier et al. Apr 1990 A
4919767 Vadgama et al. Apr 1990 A
4923586 Katayama et al. May 1990 A
4925268 Iyer et al. May 1990 A
4927516 Yamaguchi et al. May 1990 A
4934369 Maxwell Jun 1990 A
4935105 Churchouse Jun 1990 A
4935345 Guibeau et al. Jun 1990 A
4938860 Wogoman Jul 1990 A
4944299 Silvian Jul 1990 A
4950378 Nagara Aug 1990 A
4953552 DeMarzo Sep 1990 A
4954129 Giuliani et al. Sep 1990 A
4969468 Byers et al. Nov 1990 A
4970145 Bennetto et al. Nov 1990 A
4974929 Curry Dec 1990 A
4986271 Wilkins Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4994167 Shults et al. Feb 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5001054 Wagner Mar 1991 A
5002054 Ash et al. Mar 1991 A
5013161 Zaragoza et al. May 1991 A
5019974 Beckers May 1991 A
5035860 Kleingeld et al. Jul 1991 A
5036860 Leigh et al. Aug 1991 A
5047044 Smith et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5058592 Whisler Oct 1991 A
5070535 Hochmair et al. Dec 1991 A
5082550 Rishpon et al. Jan 1992 A
5082786 Nakamoto Jan 1992 A
5089112 Skotheim et al. Feb 1992 A
5095904 Seligman et al. Mar 1992 A
5101814 Palti Apr 1992 A
5106365 Hernandez Apr 1992 A
5108564 Szuminsky et al. Apr 1992 A
5108889 Smith et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5120420 Nankai et al. Jun 1992 A
5122925 Inpyn Jun 1992 A
5126034 Carter et al. Jun 1992 A
5133856 Yamaguchi et al. Jul 1992 A
5135003 Souma Aug 1992 A
5140985 Schroeder et al. Aug 1992 A
5141868 Shanks et al. Aug 1992 A
5161532 Joseph Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5190041 Palti Mar 1993 A
5192416 Wang et al. Mar 1993 A
5198367 Aizawa et al. Mar 1993 A
5202261 Musho et al. Apr 1993 A
5205920 Oyama et al. Apr 1993 A
5208154 Weaver et al. May 1993 A
5209229 Gilli May 1993 A
5217595 Smith et al. Jun 1993 A
5229282 Yoshioka et al. Jul 1993 A
5234835 Nestor et al. Aug 1993 A
5238729 Debe Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5250439 Musho et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264103 Yoshioka et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5264106 McAleer et al. Nov 1993 A
5271815 Wong Dec 1993 A
5279294 Anderson et al. Jan 1994 A
5284156 Schramm et al. Feb 1994 A
5285792 Sjoguist et al. Feb 1994 A
5286362 Hoenes et al. Feb 1994 A
5286364 Yacynych et al. Feb 1994 A
5288636 Pollmann et al. Feb 1994 A
5293546 Tadros et al. Mar 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320098 Davidson Jun 1994 A
5320715 Berg Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5337747 Neftel Aug 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5352348 Young et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5368028 Palti Nov 1994 A
5372133 Esch Dec 1994 A
5372427 Padovani et al. Dec 1994 A
5376251 Kaneko et al. Dec 1994 A
5378628 Gratzel et al. Jan 1995 A
5379238 Stark Jan 1995 A
5387327 Khan Feb 1995 A
5390670 Centa et al. Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5395504 Saurer et al. Mar 1995 A
5400782 Beaubiah Mar 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425361 Fenzlein et al. Jun 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5437999 Diebold et al. Aug 1995 A
5462645 Albery et al. Oct 1995 A
5469846 Khan Nov 1995 A
5472317 Field et al. Dec 1995 A
5489414 Schreiber et al. Feb 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5533977 Calf et al. Jul 1996 A
5543326 Heller et al. Aug 1996 A
5545191 Mann et al. Aug 1996 A
5551427 Altman Sep 1996 A
5560357 Faupei et al. Oct 1996 A
5562713 Silvian Oct 1996 A
5565085 Ikeda et al. Oct 1996 A
5567302 Song et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5575563 Chiu et al. Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5582698 Flaherty et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5589326 Deng et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5596150 Arndt et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5613978 Harding Mar 1997 A
5617851 Lipkovker Apr 1997 A
5628310 Rao et al. May 1997 A
5628890 Carter et al. May 1997 A
5632557 Simons May 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5651869 Yoshioka et al. Jul 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665071 Wyrick Sep 1997 A
5665222 Heller et al. Sep 1997 A
5670031 Hintsche et al. Sep 1997 A
5680858 Hansen et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5695623 Michel et al. Dec 1997 A
5708247 McAleer et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711297 Iliff et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5711862 Sakoda et al. Jan 1998 A
5733044 Rose et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5746697 Swedlow et al. May 1998 A
5749656 Boehm et al. May 1998 A
5766131 Kondo et al. Jun 1998 A
5771001 Cobb Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5791344 Schulman et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814020 Gross Sep 1998 A
5820551 Hill et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5827184 Netherly et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5842983 Abel et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsais et al. Jan 1999 A
5865804 Bachynsky Feb 1999 A
5871494 Simons et al. Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5899855 Brown May 1999 A
5918603 Brown Jul 1999 A
5924979 Sedlow et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5938679 Freeman et al. Aug 1999 A
5942979 Luppino Aug 1999 A
5948006 Mann Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5951582 Thorne et al. Sep 1999 A
5954643 Van Antwerp Sep 1999 A
5954685 Tierny Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5971941 Simons et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5993411 Choi Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6017335 Burnham Jan 2000 A
6022368 Gavronsky et al. Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6026321 Miyata et al. Feb 2000 A
6027459 Shain et al. Feb 2000 A
6036924 Simons et al. Mar 2000 A
6049727 Crothall Apr 2000 A
6056718 Funderburk et al. May 2000 A
6059946 Yukawa et al. May 2000 A
6068399 Tseng May 2000 A
6071294 Simons et al. Jun 2000 A
6071391 Gotoh et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6144837 Quy Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6161095 Brown Dec 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254536 DeVito Jul 2001 B1
6254586 Mann et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6283982 Levaughn et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6299757 Feldman et al. Oct 2001 B1
6302866 Marggi Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6331244 Lewis et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368141 Van Antwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6377894 Deweese et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6409740 Kuhr et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6433743 Massy et al. Aug 2002 B1
6435017 Nowicki, Jr. et al. Aug 2002 B1
6437679 Roques Aug 2002 B1
6440068 Brown et al. Aug 2002 B1
6445374 Albert et al. Sep 2002 B2
6461496 Feldman et al. Oct 2002 B1
6472220 Simons et al. Oct 2002 B1
6478736 Mault Nov 2002 B1
6482176 Wich Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6514460 Fendrock Feb 2003 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6522927 Bishay et al. Feb 2003 B1
6540891 Stewart et al. Apr 2003 B1
6546268 Ishikawa et al. Apr 2003 B1
6551494 Heller et al. Apr 2003 B1
6551496 Moles et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572566 Effenhauser Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6589229 Connelly et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6600997 Deweese et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6613015 Sandstrom et al. Sep 2003 B2
6616819 Liamos et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650471 Doi Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6659948 Lebel et al. Dec 2003 B2
6666849 Marshall et al. Dec 2003 B1
6668196 Villegas et al. Dec 2003 B1
6676290 Lu Jan 2004 B1
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6702857 Brauker et al. Mar 2004 B2
6730200 Stewart et al. May 2004 B1
6733446 Lebel et al. May 2004 B2
6736957 Forrow et al. May 2004 B1
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6749740 Liamos et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6764581 Forrow et al. Jul 2004 B1
6770030 Schaupp et al. Aug 2004 B1
6773671 Lewis et al. Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6830551 Uchigaki et al. Dec 2004 B1
6837858 Cunningham et al. Jan 2005 B2
6837885 Koblish et al. Jan 2005 B2
6837988 Leong et al. Jan 2005 B2
6849052 Ughigaki et al. Feb 2005 B2
6854882 Chen Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6893545 Gotoh et al. May 2005 B2
6895265 Silver May 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932892 Chen Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6959211 Rule et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6971999 Py et al. Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7335294 Heller et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7340309 Miazga et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7416541 Yuzhakov et al. Aug 2008 B2
7424318 Brister et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7462264 Heller et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7499002 Blasko et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7604592 Freeman et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7666149 Simons et al. Feb 2010 B2
7682338 Griffin Mar 2010 B2
7697967 Stafford Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7727147 Osorio et al. Jun 2010 B1
7731657 Stafford Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7763042 Iio et al. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7833170 Matsumoto et al. Nov 2010 B2
7866026 Wang et al. Jan 2011 B1
8439838 Mogensen et al. May 2013 B2
20020013538 Teller Jan 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020022855 Bobroff et al. Feb 2002 A1
20020023852 McIvor et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020050250 Peterson et al. May 2002 A1
20020055711 Lavi et al. May 2002 A1
20020057993 Maisey et al. May 2002 A1
20020066764 Perry et al. Jun 2002 A1
20020076966 Carron et al. Jun 2002 A1
20020082487 Kollias et al. Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020119711 VanAntwerp et al. Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020133066 Miller et al. Sep 2002 A1
20020154050 Krupp et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020161290 Chance Oct 2002 A1
20020165462 Westbrook et al. Nov 2002 A1
20020169369 Ward et al. Nov 2002 A1
20020198444 Ughigaki et al. Dec 2002 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030069510 Semler Apr 2003 A1
20030078481 McIvor et al. Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030083686 Freeman et al. May 2003 A1
20030097092 Flaherty May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030109775 O'Neil et al. Jun 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030135333 Aceti et al. Jul 2003 A1
20030144581 Conn et al. Jul 2003 A1
20030144608 Kojima et al. Jul 2003 A1
20030155656 Chiu et al. Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030199910 Boecker et al. Oct 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225361 Sabra Dec 2003 A1
20040002682 Kovelman et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040064133 Miller et al. Apr 2004 A1
20040072357 Steine et al. Apr 2004 A1
20040096959 Steine et al. May 2004 A1
20040016847 Wall Jun 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say et al. Jun 2004 A1
20040116865 Bengtsson Jun 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138544 Ward et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040138688 Giraud Jul 2004 A1
20040140211 Broy et al. Jul 2004 A1
20040147996 Miazga et al. Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171910 Moore-Steele Sep 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040210122 Sleburg Oct 2004 A1
20040223985 Dunfiled et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050006122 Burnette Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050085872 Yanagihara et al. Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050090850 Thoes et al. Apr 2005 A1
20050096520 Maekawa et al. May 2005 A1
20050106713 Phan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050154410 Conway et al. Jul 2005 A1
20050165404 Miller Jul 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050222518 Dib Oct 2005 A1
20050222599 Czernecki et al. Oct 2005 A1
20050236277 Imran et al. Oct 2005 A9
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050267327 Iizuka et al. Dec 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060004303 Weidenhaupt et al. Jan 2006 A1
20060009727 O'Mahony et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060020300 Nghiem et al. Jan 2006 A1
20060025662 Buse et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060047220 Sakata et al. Mar 2006 A1
20060091006 Wang et al. May 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060155210 Beckman et al. Jul 2006 A1
20060155317 List et al. Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060189863 Heller et al. Aug 2006 A1
20060189939 Gonnelli et al. Aug 2006 A1
20060193375 Lee Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060200181 Fukuzawa et al. Sep 2006 A1
20060200970 Brister et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060258929 Goode, Jr. et al. Nov 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060276724 Freeman et al. Dec 2006 A1
20060282042 Walters et al. Dec 2006 A1
20060287591 Ocvirk et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070038044 Dobbies et al. Feb 2007 A1
20070056858 Chen et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070068807 Feldman et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070088377 Levaughn et al. Apr 2007 A1
20070095661 Wang et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070108048 Wang et al. May 2007 A1
20070110124 Shiraki et al. May 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173741 Deshmukh et al. Jul 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070199818 Petyt et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070213611 Simpson et al. Sep 2007 A1
20070219496 Kamen et al. Sep 2007 A1
20070227911 Wang et al. Oct 2007 A1
20070232879 Brister et al. Oct 2007 A1
20070233013 Schoenberg et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244368 Bayloff et al. Oct 2007 A1
20070244379 Boock et al. Oct 2007 A1
20070244398 Lo et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20080004512 Funderbunk et al. Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080009805 Ethelfeld Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080027474 Curry et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080033318 Mace et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064941 Funderbunk et al. Mar 2008 A1
20080065646 Zhang et al. Mar 2008 A1
20080066305 Wang et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080097246 Stafford Apr 2008 A1
20080099332 Scott et al. May 2008 A1
20080108942 Brister et al. May 2008 A1
20080112848 Huffstodt et al. May 2008 A1
20080119707 Stafford May 2008 A1
20080133702 Sharma et al. Jun 2008 A1
20080161664 Mastrototaro et al. Jul 2008 A1
20080167578 Bryer et al. Jul 2008 A1
20080183061 Goode, Jr. et al. Jul 2008 A1
20080183399 Goode, Jr. et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode, Jr. et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode, Jr. et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195049 Thalmann et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode, Jr. et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080200897 Hoss et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214481 Challoner et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080262330 Reynolds et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080267823 Wang et al. Oct 2008 A1
20080269673 Butoi et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080283396 Wang et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080294096 Uber et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300476 Stafford Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306434 Dobbies et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20090005659 Kollias et al. Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090036915 Karbowniczek et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090054866 Teisen-Simony et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069750 Schraga Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076359 Peyser Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090088614 Taub Apr 2009 A1
20090088787 Koike et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090102678 Mazza et al. Apr 2009 A1
20090105569 Stafford Apr 2009 A1
20090124877 Goode, Jr. et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090124979 Raymond et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090131860 Nielsen May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090171182 Stafford Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090212766 Olson et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090259118 Feldman et al. Oct 2009 A1
20090259201 Hwang et al. Oct 2009 A1
20090259202 Leeflang et al. Oct 2009 A1
20090270765 Ghesquire et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090292184 Funderburk et al. Nov 2009 A1
20090292185 Funderburk et al. Nov 2009 A1
20090294277 Thomas et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299167 Seymour Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100004597 Gryn et al. Jan 2010 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100036281 Doi Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049014 Funderburk et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100069728 Funderburk et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbies et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100100113 Iio et al. Apr 2010 A1
20100106088 Yodfat et al. Apr 2010 A1
20100113897 Brenneman et al. May 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100168677 Gabriel et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174164 Brister et al. Jul 2010 A1
20100174165 Brister et al. Jul 2010 A1
20100174166 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode, Jr. et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179402 Goode, Jr. et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode, Jr. et al. Jul 2010 A1
20100185069 Brister et al. Jul 2010 A1
20100185070 Brister et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode, Jr. et al. Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198033 Krulevitch et al. Aug 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100198036 Kamath et al. Aug 2010 A1
20100204653 Gryn et al. Aug 2010 A1
20100212583 Brister et al. Aug 2010 A1
20100214104 Goode, Jr. et al. Aug 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100217557 Kamath et al. Aug 2010 A1
20100223013 Kamath et al. Sep 2010 A1
20100223022 Kamath et al. Sep 2010 A1
20100223023 Kamath et al. Sep 2010 A1
20100228109 Kamath et al. Sep 2010 A1
20100228497 Kamath et al. Sep 2010 A1
20100240975 Goode, Jr. et al. Sep 2010 A1
20100240976 Goode, Jr. et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100262201 He et al. Oct 2010 A1
20100274107 Boock et al. Oct 2010 A1
20100280341 Boock et al. Nov 2010 A1
20100286496 Simpson et al. Nov 2010 A1
20100298684 Leach et al. Nov 2010 A1
20100324403 Brister et al. Dec 2010 A1
20100331642 Bruce et al. Dec 2010 A1
20100331644 Neale et al. Dec 2010 A1
20100331647 Shah et al. Dec 2010 A1
20100331648 Kamath et al. Dec 2010 A1
20100331656 Mensinger et al. Dec 2010 A1
20100331657 Mensinger et al. Dec 2010 A1
20110004085 Mensinger et al. Jan 2011 A1
20110009727 Mensinger et al. Jan 2011 A1
20110021889 Hoss et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110040256 Bobroff et al. Feb 2011 A1
20110040263 Hirdum et al. Feb 2011 A1
20110046456 Hordum et al. Feb 2011 A1
20110046467 Simpson et al. Feb 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110118579 Goode, Jr. et al. May 2011 A1
20110118580 Goode, Jr. et al. May 2011 A1
20110124992 Brauker et al. May 2011 A1
20110124997 Goode, Jr. et al. May 2011 A1
20110125410 Goode, Jr. et al. May 2011 A1
20110130970 Goode, Jr. et al. Jun 2011 A1
20110130971 Goode, Jr. et al. Jun 2011 A1
20110130998 Goode, Jr. et al. Jun 2011 A1
20110137257 Gyrn et al. Jun 2011 A1
20110144465 Shults et al. Jun 2011 A1
20110178378 Brister et al. Jul 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110190614 Brister et al. Aug 2011 A1
20110201910 Rasdal et al. Aug 2011 A1
20110201911 Johnson et al. Aug 2011 A1
20110218414 Kamath et al. Sep 2011 A1
20110231107 Brauker et al. Sep 2011 A1
20110231140 Goode, Jr. et al. Sep 2011 A1
20110231141 Goode, Jr. et al. Sep 2011 A1
20110231142 Goode, Jr. et al. Sep 2011 A1
20110253533 Shults et al. Oct 2011 A1
20110257521 Fraden Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110270062 Goode, Jr. et al. Nov 2011 A1
20110270158 Brauker et al. Nov 2011 A1
20110275919 Petisce et al. Nov 2011 A1
20110290645 Brister et al. Dec 2011 A1
20110313543 Brauker et al. Dec 2011 A1
20110319739 Kamath et al. Dec 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120035445 Boock et al. Feb 2012 A1
20120040101 Tapsak et al. Feb 2012 A1
20120046534 Simpson et al. Feb 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120108934 Valdes et al. May 2012 A1
20120108983 Banet et al. May 2012 A1
20120123385 Edwards et al. May 2012 A1
20120296327 Hutchins et al. Nov 2012 A1
20130047981 Bacon Feb 2013 A1
Foreign Referenced Citations (42)
Number Date Country
2291105 Dec 1998 CA
1177802 Feb 2002 EP
1630898 Mar 2006 EP
0987982 Jan 2007 EP
2060284 May 2009 EP
2201969 Jun 2010 EP
2327362 Jun 2011 EP
2335587 Jun 2011 EP
11-506629 Jun 1999 JP
2003-516011 May 2003 JP
2004-520103 Jul 2004 JP
2004-520898 Jul 2004 JP
WO-1996039977 May 1996 WO
WO-1998056293 Dec 1998 WO
WO-1999033504 Jul 1999 WO
WO-2002050534 Jun 2002 WO
WO-2002058537 Aug 2002 WO
WO-2003076893 Sep 2003 WO
WO-2003082091 Oct 2003 WO
WO-2004061420 Jul 2004 WO
WO-2005084534 Sep 2005 WO
WO-2005089103 Sep 2005 WO
WO-2006042811 Apr 2006 WO
WO-2006108809 Oct 2006 WO
WO-2007016399 Feb 2007 WO
WO-2007027788 Mar 2007 WO
WO-2007041069 Apr 2007 WO
WO-2007041070 Apr 2007 WO
WO-2007041248 Apr 2007 WO
WO-2007120363 Oct 2007 WO
WO-2007143225 Dec 2007 WO
WO-2008031106 Mar 2008 WO
WO-2008031110 Mar 2008 WO
WO-2008039944 Apr 2008 WO
WO-2008051920 May 2008 WO
WO-2008051924 May 2008 WO
WO-2008065646 Jun 2008 WO
WO-2008133702 Nov 2008 WO
WO-2008150917 Dec 2008 WO
WO-2009062675 May 2009 WO
WO-2010112521 Oct 2010 WO
WO-2011002815 Jan 2011 WO
Non-Patent Literature Citations (72)
Entry
Alcock, S. J. et al., “Continuous analyte monitoring to aid clinical practice,” IEEE Engineering in Medicine & Biology Magazine, 13:319-25 (1994).
Armour et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs,” Diabetes, vol. 39, pp. 1519-1526, Dec. 1990.
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1071.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics vol. 4 No. 1, 2002, pp. 25-33.
Bindra, D.S. et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring”, Anal. Chem., 63(17):1692-1696 (Sep. 1, 1991).
Blank, T. B., et al., “Clinical Results From a Non-lnvasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE vol. 4624, 2002, pp. 1-10.
Bobbioni-Harsch, E. et al., “Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats,” J. Biomed. Eng. 15:457-463 (1993).
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56.
Cass, A.E.G. et al., “Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose”, Anal. Chem., 56(4):667-671 (Apr. 1984).
Complaint, “Abbott Diabetes Care Inc. v. Dexcom, Inc.”, filed Aug. 11, 2005.
Complaint, Amended, “Abbott Diabetes Care Inc. v. Dexcom, Inc.”, filed Jun. 27, 2006.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired EnzymeTM Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Gregg, B. A. et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications,” Analytical Chemistry, 62(3):258-263 (Feb. 1, 1990).
Gunasingham, et al., “Electrochemically Modulated Optrode for Glucose”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 353-359.
Harrison, DJ. et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniaturized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Anal. Chem., 60 (19):2002-2007 (Oct. 1, 1988).
Heller, A., “Electrical Connection of Enzyme Redox Centers to Electrodes,” J. Phys. Chern., 96 (9):3579-3587 (1992).
Ikeda, T., et al., “Artificial Pancreas—Investigation of the Stability of Glucose Sensors Using a Telemetry System”) English language translation of abstract), Jpn. J. Artif. Organs., vol. 19, No. 2, 1990, pp. 889-892.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice vol. 5 No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice vol. 5 No. 5, 1997, pp. 709-719.
Johnson, K., et al., “In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue”, Biosensors and Bioelectronics, 1992, vol. 7, pp. 709-714.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142,548,549.
Lortz, J., et al., “What is Bluetooth? We Explain The Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Maidan, R. et al., “Elimination of Electroaxidizable Interferant-Produced Currents in Amperometric Biosensors,” Analytical Chemistry, 64(23):2889-2896 (Dec. 1, 1992).
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
Mastrototaro, J.J. et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate”, Sensors and Biosensors B Chemical, B5: 139-144 (1991).
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages.
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
McKean, B. et al. “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, (Jul. 1988), pp. 526-532.
Minimed Technologies, “Tape Tips and Other Infusion Site Information”, 1995.
Moatti-Sirat, D. et al., “Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue,” Diabetolocia, 35(3) (1 page—Abstract only) (Mar. 1992).
Ohara, T. J. et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2Cl]+/2+Complexed Poly(lvinylimadazole) Films,” Analytical Chemistry, 65(23):3512-3516 (Dec. 1, 1993).
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Poitout, V. et al., “In vitro and in vivo evaluation in dogs of a miniaturized glucose sensor,” ASAIO Transactions, 37(3) (1 page—Abstract only) (Jul.-Sep. 1991).
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Reach, G. et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?” Analytical Chemistry, 64(6):381-386 (Mar. 15, 1992).
Rebrin, K. et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs”, Diabetologia, 32(8):573-576 (Aug. 1989).
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M. et al., “Ferrocene-mediate needle-type glucose sensor covered with newly designed biocompatible membrane,” Sensors and Actuators B, 13-14:319-322 (1993).
Sakakida, M., et al., “Development of ferrocene-mediated needle-type glucose sensor as a measure of true subcutaneous tissue glucose concentrations”, Artif. Organs Today. 1992, vol. 2, No. 2, pp. 145-458.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidt, F. J., et al., “Calibration of a Wearable Glucose Sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M. et al., “Glycaemic Control in Pancrearetomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, 24(3):179-184 (Mar. 1983).
Shichiri, M. et al., “Telemetry Glucose Monitoring Device with Needle-type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals,” Diabetes Care, vol. 9, No. 3 (May-Jun. 1986), pp. 298-301.
Shichiri, M., et al., “In vivo characteristics of needle-type glucose sensor—Measurement of subcutaneous glucose concentrations in human volunteers”. Hormone and Metabolic Res Suppl. 1988, vol. 20, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Wearable artificial endocrine pancreas with needle-type glucose sensor”. The Lancet. Nov. 20, 1982, vol. 2, No. 8308, pp. 1129-1131.
Shults, M., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors,” IEEE Transactions on Biomedical Engineering, vol. 41, No. 10 (Oct. 1994), pp. 937-942.
Sternberg, R. et al., “Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors,” Biosensors, 4:27-40 (1988).
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A.P.F. et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, 1:85-115 (1985).
Updike, S. et al., “Principles of Long-term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucase from Inside a Subcataneous Foreign Body Capsule (FBC)” in “Biosensors in the Body: Continuous in vivo Monitoring” (John Wiley & Sons, Ltd., 1997) Chapter 4, pp. 117-137.
Velho, G. et al., “Strategies for calibrating a subcutaneous glucose sensor,” Biomed. Biochim. Acta, 48 (11112):957-964 (1989).
Wilson, G. S. et al., “Progress toward the Development of an Implantable Sensor for Glucose,” Clinical Chemistry, 38(9):1613-1617 (1992).
Ye, L. et al., “High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode,” Anal. Chem., 65(3):238-241 (Feb. 1, 1993).
Australian Patent Application No. 2007309066, Examination Report dated Jul. 12, 2012.
Australian Patent Application No. 2007309066, Examination Report dated Aug. 16, 2013.
Chinese Patent Application No. 20078004373.9 Notice of Allowance dated May 18, 2011.
Chinese Patent Application No. 20078004373.9 Office Action dated Apr. 14, 2010.
Israeli Patent Application No. 198329 Office Action dated Mar. 5, 2012.
Japanese Patent Application No. 2009-534798 Office Action dated Sep. 25, 2012.
Mexican Patent Application No. MX/a/2009/004398 Office Action dated Sep. 24, 2012.
PCT/US2007/082114 International Search Report and Written Opinion dated May 7, 2009.
Related Publications (1)
Number Date Country
20190282136 A1 Sep 2019 US
Continuations (2)
Number Date Country
Parent 15729572 Oct 2017 US
Child 16115946 US
Parent 11552072 Oct 2006 US
Child 15729572 US