This application claims the priority benefit of French patent application number 16/60100, filed on Oct. 18, 2016, the content of which is hereby incorporated by reference in its entirety to the maximum extent allowable by law.
The present disclosure relates to the field of interfaces for sensors, and in particular to an interface for a sensor having a high tolerance to parameter variations resulting from hostile environments.
For certain applications, it is desirable to place sensors in hostile environments, such as environments having extremes of temperature, high levels of radiation, or in which very little power is available, leading to very low supply voltages. A difficulty in such hostile environments is that circuits may no longer operate correctly in view of the parameter variations resulting from the environment. For example, the current leakage in a circuit increases exponentially with temperature, leading to failure when the temperature reaches a certain level. For example, sensors may be used to control and/or monitor the operation of aeroplane engines, where the temperature may rise as high as 250° C., leading to high current leakage and potential failures.
While some solutions have been proposed for providing sensor interfaces that are to some extent robust against errors resulting from the environment, for certain applications there is a need for a sensor interface providing greater precision in hostile environments.
It is an aim of embodiments of the present disclosure to at least partially address one or more needs in the prior art.
According to one aspect, there is provided an interface circuit for a sensor comprising: a first injection-locked oscillator having: a first input coupled to a sensor, a free-running oscillation frequency of the first injection-locked oscillator being controlled by a signal from the sensor; and a second input coupled to receive a synchronization signal at a reference frequency, the first injection-locked oscillator being adapted to generate an output signal at said reference frequency, the output signal being phase shifted with respect to the synchronization signal as a function of the signal from the sensor.
According to one embodiment, the interface circuit further comprises: an output circuit adapted to generate a digital output signal based on a phase difference between the output signal and the synchronization signal or a further reference signal.
According to one embodiment, the output circuit is adapted to generate the digital output signal based on a phase difference between the output signal and a further reference signal generated by a second injection-locked oscillator having: a first input for controlling a free-running oscillation frequency of the second injection-locked oscillator; and a second input coupled to receive the synchronization signal.
According to one embodiment, the first input of the second injection-locked oscillator is coupled to the sensor.
According to one embodiment, the sensor comprises first and second differential outputs, the free-running oscillation frequency of the first injection-locked oscillator being controlled based on a first differential output signal of the sensor, and the free-running oscillation frequency of the second injection-locked oscillator being controlled based on a second differential output signal of the sensor.
According to one embodiment, the output circuit further comprises: a first counter adapted to determine a phase offset between the output signal of the first injection-locked oscillator and the synchronization signal; a second counter adapted to determine a phase offset between the output signal of the second injection-locked oscillator and the synchronization signal; and a calibration circuit configured to adjust the free-running oscillation frequencies of both the first and second injection-locked oscillators based on a comparison between an average of the first and second phase offsets and a reference phase offset.
According to one embodiment, the output circuit comprises: a phase comparator; and a control circuit having an output coupled to the first input of the second injection-locked oscillator and adapted to generate a control signal for controlling the free-running oscillation frequency of the second injection-locked oscillator based on the phase comparison.
According to one embodiment, the interface circuit further comprises a sigma-delta modulator coupled to the output of the phase comparator, and a further comparator coupled to the output of the sigma-delta modulator, the control circuit being adapted to generate the control signal based an output signal of the further comparator.
According to one embodiment, the output circuit comprises: a phase comparator; and a control circuit having an output added to the first output signal of the sensor, the free-running oscillation frequency of the first injection-locked oscillator being controlled based on the sum of the first output signal and the control signal.
According to one embodiment, the output circuit comprises a counter adapted to generate the digital output value by incrementing a count value between a first edge of the output signal of the first injection-locked oscillator and a first edge of the synchronization signal or of a further reference signal.
According to one embodiment, the first injection-locked oscillator comprises: an oscillator comprising first and second capacitors charged or discharged based on a first current signal generated based on said first output signal of the sensor; and an injection locking circuit adapted to charge or discharge the first and second capacitors based on the synchronization signal.
According to one embodiment, the first injection-locked oscillator further comprises a flip-flop adapted to be clocked based on a voltage across the first capacitor and reset based on a voltage across the second capacitor.
According to a further embodiment, there is provided a method of outputting a sensor signal comprising: controlling a free-running oscillation frequency of a first injection-locked oscillator by a signal from a sensor coupled to a first input of the first injection-locked oscillator; and locking the frequency of an output signal of the first injection-locked oscillator to a reference frequency by applying a synchronization signal at the reference frequency to a second input of the first injection-locked oscillator, the output signal being phase shifted with respect to the synchronization signal as a function of the signal from the sensor.
The foregoing and other features and advantages will become apparent from the following detailed description of embodiments, given by way of illustration and not limitation with reference to the accompanying drawings, in which:
Throughout the following description, the term “connected” is used to designate a direct connection between two elements, whereas the term “coupled” is used to designate a connection that could be direct, or could be via one or more intermediate elements such as resistors, capacitors or transistors.
The sensor 102 is for example a temperature sensor, radiation sensor, orientation sensor, or any other sensor generating an output signal.
The differential output signals of the sensor 102 are respectively provided to injection-locked oscillators (ILO1, ILO2) 104 and 106. In particular, one output of the sensor 102 is coupled to an input of the ILO 104 for controlling a free-running oscillation frequency f0 of the oscillator 104, and the other output of the sensor 102 is coupled to an input of the ILO 106 for controlling a free-running oscillation frequency f0′ of the oscillator 106. A further input of each of the oscillators 104, 106 is coupled to the output of a reference oscillator 108, which for example generates a synchronization signal VSYNC at a reference frequency fSYNC. The oscillators 104, 106 respectively generate output signals VILO1, VILO2 at this reference frequency fSYNC. However, the phase of each of the signals VILO1, VILO2 is a function of the corresponding sensor output signal, and thus there will be a phase difference between the signals VILO1, VILO2 that varies as a function of the sensor output signal 2ΔV or 2ΔI.
In some embodiments, the sensor 102 generates differential voltage signals, and the free-running oscillation frequencies f0, f0′ of the oscillators 104, 106 are respectively controlled directly by these voltage signals. In alternative embodiments, the sensor 102 generates differential current signals, and the free-running oscillation frequencies f0, f0′ of the oscillators 104, 106 are respectively controlled directly by these current signals. In the case that the sensor 102 generates differential voltage signals and the free-running oscillation frequencies f0, f0′ of the oscillators 104, 106 are respectively controlled by current signals, a transconductance circuit (TRANS COND) 109 is for example coupled between the outputs of the sensor 102 and the oscillators 104, 106 in order to convert the differential voltage signals into differential current signals.
In alternative embodiments, rather than generating a current or voltage signal, the sensor 102 could be a resistive or capacitive sensor, incorporated or embedded within each injection locked oscillator 104, 106. In this way, the signal from the sensor resulting from variations of the sensing element directly changes the free-running frequency of each oscillator.
An output circuit 110 is for example adapted to generate a digital output signal DATA representing the sensor output signal based on the phase difference between the signals VIOL1, VILO2. The output circuit 110 is for example a time to digital converter (TDC) performing time to digital conversion, and generates a digital signal representing the magnitude, and in some embodiments the sign, of the phase difference between the output signals VIOL1, VILO2. For example, the output circuit 110 comprises a counter circuit (COUNT) 112 adapted to increment a count value during an interval between corresponding edges of the signals VILO1, VIOL2. The counter circuit 112 is for example clocked by a signal having a frequency at a multiple M of the reference frequency fSYNC, generated for example by a frequency multiplier 114, although this clock signal could be generated in other ways. The count value then provides the digital output signal. The multiple M is for example equal to or greater than two and in some embodiments in the hundreds or thousands.
An injection-locked oscillator (ILO) is a type of oscillator that has a free-running oscillation frequency f0 when no input signals are applied to it, and if a synchronization signal VSYNC is applied to it having a frequency fSYNC that is within certain limits of the frequency f0, the oscillator will lock onto this frequency, as will now be explained with reference to
An ILO has the property that the phase difference ØOUT/SYNC between the synchronization signal VSYNC and the output signal VILO is a function of the frequency difference between the free-running oscillation frequency f0 and the reference frequency fSYNC. In other words:
ØOUT/SYNC=F(fSYNC−f0)
In some embodiments, the ILOs 104, 106 are chosen such that the function F( ) is linear or substantially linear.
Thus, by using the output signals of the sensor 102 to modify the free-running oscillation frequencies f0, f0′ of the oscillators 104, 106 respectively, the sensor output signals are converted into corresponding phase shifts of the synchronizing signal VSYNC, as will now be described in more detail with reference to
As shown in
In the case that the output circuit 110 of
The ILO 104 for example comprises an oscillator 402 and an injection locking circuit 404. An ILO similar to the one shown in
The oscillator 402 is for example a relaxation oscillator. The oscillator is based on a D-type flip-flop 406 having its data input D coupled to the supply voltage VDD, and having outputs Q and
The node 410 is coupled to ground via a capacitor 416 and also receives a current from a current source 418, which represents the current I+ΔI provided by the sensor 102 or by the transconductance circuit 109 of
The node 410 is further coupled to the clock input of the flip-flop 406 via the series connection of a pair of inverters 424, 426. The node 414 is for example coupled to a reset input R of the flip-flop 406 via an inverter 428.
The injection-locking circuit 404 for example comprises a differential trans-impedance amplifier comprising transistors 430 and 432 coupled in series by their main conducting nodes between nodes 434 and 436, and transistors 438, 440 coupled by their main conducting nodes between the nodes 434 and 436. The transistors 430 and 438 are for example p-channel MOS (PMOS) transistors, and the transistors 432, 440 are for example n-channel MOS (NMOS) transistors. The gates of transistors 430 and 432 are for example coupled to receive the input signal VSYNC, and the gates of transistors 438, 440 are for example coupled to receive the inverse of the signal VSYNC. The node 434 is for example coupled to the supply voltage rail VDD via a current source 442 supplying a current I1, and the node 436 is for example coupled to the ground rail via a current source 444 also supplying the current I1. An intermediate node 446 between the transistors 430, 432 is for example coupled to the capacitive node 410, and an intermediate node 448 between the transistors 438, 440 is for example coupled to the capacitive node 414. The voltage at the node 410 across the capacitor 416 is labelled U1, and the voltage at the node 414 across the capacitor 420 is labelled U2.
In some embodiments, variable current sources 450, 452 may be coupled respectively to the nodes 410, 414 and permit the biasing current of the ILO to be calibrated, as will be described in more detail below.
Operation of the circuit of
The operation of the ILO 104 is based on the charging of the capacitors 416, 420 by the current sources. Assuming that the output signal Q of the flip-flop 406 is initially high, the transistor 412 is for example non-conducting, and the transistor 408 is for example conducting. The voltage U1 across the capacitor 416 is thus pulled to ground, and the capacitor 420 is charged by the current source 422 and also by the current source 442 while the signal VSYNC is high. When the voltage U2 reaches the threshold set by the inverter 428, the flip-flop 406 is reset, causing the output Q to go low, as shown by a falling edge 502 of the signal Q in
The free-running oscillation frequency f0 of the oscillator 104 is based on the current I0 of the current sources 418, 422, which in the example of
where C is the capacitance of the capacitors 416, 420 and Vth is the threshold voltage of the inverters 424, 428. Thus the free-running oscillation frequency f0 is directly proportional to the current I0.
Furthermore, as shown in
where I0 is the current provided by each of the current sources 418, 422, I1 is the current provided by each of the current sources 442, 444, <I> is the average current flowing into the oscillator capacitor 416 during one half of the synchronization period, and Rtd is the amount of overlap between high pulses of the signals Q and VSYNC.
The phase shift ØOUT/SYNC at the output of the oscillator can be shown to equal:
where T0 is the period of the free running oscillator, TSYNC is the period of the synchronizing signal, I0 is the biasing current of the free-running oscillator and ISYNC is the current injected in the oscillator, equal to I1. Thus the ILO of
The differential voltages V+ΔV and V−ΔV provided by the sensor 102 are for example respectively applied to positive inputs of differential amplifiers 602, 604. An output of the amplifier 602 is coupled to the control node of a transistor 606. The transistor 606 is for example an n-channel MOS transistor having its source 608 coupled to the negative input of the amplifier 602. Similarly, the output of the amplifier 604 is for example coupled to the control node of a transistor 610. The transistor 610 is for example an n-channel MOS transistor having its source node 612 coupled to the negative input of the amplifier 604. In this way, the currents I1 and I2 respectively passing through the transistors 606 and 610 are a function of the differential input signals V+ΔV and V−ΔV.
The nodes 608, 612 are for example coupled together via a trans-impedance 614. Furthermore, the nodes 608 and 612 are each coupled to a current mirror circuit 618, which pulls a current I3 through each of the branches. The current I4 through the trans-impedance 614 is thus equal to I1-I3 and to I3-I2.
The current mirror circuit 618 for example comprises an NMOS transistor 620 coupled by its main conducting nodes between the node 608 and the ground supply rail, and an NMOS transistor 622 coupled by its main conducting nodes between the node 612 and the ground rail. The gates of the transistors 620 and 622 are for example coupled together, and to the ground rail via a further NMOS transistor 624, controlled at its gate by a logic signal EN for enabling or disabling the circuit. The gates of the transistors 620 and 622 are also for example coupled to the gate and drain of a further transistor 626, which for example has its source coupled to the ground rail, and receives at its drain a reference current IREF setting the current I3.
The currents I1 and I2 are for example respectively used to generate, using appropriate current sources, the currents I+ΔI supplied to the nodes 410 and 414 of the ILO 104, and the currents I−ΔI supplied to the nodes 410 and 414 of the ILO 106. For example, the drain of transistor 606 is coupled to the drain of a PMOS transistor 630, which has its source coupled to the supply rail VDD. The transistor 630 has its gate coupled to its drain. Further PMOS transistors 632 and 634 for example have their gates coupled to the gate of the transistor 630, and have their sources coupled to the supply voltage VDD such that the currents I+ΔI are provided at their drains. Similarly, the drain of transistor 610 is coupled to the drain of a PMOS transistor 636, which has its source coupled to the supply rail VDD. The transistor 636 has its gate coupled to its drain. Further PMOS transistors 638 and 640 for example have their gates coupled to the gate of the transistor 636, and have their sources coupled to the supply voltage VDD such that the currents I−ΔI are provided at their drains.
In some embodiments, the amount of phase shift applied to the synchronization signal VSYNC by each ILO 104, 106 has an upper limit defined by the full scale of the ILO, as will now be described with reference to
To address this issue, the counter circuit 112 of the output circuit 110 is for example adapted to measure a phase offset Rtd1 between the signal VILO1 and the signal VSYNC, and a phase offset Rtd2 between the signal VILO2 and the signal VSYNC. Ideally, the average phase offset (Rtd1+Rdt2)/2 should equal the maximum full scale FSMAX, equal for example to TSYNC/2. If the average phase offset is different from FSMAX, the free-running oscillation frequency of each of the ILOs 104, 106 is for example adjusted, for example by adjusting the biasing current of the ILOs, for example by controlling currents provided by the variable current sources 450, 452 of
While the use of the counter circuit 112 to measure the phase offset Rtd1 implies a digital control loop, in alternative embodiments an analog control loop could be implemented, for example based directly on the outputs of the ILOs.
Furthermore, while the output circuit 110 of
The example of
In operation, the phase comparator 802 will detect the phase offset between the signals VILO1 and VILO2, and the control circuit 804 generates, based on the phase comparison, successive bits of a digital control signal. This digital control signal is then converted into a current level applied to the ILO 106 to adjust the phase shift it introduces. This feedback loop will iteratively converge to a value of the control signal resulting in a phase shift of the ILO 106 that matches the phase shift introduced by the ILO 104. The digital value of the control signal thus represents the sensor output signal VSENSE, and provides an n-bit output data signal DATA.
An advantage of the embodiments described herein is that, by using one or more ILOs to convert a sensor signal into a phase shift, the circuit is particularly robust against parameter variations that may result from hostile environments.
An advantage of using an output circuit implementing a time to digital converter, which generates a digital output signal based on a phase difference, is that such a circuit can be implemented using mostly digital logic components having relatively low sensitivity to environmental conditions, and in particular to temperature variations. Furthermore, such logic components can be implemented using low voltage devices, leading to low power consumption.
A further advantage of the embodiments described herein is that they use a single reference oscillator 108 generating a single synchronization signal VSYNC, thereby providing a relatively low cost solution.
An advantage of providing an output circuit clocked by the synchronization signal VSYNC is that this leads to a high quality digital output signal, with relatively low conversion noise, i e. jitter.
Furthermore, an advantage of the embodiments of
Having thus described at least one illustrative embodiment, various alterations, modifications and improvements will readily occur to those skilled in the art. For example, it will be apparent to those skilled in the art that some or all of the n-channel MOS transistors described in the various circuits could be replaced, in alternative embodiments, by p-channel MOS transistors, and vice-versa. Furthermore, rather than being implemented using MOS transistor technology, other transistor technologies could be used.
Furthermore, the various features described in relation with the various embodiments could be combined, in alternative embodiments, in any combination. For example, it will be apparent to those skilled in the art that the embodiment of
Number | Date | Country | Kind |
---|---|---|---|
16 60100 | Oct 2016 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
8542779 | Xu | Sep 2013 | B2 |
8804397 | Aleksic | Aug 2014 | B2 |
8975973 | Sato | Mar 2015 | B2 |
9219486 | Raj | Dec 2015 | B2 |
9425905 | Lee | Aug 2016 | B2 |
9435767 | Schlereth | Sep 2016 | B2 |
9722619 | Siligaris | Aug 2017 | B2 |
9966661 | Xue | May 2018 | B2 |
10084462 | Yonezawa | Sep 2018 | B2 |
20030137361 | Knecht | Jul 2003 | A1 |
20100073096 | Gupta | Mar 2010 | A1 |
20170194966 | Yonezawa | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
WO 2007068283 | Jun 2007 | WO |
Entry |
---|
French Search Report for Application No. FR 1660100 dated Jun. 27, 2017. |
Asua et al., A Novel Micro- and Nano-Scale Positioning Sensor Based on Radio Frequency Resonant Cavities. Sensors. May 30, 2014; 14: 9615-27. |
Bianchi et al., ALC Crystal Oscillators Based Pressure and Temperature Integrated Measurement System for High Temperature Oil Well Applications. Joint Meeting EFTF—IEEE IFCS. 1999; 1058-61. |
Cheng et al., A Low-Power Oscillator-Based Readout Interface for Medical Ultrasonic Sensors. 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT) IEEE. Apr. 25, 2016, pp. 1-4. |
Chien et al., A 6.5/11/17.5/30-GHz High Throughput Interferometer-based Reactance Sensors using Injection-Locked Oscillators and Ping-Pong Nested Chopping. IEEE Symposium on VLSI Circuits Digest of Technical Papers. 2014. |
Chien et al., Design and Analysis of Chopper Stabilizaed Injection-Locked Oscillator Sensors Employing Near-Field Modulation. IEEE J. of Solid-State Circuits. Aug. 2016; 51(8):1851-65. |
Davis et al., A 14-Bit High-Temperature ΣΔ A Modulator in Standard CMOS. IEEE J. of Solid-State Circuits. Jun. 2003; 38(6): 976-86. |
De Smedt et al., A Novel, Highly Linear, Voltage and Temperature independent Sensor Interface Using Pulse Width Modulation. Elsevier. Procedia Engineering. Sep. 9-12, 2012; 47: 1215-18. |
Demeûs et al., High-Temperature Analog Instrumentation System in Thin-Film Fully-Depleted SOI CMOS Technology. IEEE. 1998; 51-4. |
Jaafar et al., New PLL Based Signal Conditioning Circuitry for Capacitive Sensors. IEEE Workshop on Advanced Research and Technology in Industry Applications. 2014; 7-12. |
Shoucair. Design Considerations in High Temperature Analog CMOS Integrated Circuits. IEEE Transactions on Components, Hybrids, and Manufacturing Technology. Sep. 1986; v.CHMT-9(3): 242-51. |
European Search Report for Application No. EP 17 19 6830 dated Mar. 6, 2018. |
Razavi, A Study of Injection Locking and Pulling in Oscillators. IEEE J of Solid-State Circuits. Sep. 2004;39(9):1415-24. |
Number | Date | Country | |
---|---|---|---|
20180106695 A1 | Apr 2018 | US |