The invention relates generally to healthcare, and more particularly, to sensor network for measuring physiological parameters of mammal subject and applications of the same.
The background description provided herein is for the purpose of generally presenting the context of the invention. The subject matter discussed in the background of the invention section should not be assumed to be prior art merely as a result of its mention in the background of the invention section. Similarly, a problem mentioned in the background of the invention section or associated with the subject matter of the background of the invention section should not be assumed to have been previously recognized in the prior art. The subject matter in the background of the invention section merely represents different approaches, which in and of themselves may also be inventions. Work of the presently named inventors, to the extent it is described in the background of the invention section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the invention.
Every year, 300,000 neonates are admitted to the neonatal care unit (NICU) in the U.S. The Global Fetal and Neonatal Care Equipment market is expected to grow from $7.32 billion in 2016 to reach $11.86 billion by 2022. Vital sign monitoring systems, however, have largely remained locked in time since the 1970s. Large base units with extensive wires are still attached to numerous electrodes.
Continuous monitoring of vital signs in the NICU is essential to the survival of critically-ill neonates. Conventional medical platforms in the NICU fail, however, to offer a safe, patient-centric mode of operation, largely due to the use of hard-wired, rigid interfaces to the neonate's fragile, under-developed skin. Thus, continuous monitoring of vital signs for critical care applications in maternal/fetal and neonatal health requires new technology able to meet unique demands. Small yet adaptable form factors are needed with low skin-device interface stressors. Higher noise to signal ratios require specialized processing and algorithms able to faithfully collect vital signs even during periods of high motion artifact.
Therefore, a heretofore unaddressed need exists in the art to address the aforementioned deficiencies and inadequacies.
One aspect of the invention is to provide a new class of wireless wearable sensors capable of re-capitulating standard of care monitoring systems, with relevance for deployment in pediatric health, in a highly networked and synchronized fashion. These wireless wearable sensors are in a networked configuration to facilitate real time data processing, analytics, and safety features that meet the rigorous demands of clinical care. The sensor network has advanced monitoring capabilities and greater safety features, and is applicable to both low-resource settings where wireless vital sign monitoring systems have not penetrated into neonatal care as well as high-resource settings where the instant systems represent the cutting edge, next generation systems for neonatal monitoring.
In one aspect, the invention relates to a sensor network for measuring physiological parameters of a mammal subject. The physiological parameters include, but are not limited to, one or more of heart activities including a stroke volume and ejection fraction, oxygenation level, temperature, skin temperature differentials, body movement, body position, breathing parameters, blood pressure, crying time, crying frequency, swallow count, swallow frequency, chest wall displacement, heart sounds, core body position, asynchronous limb motion, speaking, and biomechanical perturbation. The mammal subject can be a living human subject or a living non-human subject. In certain embodiments, physiological parameters of neonates or infants are monitored and measured. It should be appreciated to one skilled in the art that physiological parameters of children or adults can also be monitored and measured in practice the invention.
In one embodiment, the sensor network includes a plurality of spatially separated sensor systems that is time-synchronized to each other. Each of the plurality of spatially separated sensor systems is attached to a respective position of the mammal subject and includes a sensor member for measuring at least one physiological parameter, a system on a chip (SoC) having a microprocessor coupled to the sensor member for receiving data from the sensor member and processing the received data, and a transceiver coupled to the SoC for wireless data transmission and wireless power harvesting. The sensor network also includes a microcontroller unit (MCU) adapted in wireless communication with the plurality of spatially separated sensor systems for wirelessly transmitting data to and from the plurality of spatially separated sensor systems.
In one embodiment, each two adjacent sensor systems are spatially separated by a respective distance that is adjustable between a minimal distance and a maximal distance.
In one embodiment, the plurality of spatially separated sensor systems comprises a first sensor system configured to attach to a central region of the mammal subject and a second sensor system configured to attach to an extremity region of the mammal subject. In one embodiment, the central region comprises one or more of a chest region, a neck region including a suprasternal notch area, and a head region including a forehead region or an anterior fontanelle region of the mammal subject. The extremity region comprises one or more of a limb region, a foot region, a hand region, a toenail region, and a fingernail region of the mammal subject.
In one embodiment, the sensor member of the first sensor system comprises at least two electrodes spatially apart from each other for electrocardiogram (ECG) generation.
In one embodiment, the sensor member of the second sensor system comprises a photoplethysmogram (PPG) sensor comprising an optical source and an optical detector located within a sensor footprint.
In one embodiment, each sensor member of the first sensor system and the second sensor system further comprises one or more of an accelerometer for measuring at least one of a position and a movement; an inertial measurement unit (IMU) for measuring at least one of a movement, a force, an angular rate, and an orientation; and a temperature sensor for measuring temperature.
In one embodiment, the accelerometer or the IMU is used to measure at least one of seismocardiography (SCG) and a respiratory rate.
In one embodiment, the accelerometer or the IMU is used with a motion artifact module to identify a vital sign as subject to motion artifact and to correct of motion artifact.
In one embodiment, each sensor member of the first sensor system and the second sensor system comprises one or more of an ECG sensor, an EKG sensor, a pulse oximeter sensor, a temperature sensor, a blood pressure sensor, an accelerometer, or an acoustic sensor.
In one embodiment, the MCU is configured to perform at least one function of receiving and processing measured data of the physiological parameters from the plurality of spatially separated sensor systems; transmitting the processed data of the physiological parameters to at least one of a patient database, a cloud server, and a mobile device; continuously multi-modal monitoring one or more critical parameters associating at least one vital sign; and notifying a practitioner or caregiver when a sensor aberrant signal output condition occurs; and generating an alarm when an alarming vital sign reading condition in which the one or more of the critical parameters are out of pre-defined ranges occurs, and notifying a practitioner or caregiver of the alarm. In one embodiment, the one or more critical parameters are one or more of the heart parameters, brain activities, temperature, body movements, respiratory parameters, oxygenation, vocalization parameters, swallow parameters, and blood pressure and blood flow.
In one embodiment, the MCU is configured to further perform at least one function of assessing body pain of the mammal subject, based on the physiological parameters including a heart rate, heart rate variability, respiratory rate, respiratory effort, and crying time, and notifying a practitioner or caregiver where the pain is assessed; assessing local blood perfusion of the mammal subject, based on a location specific pulse oximetry derived from peripheral oxygen saturation (SpO2) measured by pulse oximeters of the sensor systems placed on various locations of the body; detecting an apneic event when sudden decreases or cessation of the respiratory rate followed by compensatory increases in the heart rate and decreases in the SpO2, and notifying a practitioner or caregiver when the apneic event occurs, and vibrating the sensor systems itself to trigger the mammal subject to change its position or awake from sleep; and localizing anatomical pathology based on the physiological parameters measured by the plurality of spatially separated sensor systems placed in differential locations.
In one embodiment, the MCU comprises a mobile device for at least one of real-time display of the physiological parameters, recording of the physiological parameters, and alarm.
In one embodiment, the mobile device in bi-directionally wireless communication with the plurality of spatially separated sensor systems. In one embodiment, the mobile device is in wireless communication with the patient database. In one embodiment, the mobile device is a hand-held device or a portable device having a graphical user interface to display the plurality of physiological parameters.
In one embodiment, the sensor network further comprises a power unit for wirelessly powering the sensor systems. In one embodiment, the sensor network is capable of operating wirelessly for a period of at least 24 hours without a source of external power.
In one embodiment, at least one of the plurality of spatially separated sensor systems further comprises an actuator configured to generate a force for providing a stimulus to the mammal subject when a pre-defined trigger signal is detected. In one embodiment, the stimulus comprises gentle vibrations for soothing the mammal subject.
In one embodiment, the actuator is one or more of an electromechanical motor, a heater, and an electrical stimulator.
In one embodiment, each of the plurality of spatially separated sensor systems further comprises a plurality of flexible and stretchable interconnects electrically connecting to a plurality of electronic components including the sensor member, the SoC and the transceiver; and an elastomeric encapsulation layer surrounding the electronic components and the plurality of flexible and stretchable interconnects to form a tissue-facing surface and an environment-facing surface, wherein the tissue-facing surface is configured to conform to a skin surface of the mammal subject. In one embodiment, the encapsulation layer comprises a flame retardant material.
In one embodiment, the transceiver comprises a magnetic loop antenna configured to allow simultaneous wireless data transmission and wireless power harvesting through a single link.
In one embodiment, the electronic components of each of the plurality of spatially separated sensor systems further comprises a battery for provide power to said sensor system, and the elastomeric encapsulation layer is configured to electrically isolate the battery from the mammal subject during use. In one embodiment, the battery is a rechargeable battery operably recharged with wireless recharging.
In one embodiment, the electronic components of each of the plurality of spatially separated sensor systems further comprises a failure prevention element that is a short-circuit protection component or a battery circuit to avoid battery explosion.
In another aspect, the invention relates to a method for measuring physiological parameters of a mammal subject. In one embodiment, the method includes deploying the sensor network as disclosed above; synchronizing the plurality of spatially separated sensor systems to a common time base; measuring data of the physiological parameters from the plurality of spatially separated sensor systems; and wirelessly transmitting the time synchronized measured physiological parameters. Said deploying the sensor network including respectively attaching at least one first sensor system to a central region of the mammal subject and at least one second sensor system to an extremity region of the mammal subject such that the first sensor system and the second sensor system are spatially separated by a distance.
In one embodiment, said wirelessly transmitting the time synchronized measured physiological parameters is performed with the MCU in wireless communication with the plurality of spatially separated sensor systems.
In one embodiment, said wirelessly transmitting the time synchronized measured physiological parameters comprises receiving and processing the measured data of the physiological parameters from the plurality of spatially separated sensor systems; and transmitting the processed data of the physiological parameters to at least one of a patient database, a cloud server, and a mobile device.
In one embodiment, the method further comprises associating the wirelessly transmitted physiological parameters with a unique patient identifier, thereby identifying the physiological parameters with the mammal subject in at least one of the patient database, the cloud server, and the mobile device.
In one embodiment, the method further comprises identifying a normal vital sign reading condition, an aberrant sensor output condition, or an alarming vital sign reading condition, based on the physiological parameters. In one embodiment, the aberrant sensor output condition is one or more of a lead off state where the tissue-facing surface of a sensor system is not in intimate contact with an underlying patient surface; a patient motion artifact; or an output discrepancy relative to at least two different sensor systems. In one embodiment, the aberrant sensor output condition is identified when at least one vital sign detected from the first sensor system differs from that detected from the second sensor by 25% or greater.
In one embodiment, the method further comprises continuously multi-modal monitoring one or more critical parameters associating with the at least one vital sign; and notifying a practitioner or caregiver when the sensor aberrant signal output condition occurs.
In one embodiment, the method further comprises generating an alarm when the alarming vital sign reading condition in which the one or more of the critical parameters are out of pre-defined ranges occurs, and notifying a practitioner or caregiver of the alarm.
In one embodiment, the one or more critical parameters are one or more of the heart parameters, brain activities, temperature, body movements, respiratory parameters, oxygenation, vocalization parameters, swallow parameters, and blood pressure and blood flow.
In one embodiment, the method further comprises at least one of assessing body pain of the mammal subject, based on the physiological parameters including a heart rate, heart rate variability, respiratory rate, respiratory effort, and crying time, and notifying a practitioner or caregiver where the pain is assessed; assessing local blood perfusion of the mammal subject, based on a location specific pulse oximetry derived from the SpO2 measured by pulse oximeters of the sensor systems placed on various locations of the body; detecting an apneic event when sudden decreases or cessation of the respiratory rate followed by compensatory increases in the heart rate and decreases in the SpO2, and notifying a practitioner or caregiver when the apneic event occurs, and vibrating the sensor systems itself to trigger the mammal subject to change its position or awake from sleep; and localizing anatomical pathology based on the physiological parameters measured by the plurality of spatially separated sensor systems placed in differential locations.
In one embodiment, the method further comprises displaying at least one of the physiological parameters, notifications, and the alarm in a display having a graphical user interface.
In one embodiment, the method further comprises securing the display of the physiological parameters by requiring a secure login before a user can access the physiological parameters.
In one embodiment, the user is a practitioner or caregiver, the mammal subject or family member, and the method further comprises wirelessly communicating between the practitioner or caregiver and the mammal subject or family member based on the physiological parameters.
In one embodiment, the method further comprises securely sending a command from a remote practitioner or caregiver to a practitioner or caregiver in proximity to the mammal subject based on the physiological parameters.
In one embodiment, the method further comprises actuating an actuator to generate a force for providing a stimulus to the mammal subject when a pre-defined trigger signal is detected. In one embodiment, the stimulus comprises gentle vibrations for soothing the mammal subject.
In yet another aspect, the invention relates to a non-transitory tangible computer-readable medium storing instructions which, when executed by one or more processors, cause the above-disclosed method to be performed.
These and other aspects of the invention will become apparent from the following description of the preferred embodiment taken in conjunction with the following drawings, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the invention.
The following drawings form part of the present specification and are included to further demonstrate certain aspects of the invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein. The drawings described below are for illustration purposes only. The drawings are not intended to limit the scope of the present teachings in any way.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the present invention are shown. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout.
The terms used in this specification generally have their ordinary meanings in the art, within the context of the invention, and in the specific context where each term is used. Certain terms that are used to describe the invention are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the invention. For convenience, certain terms may be highlighted, for example using italics and/or quotation marks. The use of highlighting and/or capital letters has no influence on the scope and meaning of a term; the scope and meaning of a term are the same, in the same context, whether or not it is highlighted and/or in capital letters. It will be appreciated that the same thing can be said in more than one way. Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification, including examples of any terms discussed herein, is illustrative only and in no way limits the scope and meaning of the invention or of any exemplified term. Likewise, the invention is not limited to various embodiments given in this specification.
It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below can be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
It will be understood that, as used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” includes plural reference unless the context clearly dictates otherwise. Also, it will be understood that when an element is referred to as being “on,” “attached” to, “connected” to, “coupled” with, “contacting,” etc., another element, it can be directly on, attached to, connected to, coupled with or contacting the other element or intervening elements may also be present. In contrast, when an element is referred to as being, for example, “directly on,” “directly attached” to, “directly connected” to, “directly coupled” with or “directly contacting” another element, there are no intervening elements present. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” to another feature may have portions that overlap or underlie the adjacent feature.
It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” or “has” and/or “having” when used in this specification specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation shown in the figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on the “upper” sides of the other elements. The exemplary term “lower” can, therefore, encompass both an orientation of lower and upper, depending on the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
As used in this disclosure, “around”, “about”, “approximately” or “substantially” shall generally mean within 20 percent, preferably within 10 percent, and more preferably within 5 percent of a given value or range. Numerical quantities given herein are approximate, meaning that the term “around”, “about”, “approximately” or “substantially” can be inferred if not expressly stated.
As used in this disclosure, the phrase “at least one of A, B, and C” should be construed to mean a logical (A or B or C), using a non-exclusive logical OR. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
As used in this disclosure, the term “spatially separated” refers to two different locations on skin, wherein the two sensor systems disposed on those locations are not in physical contact. For example, one sensor system may be on the torso, and another sensor system on the foot.
As used in this disclosure, the term “mammal subject” refers to a living human subject or a living non-human subject. For the purpose of illustration of the invention, the apparatus and method are applied to monitor and/or measure physiological parameters of neonates or infants. It should be appreciated to one skilled in the art that the apparatus can also be applied to monitor and/or measure physiological parameters of children or adults in practice the invention.
The description below is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses. The broad teachings of the invention can be implemented in a variety of forms. Therefore, while this invention includes particular examples, the true scope of the invention should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the invention.
To address the aforementioned deficiencies and inadequacies, the invention in one aspect discloses a new class of wireless wearable sensors capable of re-capitulating standard of care monitoring systems, with relevance for deployment in pediatric health, in a highly networked and synchronized fashion. These wireless wearable sensors are in a networked configuration to facilitate real time data processing, analytics, and safety features that meet the rigorous demands of clinical care. The sensor network has advanced monitoring capabilities and greater safety features, and is applicable to both low-resource settings where wireless vital sign monitoring systems have not penetrated into neonatal care as well as high-resource settings where the instant systems represent the cutting edge, next generation systems for neonatal monitoring.
In one aspect, the invention relates to a sensor network for or non-invasively and continuously measuring physiological parameters of a mammal subject. Physiological parameters that can be measured include, but are not limited to, one or more of heart activities including a stroke volume and ejection fraction, oxygenation level, temperature, skin temperature differentials, body movement, body position, breathing parameters, ballistocardiography, respiratory effort, blood pressure, crying time, crying frequency, swallow count, swallow frequency, chest wall displacement, heart sounds, core body position, asynchronous limb motion, speaking, and biomechanical perturbation.
In certain embodiments, the sensor network includes a plurality of spatially separated sensor systems that is time-synchronized to each other. Each of the plurality of spatially separated sensor systems is attached to a respective position of the mammal subject and includes a sensor member for measuring at least one physiological parameter, a system on a chip (SoC) having a microprocessor coupled to the sensor member for receiving data from the sensor member and processing the received data, and a transceiver coupled to the SoC for wireless data transmission and wireless power harvesting. The sensor network also includes a microcontroller unit (MCU) adapted in bidirectional wireless communication with the plurality of spatially separated sensor systems for wirelessly transmitting data to and from the plurality of spatially separated sensor systems.
In certain embodiments, each of the first sensor system 110 and the second sensor system 150 is an epidermal electronic system (EES). For example, the first sensor system 110 is configured to attach to a central region, while the second sensor system 150 is configured to attach to an extremity region of the mammal subject. The central region includes one or more of a chest region, a neck region including a suprasternal notch area, and a head region including a forehead region or an anterior fontanelle region of the mammal subject. The extremity region includes one or more of a limb region, a foot region, a hand region, a toenail region, and a fingernail region of the mammal subject.
In certain embodiments, the first sensor system 110 is a conformable torso sensor system configured to attach and conform to a torso region of the mammal subject for recording electrocardiogram (ECG) data and skin temperature; and the second sensor system 150 is a conformable extremity sensor system configured to attach and conform to a limb or appendage region of the mammal subject for recording photoplethysmogram (PPG) data and skin temperature. In other words, the first sensor system 110 can be an electrocardiography (ECG), and the second sensor system 150 can be a PPG sensor system. As shown in
In certain embodiments, each of the torso sensor system 110 and the extremity sensor system 150 includes a sensor member (circuit) having one or more sensors that are used to detect a vital sign of the mammal subject, and then to generate one or more corresponding physiological parameters, an SoC having a microprocessor coupled to the sensor member (circuit) for receiving data from the sensor member and processing the received data, and a transceiver coupled to the SoC for wireless data transmission and wireless power harvesting. The sensors may be various types of sensors for detecting the vital sign as a signal, and the signal can be, for example, an electrical signal related to at least one of ECG and electromyography (EMG) technology; a mechanical signal related to movement, respiration and arterial tonometry; an acoustic signal related to vocal cord vocalization and heart sound; and an optical signal related to blood oxygenation, and so on. In certain embodiments, each sensor member of the first sensor system 110 and the second sensor system 150 comprises one or more of an ECG sensor, an EKG sensor, a pulse oximeter sensor, a temperature sensor, a blood pressure sensor, an accelerometer, and an acoustic sensor.
Referring to
Still referring to
Also referring to
As shown in
Similarly, as shown in
In addition, each of the plurality of spatially separated sensor systems further comprises a plurality of flexible and stretchable interconnects (
In operation, the torso sensor system 110 and the extremity sensor system 150 are in wireless communication with a reader system 190, alternatively, the MCU, having an antenna 195, where one exemplary integrated circuit (IC) of the NFC reader system 190 is shown in
In another embodiment as shown in
In certain embodiments, the battery 205 is a rechargeable battery operably recharged with wireless recharging. In one embodiment, the electronic components of each of the first sensor system 210 and the second sensor system 250 further comprises a failure prevention element that is a short-circuit protection component or a battery circuit (not shown) to avoid battery explosion. In one embodiment, the elastomeric encapsulation layer is configured to electrically isolate the battery from the mammal subject during use.
Additionally, the first sensor system 210 is stretchable and foldable, as illustrated in the top panels of
The second sensor system 250, as shown in
In yet another embodiment as shown in
Referring back to
Specifically, in certain embodiments, the MCU 190 is configured to perform at least one function of receiving and processing measured data of the physiological parameters from the plurality of spatially separated sensor systems; transmitting the processed data of the physiological parameters to at least one of a patient database, a cloud server, and a mobile device; continuously multi-modal monitoring one or more critical parameters associating at least one vital sign; and notifying a practitioner or caregiver when a sensor aberrant signal output condition occurs; and generating an alarm when an alarming vital sign reading condition in which the one or more of the critical parameters are out of pre-defined ranges occurs, and notifying a practitioner or caregiver of the alarm. In one embodiment, the one or more critical parameters are one or more of the heart parameters, brain activities, temperature, body movements, respiratory parameters, oxygenation, vocalization parameters, swallow parameters, and blood pressure and blood flow.
In certain embodiments, the MCU 190 is configured to further perform at least one function of assessing body pain of the mammal subject, based on the physiological parameters including a heart rate, heart rate variability, respiratory rate, respiratory effort, and crying time, and notifying a practitioner or caregiver where the pain is assessed; assessing local blood perfusion of the mammal subject, based on a location specific pulse oximetry derived from peripheral oxygen saturation (SpO2) measured by pulse oximeters of the sensor systems placed on various locations of the body; detecting an apneic event when sudden decreases or cessation of the respiratory rate followed by compensatory increases in the heart rate and decreases in the SpO2; and notifying a practitioner or caregiver when the apneic event occurs, and vibrating the sensor systems itself to trigger the mammal subject to change its position or awake from sleep; and localizing anatomical pathology based on the physiological parameters measured by the plurality of spatially separated sensor systems placed in differential locations. In one embodiment, the MCU, for instance, can be used to localize lung pathology for the diagnosis of lobe-specific pneumonia or infection.
In one embodiment, the MCU comprises a mobile device for at least one of real-time display of the physiological parameters, recording of the physiological parameters, and alarm.
In one embodiment, the mobile device in bi-directionally wireless communication with the plurality of spatially separated sensor systems. In one embodiment, the mobile device is in wireless communication with the patient database. In one embodiment, the mobile device is a hand-held device or a portable device having a graphical user interface to display the plurality of physiological parameters.
In one embodiment, the sensor network further comprises a power unit for wirelessly powering the sensor systems. In one embodiment, the sensor network is capable of operating wirelessly for a period of at least 24 hours without a source of external power.
In one embodiment, at least one of the plurality of spatially separated sensor systems further comprises an actuator configured to generate a force for providing a stimulus to the mammal subject when a pre-defined trigger signal is detected. In one embodiment, the stimulus comprises gentle vibrations for soothing the mammal subject. In one embodiment, the actuator is one or more of an electromechanical motor, a heater, and an electrical stimulator.
As shown in
At procedure 520, the plurality of spatially separated sensor systems is time-synchronized to a common time base. As used in the disclosure, the term “time-synchronized” or “time synced” refers to measurement of a parameter by different sensors, including at different locations, which are synchronized in time to allow for measurement of novel physiological parameters. Examples include master-slave linked sensor systems that allows for time synced measurements. For example, certain embodiments of the invention utilize a multiprotocol functionality that incorporates a secondary 2.4 Ghz radio protocol other than Bluetooth to create a private star network among the network of sensors. The secondary radio protocol allows one of the sensors to act as the central hub to broadcast the local clock based on its crystal oscillator to create a common clock within the sensor network. Every sensor can have a local clock running and will adjust the local clock value based on the broadcasted clock value. The central hub can additionally communicate with the base station (including, for example, a remote reader or a receiver) to synchronize its local clock to the base station's clock. The private star network is not bounded to the base station allowing two different body-sensor networks to be synchronized in time without the need for a central hub. This is relevant in situations where the sensors function as blind data collection tools with data that can be downloaded and used later via a base unit.
The common clock can timestamp all of the signals captured through the sensors that the private star network uses allowing novel algorithms that depend on a common clock to be used in the sensor system. The only source of time lag/drift is from the crystal oscillator that is typically low (0.0004%). This time lag can be adjusted and corrected via the central hub at a frequency determined by the user.
At procedure 530, data of the physiological parameters are measured from the plurality of spatially separated sensor systems;
At procedure 540, the time synchronized measured physiological parameters are wirelessly transmitted to at least one of a patient database, a cloud server, and a mobile device. In one embodiment, said wirelessly transmitting procedure 540 includes receiving and processing the measured data of the physiological parameters from the plurality of spatially separated sensor systems; and transmitting the processed data of the physiological parameters to at least one of a patient database, a cloud server, and a mobile device.
In one embodiment, said wirelessly transmitting procedure 540 is performed with the MCU in wireless communication with the plurality of spatially separated sensor systems.
In one embodiment, the method further comprises associating the wirelessly transmitted physiological parameters with a unique patient identifier, thereby identifying the physiological parameters with the mammal subject in at least one of the patient database, the cloud server, and the mobile device.
In one embodiment, the method further comprises identifying a normal vital sign reading condition, an aberrant sensor output condition, or an alarming vital sign reading condition, based on the physiological parameters. In one embodiment, the aberrant sensor output condition is one or more of a lead off state where the tissue-facing surface of a sensor system is not in intimate contact with an underlying patient surface; a patient motion artifact; or an output discrepancy relative to at least two different sensor systems. In one embodiment, the aberrant sensor output condition is identified when at least one vital sign detected from the first sensor system differs from that detected from the second sensor by 25% or greater.
In one embodiment, the method further comprises continuously multi-modal monitoring one or more critical parameters associating with the at least one vital sign; and notifying a practitioner or caregiver when the sensor aberrant signal output condition occurs.
In one embodiment, the method further comprises generating an alarm when the alarming vital sign reading condition in which the one or more of the critical parameters are out of pre-defined ranges occurs, and notifying a practitioner or caregiver of the alarm.
In one embodiment, the one or more critical parameters are one or more of the heart parameters, brain activities, temperature, body movements, respiratory parameters, oxygenation, vocalization parameters, swallow parameters, and blood pressure and blood flow.
In one embodiment, the method further comprises at least one of assessing body pain of the mammal subject, based on the physiological parameters including a heart rate, heart rate variability, respiratory rate, respiratory effort, and crying time, and notifying a practitioner or caregiver where the pain is assessed; assessing local blood perfusion of the mammal subject, based on a location specific pulse oximetry derived from the SpO2 measured by pulse oximeters of the sensor systems placed on various locations of the body; detecting an apneic event when sudden decreases or cessation of the respiratory rate followed by compensatory increases in the heart rate and decreases in the SpO2, and notifying a practitioner or caregiver when the apneic event occurs, and vibrating the sensor systems itself to trigger the mammal subject to change its position or awake from sleep; and localizing anatomical pathology based on the physiological parameters measured by the plurality of spatially separated sensor systems placed in differential locations.
In one embodiment, the method further comprises displaying at least one of the physiological parameters, notifications, and the alarm in a display having a graphical user interface.
In one embodiment, the method further comprises securing the display of the physiological parameters by requiring a secure login before a user can access the physiological parameters.
In one embodiment, the user is a practitioner or caregiver, the mammal subject or family member, and the method further comprises wirelessly communicating between the practitioner or caregiver and the mammal subject or family member based on the physiological parameters.
In one embodiment, the method further comprises securely sending a command from a remote practitioner or caregiver to a practitioner or caregiver in proximity to the mammal subject based on the physiological parameters.
In one embodiment, the method further comprises actuating an actuator to generate a force for providing a stimulus to the mammal subject when a pre-defined trigger signal is detected. In one embodiment, the stimulus comprises gentle vibrations for soothing the mammal subject.
It should be noted that all or a part of the methods according to the embodiments of the invention is implemented by hardware or a program instructing relevant hardware.
Yet another aspect of the invention provides a non-transitory computer readable storage medium/memory which stores computer executable instructions or program codes. The computer executable instructions or program codes enable a computer or a similar computing apparatus to complete various operations in the above disclosed method of non-invasively measuring physiological parameters of a mammal subject. The storage medium/memory may include, but is not limited to, high-speed random access medium/memory such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, and non-volatile memory such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
According to the invention, the sensor network has applications including, but not limited to, critical care monitoring in neonatal intensive care units; critical care monitoring in pediatric intensive care units; critical care monitoring in neonatal/pediatric cardiac care units; critical care monitoring in neonatal/pediatric neurocritical care units; home monitoring for high-risk neonates.
The sensor networks according to embodiments of the invention have a number of advantages. For example, the sensor systems are fully integrated and capable of recapitulating full vital signs monitoring necessary for critical care. The at least two sensor systems include, but is not limited to, ECG, high-frequency accelerometer, gyroscope, temperature sensor, photoplethysmography unit, EMG. These sensors enable the widest measurement to date for a wearable sensor system that include traditional vital signs and novel physiological metrics that extend beyond current standard of care.
Sensing capabilities include, but are not limited to, vital signs: heart rate, respiratory rate, skin temperature (central and peripheral), core temperature sensor (when placed underneath the axilla), blood oxygenation.
Novel physiological metrics include, but are not limited to, cuff-less blood pressure (via pulse arrival time or pulse transit time), crying time, swallow count, chest wall displacement, heart sounds, core body position, skin temperature differentials between a central location (e.g. trunk) and distal location (e.g. limb).
The sensor network according to embodiments of the invention can be used to correlate chest wall movement overlying the heart with stroke volume and ejection fraction measured by echocardiography.
The sensor network according to embodiments of the invention allows analysis of a baby's position including when a baby is upright. This can be used to quantify important parameters such as how long a baby is being held for kangaroo care.
According to embodiments of the invention, the output of the sensor systems can be used to assess a variety of metrics, including to determine whether a baby has sustained an injury that is consistent with non-accidental trauma (e.g. child abuse), and can measure vocalization, crying time as a metric of discomfort or pain, asynchronous motion of the limbs, and/or sleep quality assessments with core body position measurement (laying face down, on the side, on the back); neonates sleep safest flat on their back, with other positions at a greater risk for sudden infant death syndrome (SIDS).
According to embodiments of the invention, unique mechanical layouts enable safe deployment on the fragile skin of mobile infants. Layered design of the circuitry allows for mechanical isolation of higher modulus components in a mechanical island; bending/twisting/stretching does not disturb the underyling sensor or other stain-sensitive components. The pulse oximeter unit is configured as a soft wrap that allows for circumferential affixation to the foot or hand of a neonate. This configuration reduces motion artifact and allows for maximal signal fidelity for SpO2. The soft, mechanical nature of the sensor itself enables intimate skin coupling without the need of powerful adhesives reducing the risk for iatrogenic skin injuries. Embodiments where the form factor occupies a small surface area (less than 2.0 cm×4.0 cm) facilitates placement on a premature neonate.
According to embodiments of the invention, unique isolation of electrical components enable operation in critical care settings. Battery is current isolated allowing for enhanced electrical safety to the neonate. Electrodes are able to be adjusted in spacing—allowing for accommodation of subjects of drastically different chest wall sizes (e.g. premature infant at 25 weeks gestational age vs adult subject). The electrical components are shielded enabling operation even during life-saving medical interventions such as cardiac defibrillation. Low power operation enabling 24 hours of continuous use between charges. Battery has failure preventions including short circuit protection and battery explosion circuitry. Flame retardation of the elastomer encapsulation reduces risk of injury.
According to embodiments of the invention, the wearable sensors fully support Bluetooth 5 technology enabling drastically extended sensing ranges with a base unit. Master-slave linked sensor system allows for time synced measurements of novel physiological parameters. Of course, the network systems provided herein are compatible with any number of communication protocols, including ultra wide band and narrow band communication protocols.
According to embodiments of the invention, the sensor systems provide transparent windows allowing for direct visual inspection of the skin underneath without removing the system. Perforated holes enable wicking away of sweat. Adhesives that have variable peel force based on the directionality of removal. Adhesives are placed strategically around the edges of the device (and not the center) to reduce total skin adhesive area as a method of reducing the risk of iatrogenic injury. Methods where a long-lasting adhesive (>24 hours adherence) is placed on the neonate with an additional mechanical communication. Peel force on sensitive, fragile skin can be reduced by use of a hydrogel. This is particularly relevant for neonate skin.
According to embodiments of the invention, respiratory rate algorithms are derived from chest wall movement that more accurately reflects true physiological function. Algorithms to derive SpO2 with improved sensing accuracy in spite of motion artifact. Dual heart rate sensing coupled from both the ECG and high frequency accelerometer. Dual measurement systems to capture accurate respiratory rate. The measurement of respiratory rate derived through the ECG via impedance pneumonography is often times inaccurate and overestimates the true respiratory rate. Described herein is the ability to measure chest wall movement to derive respiratory rate along with traditional impedance pneumonography. Continuous cross-validation is possible. High frequency accelerometer enables electrode-free method that avoids the need for additional skin preparation for the measurement of heart rate and respiratory rate; signal processing enables distinction between chest wall movement associated with breathing compared to heart rate.
According to embodiments of the invention, the sensor network has advanced software function and interoperability enabling cloud storage, remote login, and secure communication. Further capabilities include the integration of third-party sensors, wearables, and other hardware systems as well as paired integration with electronic health records.
Medical applications of the sensor network include, but are not limited to, multimodal sensing, including pulseless electrical activity. The ECG on the chest can pick up perfect ECG, heart, etc., but the heart is not actually pumping blood (in instances of hypovolemic shock). The accelerometer or the PPG can corroborate or refute the presence of cardiac activity. Another aspect is assessing pediatric/neonatal pain: given that neonates are non-verbal, measurement and assessment of pain is difficult. Accordingly, the sensor network can provide various measures relevant to pain including, but not limited to heart rate, heart rate variability, respiratory rate, respiratory effort, crying time. This further enables the ability to notify a provider or practitioner where pain is assessed. Kangaroo mother care (KMC): For instance, during skin-to-skin or “kangaroo care” where a baby is placed on the mom's chest, the ECG sensors can be placed on the back or flank of the neonate. Algorithms enable the detection of baby position in space and classification of positions relevant to kangaroo care.
In certain embodiments, the pulse oximeter unit is placed on various locations of the body to derive a measure location specific pulse oximetry. Locations include but are not limited to: all four limbs, chest, back, abdomen, forehead. These locations enable assessment of local blood perfusion—for instance, in the context of the forehead, the SpO2 can be used as a reflection of cerebral perfusion. Detection of apneic events: sudden decreases or cessation of respiratory rate followed by compensatory increases in heart rate and decreases in SpO2 may suggest the need intervention; this intervention include notification of a healthcare provider or vibration of the sensor itself to trigger the neonate to change position or awake from sleep. Beyond critical care, these devices may be used in the post-surgical setting, the home setting, or in adult care settings.
In certain embodiments, the form factor includes a single chest unit sensor with all electronics and vital sign monitoring functionality.
In certain embodiments, the sensor network has the ability to create alarms based on pre-programmed or physician specified inputs. These alarms include both visual and audio notifications. These notifications can be displayed on an external display unit or onboard the sensor itself (either via an onboard LED or sound).
In certain embodiments, the optical unit of the photoplethysmograph is located on the infant's nail (toenail or fingernail). Adherence to the nail allows for an excellent device/skin interface. The nail is surface with negligible risk of injury and no risk of irritation.
In certain embodiments, an electromechanical motor is integrated within the sensor unit—gentle vibration is soothing for babies and often times induces sleep. The sensors can act as sensing-therapeutic couplers. The sensing of crying can trigger a gentle vibration that soothes the baby.
Certain aspects of the invention disclose a sensor network for wireless monitoring of physiological parameters comprising a plurality of time-synchronized sensor systems, wherein each sensor system comprises a sensor to monitor a physiological parameter; a bidirectional wireless communication system for wirelessly transmitting data to and from the plurality of time-synchronized sensor systems; and a remote reader in communication with the bidirectional wireless communication system for real-time display of the monitored physiological parameters, recording of the monitored physiological parameters, and/or alarm for an out of agreement state.
In certain embodiments, a first sensor system is configured to attach to a central patient region and a second sensor system is configured to attach to an extremity patient region.
In certain embodiments, the central patient region comprises a chest region, a neck region including the suprasternal notch area, or a head region including a forehead region or anterior fontanelle region of a neonate.
In certain embodiments, the extremity patient region comprises one or more of: a limb region, a foot region, a hand region, a toenail region or a fingernail region.
In certain embodiments, a sensor output triggers an indicator to indicate a vital sign is of lower confidence.
In certain embodiments, the sensor output alters an executable algorithm in a microprocessor of the sensor system.
In certain embodiments, the altered executable algorithm comprises one or more of a filter, a display parameter or a correction factor.
In certain embodiments, the sensor network further comprises a microprocessor for receiving the physiological parameter data from the plurality sensors; and an alarm module executable on the microprocessor to determine if at least two sensors are in an out of agreement condition.
In certain embodiments, the sensors monitor a plurality of physiological parameters to provide multi-modal monitoring of a critical parameter to reduce false positives and notify a caregiver of a sensor aberrant signal capture condition.
In certain embodiments, the sensor network further comprises at least three independent sensors that monitor the same physiological parameter, wherein the sensors measure a different physical parameter, and the different physical parameters each provide an independent measure of a critical vital sign, and are optionally located at different locations on a patient body.
In certain embodiments, the sensor network further comprises a processer that executes an agreement calculator module to send a signal to an alarm to notify a clinician of an out of range vital sign for a condition corresponding to at least three independent sensors in agreement of the out of range vital sign; or send an aberrant sensor signal condition for an out of range vital sign measured by only one of the at least three sensors; thereby increasing sensor network sensitivity, positive predictive value and reducing false negatives.
In certain embodiments, the sensor network further comprises an accelerometer sensor for use with a motion artifact module to identify a vital sign as subject to motion artifact and/or to correct of motion artifact.
In certain embodiments, the critical parameter is one or more of heart rate, brain activity, temperature, patient motion, respiration or blood-flow.
In certain embodiments, the sensors are one or more of, an ECG sensor, and EKG sensor, a pulse oximeter sensor, a temperature sensor, a blood pressure sensor, an accelerometer, or an acoustic sensor; and a microprocessor constantly compares values from each of the sensors and an alarm module generates a signal for the out of agreement condition between the at least two sensors.
In certain embodiments, the sensor network further comprises an actuator in wireless communication with the remote reader configured to receive an actuation signal to actuate underlying tissue.
In certain embodiments, the actuator is one or more of an electromechanical motor, a heater, and an electrical stimulator.
In certain embodiments, the reader provides continuous display of a critical parameter even under a sensor-fail condition.
In certain embodiments, the sensor network further comprises a wireless power unit for wirelessly powering the sensors.
In certain embodiments, the sensors operate continuously, including over a time period that is greater than 8 hours, or between about 8 hours and 1 day, without recharging.
In certain embodiments, the sensors measure one or more physiological parameters that are crying time, crying frequency, swallow count, swallow frequency, chest wall displacement, heart sounds, core body position, skin temperature differentials, asynchronous limb motion, speaking.
In certain embodiments, the sensor network is configured for use with a pediatric or neonate patient.
In certain embodiments, the monitored vital signs provide an indication of pain magnitude.
In certain embodiments, the sensor network further comprises an actuator to generate a force configured to provide a stimulus to a patient.
In certain embodiments, the patient is a neonate or a pediatric patient, and the actuator comprises an electromechanical motor configured to provide a soothing vibratory force to the patient.
In certain embodiments, the sensor detects crying and provides a signal to automatically actuate the actuator and sooth the patient.
In certain embodiments, the sensor network further comprises a remote controller configured to have two-way wireless communication with the sensors.
In certain embodiments, the remote controller is operably connected to a patient database.
In certain embodiments, the remote controller is a hand-held device or a portable device having a graphical user interface to display the plurality of monitored physiological parameters.
In certain embodiments, the remote controller and the receiver are integrated as a single unit.
In certain embodiments, the sensor network is capable of operating wirelessly for a period of at least 24 hours without a source of external power.
In certain embodiments, the time synchronized sensors synchronizes the physiological parameter data from the plurality sensors independent of sensor position, including for multiple spatially separated sensors used to determine a common physiological parameter.
In certain embodiments, each of the plurality of sensor systems comprise: a plurality of electronic components; a serpentine interconnect that electrically interconnects different electronic components; an elastomeric encapsulation layer that surrounds the plurality of electronic components and serpentine interconnect to form a bottom tissue-facing surface and a top environment-facing surface; an antenna for wirelessly communicating a physiological parameter measured from the sensor system; wherein the bottom tissue-facing surface is configured to conform to a skin surface.
Certain aspects of the invention also disclose a method of monitoring one or more vital signs of a neonate or a pediatric patient, the method comprising the steps of: providing the sensor network disclosed above; conformally contacting the first sensor with a first region of the patient; conformally contacting the second sensor with a second region of the patient that is spatially separated from the first region; detecting with the first and second sensors one or more physiological parameters that are related to a vital sign; and wirelessly transmitting the detected physiological parameters or the vital sign to a remote controller unit; thereby monitoring one or more vital signs.
In certain embodiments, the vital sign is one or more of: heart parameter (rate, intensity, variability), respiratory parameter (rate, intensity, variability), temperature, oxygenation (level, variability, minimum, maximum), vocalization parameter (crying duration, frequency, intensity), swallow parameter, and blood pressure.
In certain embodiments, the method further comprises the step of associating the wirelessly transmitted the physiological parameters with a unique patient identifier; thereby identifying the physiological parameters with a patient.
In certain embodiments, the method further comprises the step displaying the transmitted physiological parameters in a display having a graphical user interface.
In certain embodiments, the method further comprises the step of securing the display of transmitted physiological parameters by requiring a secure login step before a user can access the transmitted physiological parameters.
In certain embodiments, the user is a healthcare professional and a patient or family member, further comprising the step of wirelessly communicating between the healthcare professional and the patient or family member based on the detected physiological parameters or the vital sign.
In certain embodiments, the method further comprises the step of the user that is a remote healthcare professional securely sending a command to a proximate healthcare professional in proximity to the patient based on the transmitted physiological parameters.
In certain embodiments, the method further comprises the steps of determining a vital sign from at least two different sensors within two different sensor systems; comparing the at least two vital sign determinations; identifying from the comparing step one of a normal vital sign reading condition; an aberrant sensor output condition; or an alarming vital sign reading condition.
In certain embodiments, the aberrant sensor output condition is one or more of a lead off state, wherein a bottom surface of a sensor system is not in intimate contact with an underlying patient surface; a patient motion artifact; or an output discrepancy relative to at least two other sensors.
In certain embodiments, the aberrant sensor output condition is identified for at least one vital sign from a first sensor that differs from another vital sign from a second sensor that is at least 25% different.
In certain embodiments, the method further comprises the step of identifying the sensor having the aberrant sensor output condition and alerting a caregiver of the condition to take action to correct the sensor output.
In certain embodiments, for an alarming vital sign reading condition, the method further comprises generating an alarm signal to alert a health care professional.
In certain embodiments, the vital sign is one or more of temperature, heart rate, respiratory rate or movement.
In certain embodiments, the physiological parameter is position, and the vital sign corresponds to a baby position that is a laying position.
In certain embodiments, the wireless transmitting is by a Bluetooth protocol.
In certain embodiments, the vital sign is respiratory rate derived from a sensor that measures chest wall movement.
In certain embodiments, the vital sign is SpO2, the method further comprising the step of improving SpO2 accuracy by accommodating any motion artifact.
In certain embodiments, the vital sign is heart rate, and the method further comprises detecting heart rate from both an ECG sensor and a high frequency accelerometer, thereby providing continuous cross-validation.
In certain embodiments, the vital sign is respiratory rate, and the method further comprises measuring a chest wall movement with a first sensor and impedance pneumonography with a second sensor, thereby providing continuous cross-validation.
In certain embodiments, the method further comprises the step of storing the transmitted physiological parameters or vital sign in a network of servers.
Certain aspects of the invention further disclose a battery-powered, wireless (e.g., Bluetooth 5 enabled) vital signs monitoring system that exploits a bi-nodal pair of thin, low-modulus measurement modules, capable of gently and non-invasively interfacing onto the skin of neonates, even at gestational ages that approach the limit of viability. The key distinguishing features of this technology includes low-battery power operation enabling at least 24-hour continuous use between charges while enabling monitoring of a full suite of vital signs. The designs enable measurement of traditional vital signs in addition to advanced physiological parameters not currently measured. The skin interface and electrical/mechanical design of the sensor allows for safe integration with fragile neonatal skin even during life-saving interventions such as cardiac defibrillation.
Also disclosed herein are methods of monitoring using any of the sensor networks, sensor systems and electronic components described herein. Also provided herein are sensor networks for carrying out any of the methods described herein.
These and other aspects of the present invention are further described below. Without intent to limit the scope of the invention, examples according to the embodiments of the present invention are given below. Note that titles or subtitles may be used in the examples for convenience of a reader, which in no way should limit the scope of the invention. Moreover, certain theories are proposed and disclosed herein; however, in no way they, whether they are right or wrong, should limit the scope of the invention so long as the invention is practiced according to the invention without regard for any particular theory or scheme of action.
Each of the sensor systems comprises a plurality of electrical components, as schematically illustrated in
Representative geometries are provided in
A similar sensor system, but configured for appendage or limb mounting, is illustrated in
The PCB can be fabricated using 3/3 mil trace spacing, down to 3/2 mil trace spacing depending on the application of interest. The PCB may comprise a plurality of stacked layers, with a thickness of about 6.92 mil (e.g., less than about 0.2 mm).
The sensing capabilities of the sensor network and systems provided herein provides a range of sensing capabilities, including measuring parameters related to one or more of heart rate, heart rate variability, respiratory rate, skin temperature, pulse oximetry, ballistocardiography, respiratory effort, crying time, swallowing count, cuff-less blood pressure.
Charging platform preferably has a receiver dimension less than 15×15 mm2, a power transfer capacity up to 200 mW, and an effective wireless charging distance up to about 2 to 3 cm. The wireless charging is similar to the standard WPC Qi, although the actual Qi standard tends to be inadequate for the instant systems. The receiver-side requirement is a coil with resonance frequency of 110-205 kHz, where a bigger coil for resonant frequency is provided herein. An additional magnetic flux shield is necessary for higher efficiency and inductance-coil turn ratio, but such a shield adds unnecessary bulkiness to the sensor systems, making it difficult to achieve long-term wearability.
The NFC and Qi standards are compared, including by frequency range (13.56 MHz vs. 110-205 kHx), charging power range (100-500 mW vs. 5-120 W) and typical receiver size (>10×10 mm2 vs. 45×45 mm2).
An exemplary electronic component is an NFC Reader IC, such as ST25R3911A NFC Reader IC (
Referring to
In these exemplary embodiments, the sensor network is characterized as multi-modal, in that different sensors may be used to determine a same physiological parameter. This multi-modal input provides the ability to achieve much more reliable data readouts and intervention, which is important in critical care applications, and neonatal care.
In certain embodiments, pulse oximetry (SpO2) can be determined by continuous wavelet transform (CWT) and discrete saturation transform (DST).
Referring to
Referring to
The sensor network is deployed on two premature and low birth weight neonates (<2000 g). The first sensor system 1910 is deployed in the chest adjacent to existing monitoring electrodes. The second sensor system 1950 is placed on the foot for pulse oximetry. The standard-of-care pulse oximeter is placed on the contralateral limb. The first sensor system is placed on the central chest. The skin underlying the first and second sensor system 1910 and 1950 shows no visible signs of erythema, irritation, blistering, or erosions after 15 minutes of sensor removal, which is illustrated in
In certain embodiment, the sensor systems are used to evaluate thermal load provided to the underlying skin. Skin temperature after 24 hours of a chest-mounted sensor found the device at 35.4° C. and the skin temperature after removal at 36.9°. This means there is not any substantial heat generation or transfer to the underlying tissue, as shown in
The left panels of
In certain embodiments, KMC can be simulated, where the neonate is placed on the mother's chest, held, or sleeping on a bed, with position monitored by a sensor network having an accelerometer in a sensor system, as shown in
Burping of a neonate in a clinical study is summarized in
A variety of algorithms is useful for classifying sensor data, including sensor positions, as summarized in
For example, for a support vector machine, a supervised learning algorithm may be implemented. This involves finding a hyperplane with biggest margin between its offsets that would “cut” classes of data. The characteristics of SLM is that they are relatively simple to implement, effective in binary classification, and can perform both linear and non-linear classification. In one embodiment, real-time classification can be achieved, such as related to posture (lie, stand), tilt (KMC, tilted) and movement (still, move). A real-time plot of these parameters can be obtained.
According to the invention, the sensor network is highly configurable and user-friendly, particularly in terms of a user interface that rapidly and naturally conveys a range of information. Various examples of the user interface are provided in
As shown in
According to certain embodiments as shown in
In addition, patient position can also be displayed, as shown in
According to the invention, sensor malfunction occurs, such as a lead off condition, it can be rapidly conveyed, as shown in
Referring to
The foregoing description of the exemplary embodiments of the present invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the invention and their practical application so as to activate others skilled in the art to utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description and the exemplary embodiments described therein.
This PCT application claims priority to and the benefit of U.S. Provisional Patent Application Ser. Nos. 62/753,303, 62/753,453 and 62/753,625, each of which was filed Oct. 31, 2018, and is incorporated herein by reference in its entirety, respectively. This PCT application is related to a co-pending PCT patent application, entitled “APPARATUS AND METHOD FOR MEASURING PHYSIOLOGICAL PARAMETERS OF MAMMAL SUBJECT AND APPLICATIONS OF SAME”, by John A. Rogers et al., with Attorney Docket No. 0116936.213WO2, and a co-pending US patent application entitled “APPARATUS AND METHOD FOR NON-INVASIVELY MEASURING BLOOD PRESSURE OF MAMMAL SUBJECT”, by John A. Rogers et al., with Attorney Docket No. 0116936.215US2, each of which is filed on the same day that this PCT application is filed, and with the same assignee as that of this application, and is incorporated herein by reference in its entirety, respectively. Some references, which may include patents, patent applications and various publications, are cited and discussed in the description of this invention. The citation and/or discussion of such references is provided merely to clarify the description of the present invention and is not an admission that any such reference is “prior art” to the invention described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/059156 | 10/31/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62753303 | Oct 2018 | US | |
62753453 | Oct 2018 | US | |
62753625 | Oct 2018 | US |