The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were limited until 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The Sonos Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.
Given the ever growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
The drawings are for purpose of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings.
An audio playback environment may have an audio playback device and a network microphone device (NMD). The audio playback device may play back audio from a radio, television, and/or an internet music source. The network microphone device may receive, via a microphone, a voice input from a user in the audio playback environment and facilitate processing of the voice input.
The voice input may take a variety of forms. For example, the voice input may be a command to change operation of the audio playback device. The change might be to increase a volume of the audio playback device and/or to play certain music such as “Track 1 from Album 1.” As another example, the voice input may be a request for information such as “What time is it?” or “What is the weather tomorrow?”. The NMD may convert the voice input into a microphone input signal representative of the voice input. The microphone input signal may be processed by the NMD, by other NMD in the audio playback environment, and/or some device remote to the NMD to clean up the voice input (e.g., remove noise or acoustics associated with the audio playback environment), interpret the voice input associated with the microphone input signal and/or perform an action associated with the voice input. The action might be to increase the volume of the playback device or provide an audible response via the NMD or audio playback device such as “The weather is sunny tomorrow.”
The audio playback device may be located within acoustic proximity to the NMD. As a result, the audio playback device may be playing back audio at a same time the NMD receives the voice input, and signal received at the microphone of the NMD may include a voice input along with at least a portion of the audio being simultaneously played back by the audio playback device. Self-sound suppression is a process of isolating the voice input in the signal received at the microphone from the audio being played back. The self-sound suppression isolates the voice input from the audio playing back so that the voice input can be more reliably interpreted. Self-sound suppression may reduce a need to reduce an overall volume output level of the audio playback device when a voice input is detected (sometimes referred to as “ducking”—see also U.S. Provisional Application No. 62/298,439, filed on Feb. 22, 2016, and entitled “Content Mixing”).
A transfer function may represent a difference between a given audio signal to be played by the audio playback device and a given signal received at the microphone of the NMD when the audio playback device plays the given audio signal. The transfer function may take the form of a frequency response. In some examples, the transfer function may represent an acoustic coupling between the audio playback device and NMD.
The transfer function may be applied to an audio signal to be played back by the audio playback device in self-sound suppression. The output of the transfer function may represent how the audio would be heard at the microphone. The microphone may also receive a voice input along with at least a portion of the audio being simultaneously played back by the audio playback device. The audio and voice input may be represented as a microphone input signal. The output from the transfer function may be subtracted from the microphone input signal to isolate the voice input. However, the process of isolating the voice input does not account for nonlinearities associated with the audio playback device, e.g., nonlinear audio effects output by the audio playback device such as intermodulation distortion (ID). Accordingly, all or most audio played by the audio playback device may not be eliminated from the microphone input signal. This may make subsequent processing of the microphone input to interpret the voice input more difficult.
In certain embodiments, nonlinearities associated with the audio playback device may be considered in recovering a voice input from a microphone input signal received by the NMD when audio is also being played back by the audio playback device in acoustic proximity to an NMD. A model of nonlinear audio effects, along with an improved transfer function, may be used to better isolate the voice input from a microphone input signal. Additionally, or alternatively, the model may be used to precompensate an audio signal to be played back by the playback device for nonlinear audio effects, such as distortion, thereby improving accuracy of self-sound suppression with an added benefit of improving sound quality. In this regard, use of the model in self-sound suppression allows for more reliably redacting audio being played back by an audio playback device from the microphone input signal of an NMD. The improved self-sound suppression may facilitate reliable voice processing of the voice input.
The improved self-sound suppression may be applied to a time stabilized audio signal (also referred to herein as a tapped audio signal). The audio signal may be time-stabilized when any further processing in an audio signal pathway of the audio playback device until output of audio by the audio playback device is not based on a function of time. In other words, characteristics of the tapped signal may be known.
A transfer function may be defined which characterizes a relative frequency response between a given time stabilized audio signal and a given microphone input signal when an audio playback device plays audio defined by the time stabilized audio signal. The transfer function may be defined during a training stage or predefined. The transfer function may be applied to the time stabilized audio signal to output a signal indicative of how the time stabilized audio signal is heard by the microphone.
The transfer function may not account for any nonlinear audio effects resulting from the nonlinearities of the audio playback device. As a result, a model may be defined which outputs a time dependent frequency response or a mathematical representation of the nonlinear audio effects of the audio playback device. The non-linear audio effect may be distortion, specifically intermodulation distortion. In some examples, the model may be based on a function of position of a moving component of a transducer of the audio playback device. To determine this position, a sensor may be embedded in a moving component of a speaker. For example, the sensor may be force compact sensor such a micro-electro-mechanical device such as a MEMS accelerometer. The sensor may measure acceleration of the moving part of the transducer which is in turn used to determine the position of the moving component of the transducer.
The model may be used to account for nonlinear audio effects of the audio playback device. For example, a time stabilized audio signal may be input into the model and the model may output a time dependent frequency response which is applied to a frequency domain representation of the time stabilized audio signal (e.g., FFT). The time dependent frequency response may improve the redaction, e.g., isolation of voice input, beyond that of applying the transfer function. The signal that remains (e.g., voice input) after such processing may be converted to text by the NMD or passed to a voice processing device.
In some embodiments, the output of the model may be used to precompensate the time stabilized audio signal. For instance, the output of the model may be subtracted from the time stabilized audio signal to produce a precompensated signal. The precompensated signal may then be played back by the audio playback device. The precompensation may result in any nonlinearities introduced by the transducer being substantially cancelled out by the precompensation. In turn, because the audio played by the playback device may not have much nonlinear audio effects, the microphone input signal may not receive much nonlinear audio effects from the audio and a processing device need not to account for the nonlinear audio effects in the self-sound suppression.
Further, by precompensating the time stabilized audio signal, quality of sound reproduction may be improved since the nonlinear audio effects may be lessened in the audio output by the audio playback device.
The disclosed self-sound suppression may be performed in a variety of audio playback environments including bonded zones, zone groups, environments with multiple NMDs, and environments with multiple playback devices, etc. as described in further detail herein.
Moving on from the above illustration, an example embodiment may be a device comprising: a transducer; a sensor mounted on a moving component of the transducer; a processor; memory; and computer instructions stored in the memory and executable by the processor to cause the processor to: receive a signal from the sensor indicative of an acceleration of the moving component at a location where the sensor is mounted; determine a position the moving component based on the acceleration; compare the position of the moving component with a reference to output a measure of distortion associated with the transducer; and cause nonlinearities in audio output by the transducer to be corrected based on the measure of distortion. The measure of distortion may be intermodulation distortion of the transducer. The sensor may be a force sensor. The sensor may be mounted on a voice coil former, dust cap, cone, or surround of the transducer. A counterweight may be added to a voice coil former, cone or surround of the transducer when the sensor is mounted on the voice coil former, cone, or surround. Determining a position the moving component based on the acceleration may comprise integrating the signal from the sensor indicative of the acceleration over a period of time. Comparing the position of the moving component with a reference to output a measure of distortion associated with the transducer may comprise calculating a difference between the position of the moving component and the reference. The device may further comprise computer instructions for updating based the measure of distortion a model which outputs a measure of expected distortion of the transducer; and wherein correcting for nonlinearities in audio output by the transducer based on a second signal input into the transducer and the measure of distortion comprises correcting for nonlinearities in audio output by the transducer based on a third signal input into the transducer and the measure of expected distortion. The device may further comprise computer instructions for limiting a maximum displacement of the moving component of the transducer based on the position of the moving component.
Another example embodiment may be a method comprising: receiving a signal from a sensor indicative of an acceleration of a moving component of a transducer at a location where the sensor is mounted; determining a position the moving component based on the acceleration; comparing the position of the moving component with a reference to output a measure of distortion associated with the transducer; and cause nonlinearities in audio output by the transducer to be corrected based on the measure of distortion. The measure of distortion may be intermodulation distortion of the transducer. The sensor may be a force sensor. The sensor may be mounted on a voice coil former, dust cap, cone, or surround of the transducer. A counterweight may be added to a voice coil former, cone or surround of the transducer when the sensor is mounted on the voice coil former, cone, or surround. Determining a position the moving component based on the acceleration may comprise integrating the signal from the sensor indicative of the acceleration of the moving component over a period of time. Comparing the position of the moving component with a reference to output a measure of distortion associated with the transducer may comprise calculating a difference between the position of the moving component and the reference. The method may further comprise updating based the measure of distortion a model which outputs a measure of an expected distortion of the transducer; and wherein correcting for nonlinearities in audio output by the transducer based on a second signal input into the transducer and the measure of distortion comprises correcting for nonlinearities in audio output by the transducer based on a third signal input into the transducer and measure of the expected distortion. The method further comprises limiting a maximum displacement of the moving component of the transducer based on the position of the moving component.
Yet another example embodiment may be a tangible non-transitory computer readable storage medium including instructions for execution by a processor, the instructions, when executed, cause the processor to implement a method comprising: receiving a signal from a sensor indicative of an acceleration of a moving component of a transducer at a location where the sensor is mounted; determining a position the moving component based on the acceleration; comparing the position of the moving component with a reference to output a measure of distortion associated with the transducer; and cause nonlinearities in audio output by the transducer to be corrected based on the measure of distortion. The sensor may be mounted on a voice coil former, dust cap, cone, or surround of the transducer. The tangible non-transitory computer readable storage medium may further comprise computer instructions to obtain acoustics of an environment in which the transducer is located; and apply the acoustics a voice input received at a microphone.
While some examples described herein may refer to functions performed by given actors such as “users” and/or other entities, it should be understood that this is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves. It will be understood by one of ordinary skill in the art that this disclosure includes numerous other embodiments. Moreover, the examples described herein may extend to a multitude of embodiments formed by combining the example features in any suitable manner.
Further discussions relating to the different components of the example media playback system 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example media playback system 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in
a. Example Playback Devices
In one example, the processor 202 may be a clock-driven computing component configured to process input data according to instructions stored in the memory 206. The memory 206 may be a tangible computer-readable medium configured to store instructions executable by the processor 202. For instance, the memory 206 may be data storage that can be loaded with one or more of the software components 204 executable by the processor 202 to achieve certain functions. In one example, the functions may involve the playback device 200 retrieving audio data from an audio source or another playback device. In another example, the functions may involve the playback device 200 sending audio data to another device or playback device on a network. In yet another example, the functions may involve pairing of the playback device 200 with one or more playback devices to create a multi-channel audio environment.
Certain functions may involve the playback device 200 synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener will preferably not be able to perceive time-delay differences between playback of the audio content by the playback device 200 and the one or more other playback devices. U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference, provides in more detail some examples for audio playback synchronization among playback devices.
The memory 206 may further be configured to store data associated with the playback device 200, such as one or more zones and/or zone groups the playback device 200 is a part of, audio sources accessible by the playback device 200, or a playback queue that the playback device 200 (or some other playback device) may be associated with. The data may be stored as one or more state variables that are periodically updated and used to describe the state of the playback device 200. The memory 206 may also include the data associated with the state of the other devices of the media system, and shared from time to time among the devices so that one or more of the devices have the most recent data associated with the system. Other embodiments are also possible.
The audio processing components 208 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor (DSP), and so on. In one embodiment, one or more of the audio processing components 208 may be a subcomponent of the processor 202. In one example, audio content may be processed and/or intentionally altered by the audio processing components 208 to produce audio signals. The produced audio signals may then be provided to the audio amplifier(s) 210 for amplification and playback through speaker(s) 212. Particularly, the audio amplifier(s) 210 may include devices configured to amplify audio signals to a level for driving one or more of the speakers 212. The speaker(s) 212 may include an individual transducer (e.g., a “driver”) or a complete speaker system involving an enclosure with one or more drivers. A particular driver of the speaker(s) 212 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, each transducer in the one or more speakers 212 may be driven by an individual corresponding audio amplifier of the audio amplifier(s) 210. In addition to producing analog signals for playback by the playback device 200, the audio processing components 208 may be configured to process audio content to be sent to one or more other playback devices for playback.
Audio content to be processed and/or played back by the playback device 200 may be received from an external source, such as via an audio line-in input connection (e.g., an auto-detecting 3.5 mm audio line-in connection) or the network interface 214.
The network interface 214 may be configured to facilitate a data flow between the playback device 200 and one or more other devices on a data network. As such, the playback device 200 may be configured to receive audio content over the data network from one or more other playback devices in communication with the playback device 200, network devices within a local area network, or audio content sources over a wide area network such as the Internet. In one example, the audio content and other signals transmitted and received by the playback device 200 may be transmitted in the form of digital packet data containing an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 214 may be configured to parse the digital packet data such that the data destined for the playback device 200 is properly received and processed by the playback device 200.
As shown, the network interface 214 may include wireless interface(s) 216 and wired interface(s) 218. The wireless interface(s) 216 may provide network interface functions for the playback device 200 to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), network device(s), control device(s) within a data network the playback device 200 is associated with) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The wired interface(s) 218 may provide network interface functions for the playback device 200 to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 214 shown in
The microphone(s) 220 may be arranged to detect sound in the environment of the playback device 200. For instance, the microphone(s) may be mounted on an exterior wall of a housing of the playback device. The microphone(s) may be any type of microphone now known or later developed such as a condenser microphone, electret condenser microphone, or a dynamic microphone. The microphone(s) may be sensitive to a portion of the frequency range of the speaker(s) 220. One or more of the speaker(s) 220 may operate in reverse as the microphone(s) 220. In some aspects, the playback device 200 might not include the microphone(s) 220.
In one example, the playback device 200 and one other playback device may be paired to play two separate audio components of audio content. For instance, playback device 200 may be configured to play a left channel audio component, while the other playback device may be configured to play a right channel audio component, thereby producing or enhancing a stereo effect of the audio content. The paired playback devices (also referred to as “bonded playback devices”) may further play audio content in synchrony with other playback devices.
In another example, the playback device 200 may be sonically consolidated with one or more other playback devices to form a single, consolidated playback device. A consolidated playback device may be configured to process and reproduce sound differently than an unconsolidated playback device or playback devices that are paired, because a consolidated playback device may have additional speaker drivers through which audio content may be rendered. For instance, if the playback device 200 is a playback device designed to render low frequency range audio content (i.e. a subwoofer), the playback device 200 may be consolidated with a playback device designed to render full frequency range audio content. In such a case, the full frequency range playback device, when consolidated with the low frequency playback device 200, may be configured to render only the mid and high frequency components of audio content, while the low frequency range playback device 200 renders the low frequency component of the audio content. The consolidated playback device may further be paired with a single playback device or yet another consolidated playback device.
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the example illustrated in
b. Example Playback Zone Configurations
Referring back to the media playback system 100 of
As shown in
In one example, one or more playback zones in the environment of
As suggested above, the zone configurations of the media playback system 100 may be dynamically modified, and in some embodiments, the media playback system 100 supports numerous configurations. For instance, if a user physically moves one or more playback devices to or from a zone, the media playback system 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102 from the balcony zone to the office zone, the office zone may now include both the playback device 118 and the playback device 102. The playback device 102 may be paired or grouped with the office zone and/or renamed if so desired via a control device such as the control devices 126 and 128. On the other hand, if the one or more playback devices are moved to a particular area in the home environment that is not already a playback zone, a new playback zone may be created for the particular area.
Further, different playback zones of the media playback system 100 may be dynamically combined into zone groups or split up into individual playback zones. For instance, the dining room zone and the kitchen zone 114 may be combined into a zone group for a dinner party such that playback devices 112 and 114 may render audio content in synchrony. On the other hand, the living room zone may be split into a television zone including playback device 104, and a listening zone including playback devices 106, 108, and 110, if the user wishes to listen to music in the living room space while another user wishes to watch television.
c. Example Control Devices
The processor 302 may be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 304 may be data storage that can be loaded with one or more of the software components executable by the processor 302 to perform those functions. The memory 304 may also be configured to store the media playback system controller application software and other data associated with the media playback system 100 and the user.
In one example, the network interface 306 may be based on an industry standard (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The network interface 306 may provide a means for the control device 300 to communicate with other devices in the media playback system 100. In one example, data and information (e.g., such as a state variable) may be communicated between control device 300 and other devices via the network interface 306. For instance, playback zone and zone group configurations in the media playback system 100 may be received by the control device 300 from a playback device or another network device, or transmitted by the control device 300 to another playback device or network device via the network interface 306. In some cases, the other network device may be another control device.
Playback device control commands such as volume control and audio playback control may also be communicated from the control device 300 to a playback device via the network interface 306. As suggested above, changes to configurations of the media playback system 100 may also be performed by a user using the control device 300. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others. Accordingly, the control device 300 may sometimes be referred to as a controller, whether the control device 300 is a dedicated controller or a network device on which media playback system controller application software is installed.
Control device 300 may include microphone(s) 310. Microphone(s) 310 may be arranged to detect sound in the environment of the control device 300. Microphone(s) 310 may be any type of microphone now known or later developed such as a condenser microphone, electret condenser microphone, or a dynamic microphone. The microphone(s) may be sensitive to a portion of a frequency range. Two or more microphones 310 may be arranged to capture location information of an audio source (e.g., voice, audible sound) and/or to assist in filtering background noise.
The user interface 308 of the control device 300 may be configured to facilitate user access and control of the media playback system 100, by providing a controller interface such as the controller interface 400 shown in
The playback control region 410 may include selectable (e.g., by way of touch or by using a cursor) icons to cause playback devices in a selected playback zone or zone group to play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode. The playback control region 410 may also include selectable icons to modify equalization settings, and playback volume, among other possibilities.
The playback zone region 420 may include representations of playback zones within the media playback system 100. In some embodiments, the graphical representations of playback zones may be selectable to bring up additional selectable icons to manage or configure the playback zones in the media playback system, such as a creation of bonded zones, creation of zone groups, separation of zone groups, and renaming of zone groups, among other possibilities.
For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the media playback system to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface such as the user interface 400 are also possible. The representations of playback zones in the playback zone region 420 may be dynamically updated as playback zone or zone group configurations are modified.
The playback status region 430 may include graphical representations of audio content that is presently being played, previously played, or scheduled to play next in the selected playback zone or zone group. The selected playback zone or zone group may be visually distinguished on the user interface, such as within the playback zone region 420 and/or the playback status region 430. The graphical representations may include track title, artist name, album name, album year, track length, and other relevant information that may be useful for the user to know when controlling the media playback system via the user interface 400.
The playback queue region 440 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device.
In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.
When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.
Referring back to the user interface 400 of
The audio content sources region 450 may include graphical representations of selectable audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. Discussions pertaining to audio content sources may be found in the following section.
d. Example Audio Content Sources
As indicated previously, one or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g. according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices.
Example audio content sources may include a memory of one or more playback devices in a media playback system such as the media playback system 100 of
In some embodiments, audio content sources may be regularly added or removed from a media playback system such as the media playback system 100 of
The above discussions relating to playback devices, controller devices, playback zone configurations, and media content sources provide only some examples of operating environments within which functions and methods described below may be implemented. Other operating environments and configurations of media playback systems, playback devices, and network devices not explicitly described herein may also be applicable and suitable for implementation of the functions and methods.
e. Example Plurality of Networked Devices
Each of the plurality of devices 500 may be network-capable devices that can establish communication with one or more other devices in the plurality of devices according to one or more network protocols, such as NFC, Bluetooth, Ethernet, and IEEE 802.11, among other examples, over one or more types of networks, such as wide area networks (WAN), local area networks (LAN), and personal area networks (PAN), among other possibilities.
As shown, the computing devices 504, 506, and 508 may be part of a cloud network 502. The cloud network 502 may include additional computing devices. In one example, the computing devices 504, 506, and 508 may be different servers. In another example, two or more of the computing devices 504, 506, and 508 may be modules of a single server. Analogously, each of the computing device 504, 506, and 508 may include one or more modules or servers. For ease of illustration purposes herein, each of the computing devices 504, 506, and 508 may be configured to perform particular functions within the cloud network 502. For instance, computing device 508 may be a source of audio content for a streaming music service.
As shown, the computing device 504 may be configured to interface with NMDs 512, 514, and 516 via communication path 542. NMDs 512, 514, and 516 may be components of one or more “Smart Home” systems. In one case, NMDs 512, 514, and 516 may be physically distributed throughout a household, similar to the distribution of devices shown in
In one example, one or more of the NMDs 512, 514, and 516 may be devices configured primarily for audio detection. In another example, one or more of the NMDs 512, 514, and 516 may be components of devices having various primary utilities. For instance, as discussed above in connection to
As shown, the computing device 506 may be configured to interface with CR 522 and PBDs 532, 534, 536, and 538 via communication path 544. In one example, CR 522 may be a network device such as the network device 200 of
In one example, as with NMDs 512, 514, and 516, CR 522 and PBDs 532, 534, 536, and 538 may also be components of one or more “Smart Home” systems. In one case, PBDs 532, 534, 536, and 538 may be distributed throughout the same household as the NMDs 512, 514, and 516. Further, as suggested above, one or more of PBDs 532, 534, 536, and 538 may be one or more of NMDs 512, 514, and 516.
The NMDs 512, 514, and 516 may be part of a local area network, and the communication path 542 may include an access point that links the local area network of the NMDs 512, 514, and 516 to the computing device 504 over a WAN (communication path not shown). Likewise, each of the NMDs 512, 514, and 516 may communicate with each other via such an access point.
Similarly, CR 522 and PBDs 532, 534, 536, and 538 may be part of a local area network and/or a local playback network as discussed in previous sections, and the communication path 544 may include an access point that links the local area network and/or local playback network of CR 522 and PBDs 532, 534, 536, and 538 to the computing device 506 over a WAN. As such, each of the CR 522 and PBDs 532, 534, 536, and 538 may also communicate with each over such an access point.
In one example, a single access point may include communication paths 542 and 544. In an example, each of the NMDs 512, 514, and 516, CR 522, and PBDs 532, 534, 536, and 538 may access the cloud network 502 via the same access point for a household.
As shown in
In one example, CR 522 may communicate with NMD 512 over Bluetooth™, and communicate with PBD 534 over another local area network. In another example, NMD 514 may communicate with CR 522 over another local area network, and communicate with PBD 536 over Bluetooth. In a further example, each of the PBDs 532, 534, 536, and 538 may communicate with each other according to a spanning tree protocol over a local playback network, while each communicating with CR 522 over a local area network, different from the local playback network. Other examples are also possible.
In some cases, communication means between the NMDs 512, 514, and 516, CR 522, and PBDs 532, 534, 536, and 538 may change depending on types of communication between the devices, network conditions, and/or latency demands. For instance, communication means 546 may be used when NMD 516 is first introduced to the household with the PBDs 532, 534, 536, and 538. In one case, the NMD 516 may transmit identification information corresponding to the NMD 516 to PBD 538 via NFC, and PBD 538 may in response, transmit local area network information to NMD 516 via NFC (or some other form of communication). However, once NMD 516 has been configured within the household, communication means between NMD 516 and PBD 538 may change. For instance, NMD 516 may subsequently communicate with PBD 538 via communication path 542, the cloud network 502, and communication path 544. In another example, the NMDs and PBDs may never communicate via local communications means 546. In a further example, the NMDs and PBDs may communicate primarily via local communications means 546. Other examples are also possible.
In an illustrative example, NMDs 512, 514, and 516 may be configured to receive voice inputs to control PBDs 532, 534, 536, and 538. The available control commands may include any media playback system controls previously discussed, such as playback volume control, playback transport controls, music source selection, and grouping, among other possibilities. In one instance, NMD 512 may receive a voice input to control one or more of the PBDs 532, 534, 536, and 538. In response to receiving the voice input, NMD 512 may transmit via communication path 542, the voice input to computing device 504 for processing. In one example, the computing device 504 may convert the voice input to an equivalent text command, and parse the text command to identify a command. Computing device 504 may then subsequently transmit the text command to the computing device 506. In another example, the computing device 504 may convert the voice input to an equivalent text command, and then subsequently transmit the text command to the computing device 506. The computing device 506 may then parse the text command to identify one or more playback commands.
For instance, if the text command is “Play ‘Track 1’ by ‘Artist 1’ from ‘Streaming Service 1’ in ‘Zone 1’,” The computing device 506 may identify (i) a URL for “Track 1” by “Artist 1” available from “Streaming Service 1,” and (ii) at least one playback device in “Zone 1.” In this example, the URL for “Track 1” by “Artist 1” from “Streaming Service 1” may be a URL pointing to computing device 508, and “Zone 1” may be the bonded zone 530. As such, upon identifying the URL and one or both of PBDs 536 and 538, the computing device 506 may transmit via communication path 544 to one or both of PBDs 536 and 538, the identified URL for playback. One or both of PBDs 536 and 538 may responsively retrieve audio content from the computing device 508 according to the received URL, and begin playing “Track 1” by “Artist 1” from “Streaming Service 1.”
One having ordinary skill in the art will appreciate that the above is just one illustrative example, and that other implementations are also possible. In one case, operations performed by one or more of the plurality of devices 500, as described above, may be performed by one or more other devices in the plurality of device 500. For instance, the conversion from voice input to the text command may be alternatively, partially, or wholly performed by another device or devices, such as NMD 512, computing device 506, PBD 536, and/or PBD 538. Analogously, the identification of the URL may be alternatively, partially, or wholly performed by another device or devices, such as NMD 512, computing device 504, PBD 536, and/or PBD 538.
f. Example Network Microphone Device
The processor 602 may include one or more processors and/or controllers, which may take the form of a general or special-purpose processor or controller. For instance, the processing unit 602 may include microprocessors, microcontrollers, application-specific integrated circuits, digital signal processors, and the like. The memory 604 may be data storage that can be loaded with one or more of the software components executable by the processor 602 to perform those functions. Accordingly, memory 604 may comprise one or more non-transitory computer-readable storage mediums, examples of which may include volatile storage mediums such as random access memory, registers, cache, etc. and non-volatile storage mediums such as read-only memory, a hard-disk drive, a solid-state drive, flash memory, and/or an optical-storage device, among other possibilities.
The microphone array 606 may be a plurality of microphones arranged to detect sound in the environment of the network microphone device 600. Microphone array 606 may include any type of microphone now known or later developed such as a condenser microphone, electret condenser microphone, or a dynamic microphone, among other possibilities. In one example, the microphone array may be arranged to detect audio from one or more directions relative to the network microphone device. The microphone array 606 may be sensitive to a portion of a frequency range. In one example, a first subset of the microphone array 606 may be sensitive to a first frequency range, while a second subset of the microphone array may be sensitive to a second frequency range. The microphone array 606 may further be arranged to capture location information of an audio source (e.g., voice, audible sound) and/or to assist in filtering background noise. Notably, in some embodiments the microphone array may consist of only a single microphone, rather than a plurality of microphones.
The network interface 608 may be configured to facilitate wireless and/or wired communication between various network devices, such as, in reference to
The user interface 610 of the network microphone device 600 may be configured to facilitate user interactions with the network microphone device. In one example, the user interface 608 may include one or more of physical buttons, graphical interfaces provided on touch sensitive screen(s) and/or surface(s), among other possibilities, for a user to directly provide input to the network microphone device 600. The user interface 610 may further include one or more of lights and the speaker(s) 614 to provide visual and/or audio feedback to a user. In one example, the network microphone device 600 may further be configured to playback audio content via the speaker(s) 614. In this case, the NMD 600 may also include the functions and features associated with the playback device 200.
A system may have a linear response and/or non-linear response. In simplest terms, a system may have a linear response if a sine wave injected into a system at a given frequency responds at that same frequency with a certain magnitude and a certain phase angle relative to the input. Also for a linear system, doubling the amplitude of the input will double the amplitude of the output. On the other hand, a system may have a non-linear response instead of, or in addition to the linear response, if the system responds at a different frequency than the input such as twice the input frequency.
In the context of audio playback devices, an audio signal may be a signal representative of content to be played back by the audio playback device and the audio playback device may output audio based on the audio signal. A frequency response may be used to characterize dynamics of a speaker and/or transducer (the terms transducer and speaker are used herein interchangeably) of the audio playback device. The frequency response may define a magnitude and phase output by a system for a given input with a given frequency. However, the problem with using the frequency response is that it is a linear measurement which assumes that speakers perform linear transformations of the input audio signal. In reality, the audio playback device is a nonlinear device which outputs nonlinear audio effects such as distortion. As a result, characterizing the audio playback device with a frequency response is insufficient to reliably determine the real-world characteristics of the audio playback device.
Intermodulation distortion (ID) is an example of a nonlinear distortion output by the audio playback device. A transducer of the audio playback device typically has a voice coil. The voice coil is a coil of wire that produces a motive force to a cone by a reaction of a magnetic field to current passing through the coil. The movement of the cone may produce sound pressure waves associated with an input audio signal which has low and high frequency components. ID may be generated when the input audio signal drives the voice coil which in turn drives the cone beyond an equilibrium position. For example, the low frequency portions of the input signal may force the cone towards its limits of movement resulting in distortion of the sound pressure waves associated with the high frequencies portions of the input audio signal. The ID of the speaker may affect the quality of the audio played back.
Another example of a nonlinear audio effect is harmonic distortion. Harmonic distortion is a measure of power contained in harmonics of a fundamental frequency.
Self-sound suppression is a process of reducing or eliminating audio being played back by an audio playback device from a microphone signal which comprises the audio being played and a voice input simultaneously received when the audio is played. The voice input may be, for example, a voice command such as “Play Track 2” or some other speech while the audio playback device is simultaneously playing a song.
A transfer function may represent a difference in frequency response between a given audio signal to be played by the audio playback device and a given signal received at the microphone when the audio playback device plays audio associated with the given audio signal. The transfer function is typically pseudo-static in that it is updated at some time interval such as daily.
This transfer function may be used to perform self-sound suppression. The signal received at the microphone, e.g., a microphone input signal, may include a voice input along with at least a portion of the audio being simultaneously played back by the audio playback device. The voice input may be isolated from the audio being played back by applying the transfer function to the audio signal representative of the audio being simultaneously played back by the audio playback device. The output of the transfer function may represent how the audio played by the audio playback device would sound at the microphone when the audio signal is being played back. Then, this output may be subtracted from the microphone input signal to isolate the voice input.
In environments having an NMD and audio playback device playing back audio simultaneously, the nonlinear response of the audio playback device may affect accuracy in isolating the voice input from the audio also being played back at the same time the voice input is received at the microphone of the NMD. The transfer function may not contain any information about nonlinear audio effects resulting from the nonlinear frequency response of the audio playback device such as ID. As a result, the difference may not account for the ID or harmonic distortion of the audio playback device and accordingly all or most content played by the speaker may not be eliminated. This may make subsequent processing of the voice input, e.g., voice command detection or speech to text conversion, difficult.
In embodiments, a model of the nonlinear audio effects output by the audio playback device may be used to improve self-sound suppression when recovering a voice input in the presence of audio being played back by an audio playback device. In particular, the model may output a time dependent frequency response or a mathematical representation of the nonlinear audio effects of the audio playback device which when used with an improved transfer function better isolates the voice input. Additionally, or alternatively, the model may be used to precompensate the audio signal to be played back by the playback device for nonlinear audio effects, such as distortion, thereby improving accuracy of self-sound suppression with an added benefit of improving sound quality. In this regard, use of the model in self-sound suppression may allow for more reliably redacting audio being played back by an audio playback device from a voice input received by a microphone of an NMD. The improved self-suppression may facilitate reliable voice processing of the voice input, such as voice command detection or speech-to-text translation.
The audio playback device 702 may receive an audio signal and play back audio associated with the audio signal. In one example, the audio signal may be a digital audio signal such as a packetized or non-packetized stream of audio from a music service, radio, or television, a digital audio file, an audio signal generated by the audio playback device 702 itself or a device connected to the audio playback device 702. The audio data may be sampled at a sampling rate and packetized into a packet and/or stream of packets. For example, the packet may comprise 128 bits of audio data.
In another example, the audio signal may be analog signal input from an auxiliary connection or a digital signal input from a USB connection. The audio signal may comprise frequency content that may generally range from 0 Hz to 20,000 Hz or some subset of this frequency range.
The audio playback device 702 may process the audio signal in an audio signal pathway of the audio playback device 702. The audio signal pathway may represent processing performed by the audio playback device 702 between input of the audio signal into the audio playback device 702 and playback of audio based on the audio signal. The processing may include filtering the audio signal and/or equalizing the audio signal.
The audio signal pathway may be tapped at a point in the audio signal pathway where the audio signal is time-stabilized. The audio signal may be time-stabilized when any further processing in the audio signal pathway until output of audio by the audio playback device 702 is not time varying. For example, applying a filter with a predetermined gain to the audio signal may be an example of processing that is not time varying. On the other hand, applying to the audio signal a filter with a gain that dynamically changes over time (or as a function of time) may be an example of processing that is time varying. The tap may take the form of a digital tap or an analog tap. The digital tap may be a tapping of the audio signal while in digital form. The analog tap may be a tapping of the audio signal in as an analog electrical signal, e.g., immediately before an analog filter pipeline. The audio filter pipeline may include filters which split up an analog version of the audio signal into two or more frequency ranges, so that each frequency range can be sent to drivers or tweeters that are designed for different frequency ranges. This time stabilized audio signal (e.g., tapped audio signal) may be sent to the processing device 706 via the communication network 708.
The NMD 704 may be acoustically proximate to the audio playback device. The NMD may be acoustically proximate when the microphone of the NMD is within a distance at which it can detect the audio that the audio playback device plays. The NMD 704 may receive the audio 710 played back by the audio playback device 702 at one or more microphones 714. Additionally, the NMD may receive a voice input 712. The voice input may be, for example, speech spoken within the environment 700 such as voice command.
In the case that the NMD 704 has one or more microphones 714, the microphones 714 may be oriented to cover a polar range. For example, the one or more microphones 714 may be oriented to receive audio in a 360 degree polar range around the NMD 704. In some examples, the audio playback device 702 may be the same device as the NMD 704, in which case the audio playback device 702 and the NMD 704 may not be coupled together via the communication network 708.
The audio 710 and the voice input 712 received by the NMD 704 may be processed. The audio input 710 and voice input 712 may be converted into a microphone input signal which may take the form of an analog signal. The NMD 704 may convert the analog signal to a digital signal by an analog to digital converter. The processing may also include removing artifacts such as reverberation from the microphone input signal. Reverberation is the persistence of sound caused when sound is reflected in a room causing a large number of reflections to build up and then decay as the sound is absorbed by the surfaces of objects in the space—which could include furniture, people, and air. The reverberation may show up on the microphone input as an artifact of a signal impulse response of the sound. The reverberation may be removed by locating a signal impulse response in the microphone input signal, locating a maximum peak in the signal impulse response, and processing up to and/or around the maximum peak where phase distortion is less while suppressing the other peaks where phase distortion may be more. The reverberation may be removed in other ways was well.
In some examples, the microphone input received by each microphone of two or more microphones may be combined before being processed. The combining may involve weighting one or more of a respective microphone input signal received by a microphone and then mixing the weighted microphone inputs. The microphone input signal may be processed in other ways as well.
The NMD 704 may send the microphone input signal to the processing device 706 via the communication network 708. The processing device 706 may comprise hardware or hardware and software (e.g., processor and computer instructions) for suppressing the audio 710 from the microphone input signal to facilitate recovery of the voice input 712. The processing device 706 may be remote to the NMD 704 and/or audio playback device 702. For example, the processing device 706 may be one or more of the computing devices 504-508 in a cloud. However, in other examples, the processing device 706 and NMD 704 may be a same device or the audio playback device 702 and processing device 706 may be a same device. In yet other examples, the audio playback device 702 and NMD 704 may a same device and separate from the processing device 706. In other examples, the processing device 706 may be distributed such that associated are performed by multiple devices depending on available processing resources of the multiple devices. Other variations are also possible.
For the implementation and other processes and methods disclosed herein, the arrangement shows functionality and operation of one possible implementation of some embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable medium, for example, such as tangible, non-transitory computer-readable media that stores data for short periods of time like register memory, processor cache and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the implementation and other processes and methods disclosed herein, each block in
Referring to
An acoustic delay may be an acoustic transmission time associated with travel of the audio played by the playback device from a speaker of the audio playback device, through the air, and to the microphone of the NMD. At 806, the microphone input and the tapped audio signal may be timed aligned to account for this acoustic delay. In some instances, the time alignment may also account for processing delay by one or more of the audio playback device and NMD.
In one example, the time alignment may be performed by determining the acoustic delay between the devices and then using the acoustic delay to perform the time alignment. The acoustic delay may be determined by first establishing synchronization between the audio playback device, NMD, and/or processing device. For example, clocks associated with the audio playback device, NMD, and/or processing device may be synchronized or a known offset or drift between the clocks determined. A clock timestamp may indicate a time of the clock on the playback device when a portion of a given audio signal is tapped in the audio signal pathway (which may be different from the tapped audio signal received at 802). This clock timestamp may be sent to the processing device. Similarly, the NMD may determine a clock timestamp associated with when that same given portion of the audio signal is received by the NMD at its microphone (which may be different from the microphone input signal received at 804). This clock timestamp may also be sent to the processing device. The difference in clock timestamps, accounting for any of the known drift and/or offset, may be indicative of the acoustic delay. Then, knowing the acoustic delay, the microphone input signal received at 802 and the tapped audio signal received at 804 can be time aligned.
The portion of audio that is used in determining the acoustic delay may take a variety of forms. For example, the portion may be first audio samples played back by the audio playback device when audio playback is initiated by the audio playback device, e.g., at a beginning of an audio track. A clock timestamp may be associated with these first samples. When the NMD receives these first samples at its microphone, the NMD may assign a clock timestamp associated with the receipt of the first samples at its microphone. Then, the processing device may calculate a difference between the clock timestamps indicative of the acoustic delay which is used to time-align the microphone input signal with the tapped audio signal. The delay may be rechecked at regular intervals. Further, the clock timestamps assigned by the audio playback device can be analyzed over time to determine presence of and/or correct for network jitter or clock drift.
In another example, the portion of audio that is used to determine the acoustic delay may be fingerprinted. Fingerprinting in an audio context relates to identifying songs, melodies, tunes, etc. from a portion of audio. Fingerprinting may involve sending a given portion of the audio to be played back by the audio playback device (e.g., the tapped audio signal) to a system can identify a track of audio associated with the given portion in view of any background noise. Similarly, fingerprinting may involve sending a given a portion of the audio received by the microphone to the system which can identify a track of audio associated with the given portion in view of any background noise.
Upon verifying that the portion of audio received by the NMD is in the same track as the portion of audio played by the audio playback device, e.g., both is “Track 1” of “Album 1” by “Prince”, the NMD may assign a clock timestamp, e.g., 2050. The clock timestamp may indicate when the NMD received the portion of audio. The fingerprinting may also identify a position where the portion of audio received by the NMD is in the track, e.g., “1 minutes and 10 seconds from a beginning of track 1.” The audio playback device may assign clock time stamps as it plays each portion of audio defined by the track. These clock time stamps may be further associated with the position in the track. For example, the audio playback device may have a table that indicates that the portion of audio at “1 minute and 10 seconds from a beginning of track 1” was played at clock timestamp 2000. Based on the clock timestamp 2000 from the audio playback device and the clock stamp 2050 from the NMD, the processing device may determine the acoustic delay as 50 clock cycles. The acoustic delay may be used to time align the portions of the microphone input signal received at 802 and the tapped audio signal received at 804.
In yet another example, time alignment may be performed by finding a best fit between the portions of the microphone input signal received at 802 and the tapped audio signal received at 804. The microphone input signal and the tapped audio signal may be overlapped and one signal shifted with respect to another until differences between the two signals are minimized, e.g., a correlation is maximum. The differences may be determined in a time domain or a frequency domain. The shift of the microphone input signal with respect to the tapped audio signal when the difference is minimized is indicative of the acoustic delay.
In another example, the acoustic delay between the microphone input signal 802 and the tapped audio signal 804 may be known and the NMD may use this known delay to perform the time alignment. The acoustic delay may be established via a calibration process where the audio playback device may playback a given signal, at a known time, and the NMD may receive the given signal at the microphone input at a later time. The given signal may be a tone such as a sine wave. Based on knowing the time that the audio playback device played the given signal and the later time when the NMD received the given signal, the acoustic delay may be calculated as a difference between the respective times and used for the time alignment.
In yet another example, the known delay may be determined by mixing a known signal with content played by the audio playback device at a known time. For example, the known signal may be a sine tone which may be outside a hearing range of a listener, such as 22 kHz. In the case of the audio playback device having multiple playback devices, a frequency of the sine tone may be uniquely associated with a particular playback device, e.g., a first playback device may mix a sine tone at a first frequency and a second playback device may mix a sine tone at a second frequency. A clock timestamp may be associated with when the sine tone is mixed with the content. When the NMD receives the sine tone mixed with the content played, the NMD may assign a clock timestamp associated with the receipt of the sine tone. Then, a difference may be calculated between the timestamps to calculate the acoustic delay. The acoustic delay may be used to time-align the microphone input signal with the tapped audio signal. The NMD may also determine a frequency of the tone via a filtering process to correlate the acoustic delay to a particular audio playback device.
In another example, the acoustic delay may be based on a physical relationship between the NMD and the audio playback device. Specifically, a physical distance between a speaker and a microphone may define the acoustic delay. In the case that the NMD and audio playback device are a same device, the acoustic delay may be how long it takes for the audio played by the speaker to travel to the microphone. This time can be calculated based on the physical distances between the speaker and microphone and the speed of sound.
Referring back to
FFT of the given microphone input signal/FFT of the given tapped audio signal
The transfer function can be determined as part of an initialization or update process. In this regard, the given microphone input signal and the given tapped audio signal used to determine the transfer function may be typically different from the received tapped audio signal 802 and received microphone input signal 804. Moreover, the transfer function may be static or adaptive.
The transfer function may be static when the microphone and speaker are in a static location. An example of this may be when the NMD and audio playback device are the same device, and the position of the microphone and speaker are each physically fixed. Alternatively, the transfer function may be static as a result of being calculated once, e.g., during a calibration process, and not being updated. On the other hand, the transfer function may be adaptive if at intervals of time, a new transfer function is determined. This new transfer function may replace an earlier determined transfer function or the new transfer function may be averaged with one or more transfer functions determined earlier in time.
For example, the transfer function may be updated when the audio playback device starts playing audio. As another example, the transfer function may be updated when background noise is low, e.g., no voice input is being spoken to the NMD. The determination of whether the background noise is low can be determined in a variety of ways. For example, the background noise may be low if an amplitude the audio received at a certain frequency is below a threshold amount. As another example, the background noise may be low if no voice input is being received. No voice input may be received if an amplitude of the audio received in a certain direction where a user is known to be located (via beamforming) is below a threshold amount. In this case, the new transfer function can be determined. Beamforming is a signal processing technique used in sensor arrays for directional signal transmission or reception.
As yet another example, the transfer function may be updated when the audio playback device or the NMD detects motion. The audio playback device and/or the NMD may have a sensor for detecting motion, such as an accelerometer or gyroscope. If the NMD or audio playback device detects motion above a threshold amount, then a new transfer function may be determined. As another example, the transfer function may be determined after power is restored to the audio playback device or the NMD after being lost. Power may be restored after being lost when the device is unplugged, moved, and plugged in again. This event may be indicative of the audio playback device or NMD being moved such that the acoustic coupling between the devices is altered and therefore the representative transfer function needs updating.
At 810, the transfer function may be applied to the tapped audio signal to output a first indication of the signal as heard at the NMD, e.g., mic_input_redacted signal. For example, the transfer function may be multiplied with the tapped audio signal in a frequency domain. Then, at 812, the first indication of the signal may be removed from the microphone input signal, resulting in a redacted microphone input signal which attempts to isolate the voice input:
Mic_input_redacted=Mic_input−(Tapped audio signal*transfer function)
The redaction may be further modified to account for nonlinear audio effects resulting from the nonlinear response of the audio playback device. The processing device may store and/or receive from a computing device 504-508, NMD, and/or audio playback device, a model of the nonlinear audio effects output by the audio playback device. An example of such a non-linear audio effect may be distortion, specifically ID.
The model may output a time dependent frequency response, a mathematical representation of the nonlinear audio effects of the audio playback device, or some other indication of the audio playback device's nonlinear response which is used to alter a signal, e.g., tapped audio signal, representative of the audio being played back by the audio playback device. For example, the output may take the form of a time varying indication of a magnitude, phase, and/or frequency output by the audio playback device based on a history of audio signals input to the audio playback device. Further, the output may be in a time domain or frequency domain.
In one example, the model may be based on difference equations. Difference equations are equations that recursively define a sequence or multidimensional array of values: once one or more initial terms are given, each further term of the sequence or array is defined as a function of the preceding terms. Various measurements may be performed with respect to the audio playback device to determine this model. In one example, an audio signal may be input into the audio playback device and a BL factor (e.g., product of magnetic field strength in the voice coil gap and the length, thickness, dielectric constant, magnetic permeability, etc. of the wire in the magnetic field) indicative of a motor strength of the transducer may be measured as a function of position of a transducer. The position may be that of the voice coil or some other structure of the transducer. In another example, a spider of the transducer may be considered a spring and the air a damper, and a spring constant of the cone as a function of position may be determined. In yet another example, an inductance of the transducer as a function of position may be determined. Using these determinations and the difference equations, which may continue to change as BL, force, current, voltage, temperature, inductance etc. of the transducer change, the model may be defined which outputs a time dependent frequency response indicative of nonlinear audio effects of the transducer.
The position as a function of the described inputs may be measured in a variety of ways. In one example, the position may be calculated from measurable quantities such as current and voltage and a physical model that describes operation of the transducer. The physical model may model aspects of the transducer through an equivalent electrical, mechanical, and acoustical circuit. This equivalent circuit allows insight into what parameters change characteristics of the transducer. However, calculating the position in this manner requires significant processing power and adds latency. Predictive based determination of position may also be used but these methods are inaccurate because they do not account for mechanical and thermal variances which may affect a transducer's performance. In another example, the position may be physically measured with a laser measurement device, but such methods can only be performed in a laboratory environment.
In some examples, a sensor may be embedded in a moving component of a speaker. For example, the sensor may be a compact force sensor such as a micro-electro-mechanical device such as a MEMS accelerometer. The sensor may measure acceleration of the moving component of the transducer which is in turn used to determine a position of the moving component.
In
In
In
In
The sensor may have a flexible connection from a static portion of the transducer to the sensor on the moving part of the transducer. The flexible connection may take the form of tinsel leads or be embedded into the surround 962 or cone 910.
An electrical output of the sensor may be sampled at a sampling rate. The sampling rate may be based on the Nyquist theorem. In this regard, the sampling rate may be at least double the highest frequency of interest, e.g., range of frequencies for which a frequency response of the transducer is desired. For example, if the frequency of interest is from 0 to 8 KHz, then the electrical output of the force sensor may be sampled at 16 KHz.
Position of the moving component may be determined from a simplified version of the damped harmonic oscillator model:
where F_ext is an external force, k is a spring constant, and c is a damping constant.
Because there is no external force, F_ext, in a transducer and the measured force already accounts for c and k, this model simplifies to:
x(t)=∫∫Fm(t)dt dt where t is an integration period
The integration period may be based on a sampling rate of the sensor. The sampling period may be calculated as (force sensor sampling rate/44100)*packet size, which is a minimum sample period in terms of packet size over which the integration is performed. In this example calculation, the packet size may be 128 samples and the Nyquist sampling rate for audio may be 44100 Hz. As a result, if the sensor sampling rate is 44100 Hz, then the integration period may be 1 packet or 128 samples. Alternatively, if the sensor sampling rate is 22050 Hz, then the integration period may be over two packet sizes which is 64 samples. In this regard, the integration period may be over a number of samples output by the sensor that matches a time length of a packet.
X(t)_actual may represent an exact positioning of a moving component of the transducer on which the sensor is placed. In turn, placement of the sensor at a different location on the transducer may result in a different positioning due to different physical distortions at that location. This position may be used to define the model of nonlinear audio effects output by the audio playback device and/or used by the model to determine the time-dependent frequency response.
In some situations, the sensor may have drift. For instance, the sensor may not measure x(t)_actual=0 when it is known the moving component of the transducer is stationary, e.g., no audio input signal is being input to the transducer. A drift offset that indicates this discrepancy may be incorporated into the calculation of the x(t)_actual.
Further, the voice coil may have a known force curve that indicates the force applied at different currents and/or voltages. The force curve may be symmetrical due to the physical arrangement of the transducer. As a result, any asymmetry that is measured by the sensor (where acceleration is proportional to force) may be attributed to drift. The difference between the measured asymmetry and the symmetrical force curve may be the drift which is applied in determining x(t)_actual.
In another example, the model may be based on a Volterra series or Weiner-Hammerstein Model which may account for a history of operation of the transducer. Coefficients associated with the Volterra series and Weiner-Hammerstein Model may be set based on physical characteristics and performance characteristics of the transducer. An example of the physical characteristics may include the spring constant of the cone, mechanical variances, and imperfections in the transducer and an example of the performance characteristic may include voltage, current, and temperature in a voice coil. These models may output a time dependent frequency response representative of the non-linear audio effects of the transducer.
In yet another example, a model that describes operational characteristics of the transducer may be used to determine nonlinear audio effects of the transducer. A representation of the tapped audio signal input may be input into the model and nonlinear audio effects of the transducer calculated as current, voltage, resistance, inductance, temperature etc. associated with the transducer change.
In another example, a model of nonlinear audio effects may be defined based on the output of the sensor and the microphone input signal. For example, a model may be defined relating the output of the sensor to the microphone input signal. Unlike the models described above, this model may account for any nonlinearities in a response of the microphone because the microphone input signal is formed after being received by a membrane of the microphone which may have a non-linear response. The model may also output the nonlinear audio effects associated with the transducer and microphone.
Referring back to
The transfer function may then be applied to the compensated audio output signal to improve the redaction, e.g., isolation of voice input. For example, in the frequency domain this redaction may be calculated as:
Mic_input_redacted=Mic_input−(compensated audio output signal*transfer function)
Equivalently, the redaction may be represented as:
Mic_input_redacted=Mic_input−(tapped audio signal*transfer function)−(output of model*transfer function)
where the transfer function is altered by the output of the model. Similar equations may exist for performing redaction in a time domain. In some examples, the non-linear model may alter the transfer function at 808 of
A signal indicative of the voice input may remain after the microphone input is compensated for nonlinear audio effects. At 816, the signal, e.g., voice input, may be interpreted by the NMD or passed to a voice processing device for processing. In one example, the processing may include detecting a trigger word, e.g., “Hey Sonos”, indicative of a command to follow such as “Play Track 1.” On another example, the processing may include converting the speech to text. In yet another example, the processing may include interpreting intent of a speaker based on the voice input when the voice input itself does not definitively identify a command or action. In another example, the processing may include determining emotions based on the voice input. In yet another example, the processing may include determining one or more of a location of speaker, identity, gender, age, etc. U.S. patent application Ser. No. 15/223,218 entitled “Voice Control of a Media Playback Device” filed Jul. 29, 2016, the contents of which are herein incorporated by reference in its entirety provides further examples of such voice input processing. The processing may take other forms as well.
In some embodiments, the output of the model may be used to precompensate the tapped audio signal.
In turn, because the audio played by the playback device may not have substantial nonlinear audio effects and the microphone input signal may not receive substantial nonlinear audio effects from the audio, the processing device need not to account for the nonlinear audio effects in the self-sound suppression. For example, application of the equation: Mic_input_redacted=Mic_input−(Tapped audio signal*transfer function) may be sufficient to isolate the voice input. Further, by precompensating the tapped audio, quality of sound reproduction may be improved since the nonlinear audio effects are not present in the audio output by the playback device.
Further, in some instances, the output of the sensor may be used to determine a measure of distortion output by the audio playback device. The audio signal, e.g., tapped audio signal, is indicative of a force, e.g., applied as an electrical signal to the transducer. As a result, the measure of distortion of the playback device may be calculated as:
distortion=tapped audio signal−sensor signal
where a sample of an amplitude of the tapped audio signal is subtracted from a corresponding output of the sensor when the speaker outputs audio associated with that sample.
In another example, the measure of distortion may be determined based on the measure of position using the sensor. The x(t)_actual may be compared to an x(t)_modeled. The x(t) modeled may be determined based on applying a physical model of the transducer to the tapped audio signal. A difference may be calculated between x(t)_modeled and x(t)_actual. This difference is indicative the measure of distortion due to the non-linear response of the transducer. This measure of distortion may include inaccuracies in the physical model. The inaccuracies may include thermal variances and mechanical variances. The thermal variances may be changes in temperature of the transducer during operation. The mechanical variances may be due to operating conditions such as change in stiffness of a component of the transducer with temperature, manufacturing tolerances, and manufacturing imperfections.
In yet another example, the measure of distortion may be determined based on comparing x(t)_actual to the tapped audio signal. Other variations also exist for determining the measure of distortion.
The comparison may be used to determine whether the measure of distortion is acceptable. For example, the measure of distortion after applying precompensation may be compared to a threshold to determine if the measure of distortion is acceptable. Additionally, or alternatively, the measure of distortion as a result of applying the model of nonlinear audio effects in self-sound suppression may be monitored in order to decide whether to tune the model. For example, the measure of distortion may be compared to a threshold to determine if the measure of distortion is acceptable. If the difference exceeds a threshold amount, then the model may be tuned for improvement by updating one or more parameters of the model such as that associated with the difference equations, Volterra Series, or Weiner Hammerstein Model to reduce distortion. The tuned model may output a better representation of the nonlinear audio effects associated with the audio playback device. Further, the model can use the measure of distortion to calculate an expected measure of distortion which can be used to precompensate the tapped audio signal.
X(t)_actual may define nonlinear audio effects associated with the transducer such as ID. In some embodiments, the transfer function may be applied to x(t)_actual to output a first resulting signal. The transfer function may also be applied to the tapped audio signal to output a second resulting signal. Then, this first and second resulting signal may be subtracted from the microphone input signal to determine the mic_input redacted signal, e.g., isolated voice input.
In some embodiments, the position information associated with the sensor, e.g., x(t)_actual, may be used to more accurately determine position of a moving component of the transducer. As a result, the moving components of a transducer can be driven to an operational limit without risking damage to the component. The operational limit may be a maximum excursion or distance that the moving component may travel before being damaged. So long as the position of the moving component as indicated by the position information is less than a threshold, the moving component can be driven closer to its operational limit. This may allow for maximum performance of the transducer.
In some embodiments, multiple audio playback devices may be in proximity to an NMD in an audio playback environment.
Each audio playback device may not be playing a same audio content. Instead, each audio playback device may be playing a channel of audio, e.g., left channel played by audio playback device 1102, right channel played by audio playback device 1104. Alternatively, an audio playback device may be playing a portion of one or more channels of audio. For instance, the audio playback device 1102 may be playing 50% of the left channel and 20% of the right channel and the audio playback device 1104 may be playing 30% of the right channel. Each audio playback device may send to a processing device (not shown) the tapped audio signal for a channel/portion of a channel of audio being played.
Additionally, the NMD may send a microphone input signal associated with the audio played by the audio playback device to the processing device. In some examples, the microphone input signal may be beamformed to contain a response of the audio playback device to the exclusion of other audio playback devices also playing back audio. For example, the NMD 1106 may receive audio at one or more microphones within an angular range of r degrees so that only the audio played back by audio playback device 1104 is received.
In some examples, the NMD may have determined a separate transfer function for each channel or portion of one or more channels of audio. In other examples, the NMD may determine a transfer function for multiple channels or multiple playback devices, e.g., when the NMD is located “on axis.”
The NMD 1204 may provide the transfer function associated with the audio playback device which output the audio to the processing device. The processing device may perform suppression for each audio playback device, each channel, each portion of the channel, and/or each axis.
In some embodiments, the transducers of an audio playback device may be positioned such that a distance to an NMD may be different for the two transducers.
The self-sound suppression may be performed in yet other audio playback environments including bonded zones, zone groups, environments with multiple NMDs etc.
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
Additionally, references herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of an invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application claims the benefit of priority under 35 USC § 119(e) to U.S. Provisional Application Ser. No. 62/298,433 filed Feb. 22, 2016 and entitled “Room-corrected Voice Detection.” This application is related to (i) U.S. Provisional Application No. 62/312,350, filed on Mar. 23, 2016, and entitled “Voice Control of a Media Playback System”, (ii) U.S. Provisional Application No. 62/298,418, filed on Feb. 22, 2016, and entitled “Audio Response Playback”, (iii) U.S. Provisional Application No. 62/298,425, filed on Feb. 22, 2016, and entitled “Music Service Selection”, (iv) U.S. Provisional Application No. 62/298,350, filed on Feb. 22, 2016, and entitled “Metadata Exchange Involving a Networked Playback System and a Networked Microphone System”, (v) U.S. Provisional Application No. 62/298,388, filed on Feb. 22, 2016, and entitled “Handling of Loss of Pairing Between Networked Devices,” (vi) U.S. Provisional Application No. 62/298,410, filed on Feb. 22, 2016, and entitled “Default Playback Device(s)”, (vii) U.S. Provisional Application No. 62/298,439, filed on Feb. 22, 2016, and entitled “Content Mixing”, (viii) U.S. Provisional Application No. 62/298,393, filed on Feb. 22, 2016, and entitled “Action Based on User ID”, and (ix) U.S. application Ser. No. 15/438,741 filed on Feb. 21, 2017 and entitled “Compensation for Speaker Nonlinearities.” The contents of each of these applications are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4741038 | Elko et al. | Apr 1988 | A |
4941187 | Slater | Jul 1990 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5588065 | Tanaka | Dec 1996 | A |
5740260 | Odom | Apr 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5923902 | Inagaki | Jul 1999 | A |
6032202 | Lea et al. | Feb 2000 | A |
6088459 | Hobelsberger | Jul 2000 | A |
6256554 | DiLorenzo | Jul 2001 | B1 |
6301603 | Maher et al. | Oct 2001 | B1 |
6311157 | Strong | Oct 2001 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6408078 | Hobelsberger | Jun 2002 | B1 |
6469633 | Wachter | Oct 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6594347 | Calder et al. | Jul 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6611604 | Irby | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6757517 | Chang | Jun 2004 | B2 |
6778869 | Champion | Aug 2004 | B2 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143939 | Henzerling | Dec 2006 | B2 |
7236773 | Thomas | Jun 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7661107 | Van et al. | Feb 2010 | B1 |
7702508 | Bennett | Apr 2010 | B2 |
7792311 | Holmgren et al. | Sep 2010 | B1 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7961892 | Fedigan | Jun 2011 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8041565 | Bhardwaj et al. | Oct 2011 | B1 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8073125 | Zhang et al. | Dec 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8234395 | Millington et al. | Jul 2012 | B2 |
8239206 | Lebeau et al. | Aug 2012 | B1 |
8255224 | Singleton et al. | Aug 2012 | B2 |
8284982 | Bailey | Oct 2012 | B2 |
8290603 | Lambourne | Oct 2012 | B1 |
8364481 | Strope et al. | Jan 2013 | B2 |
8386261 | Mellott et al. | Feb 2013 | B2 |
8423893 | Ramsay et al. | Apr 2013 | B2 |
8428758 | Naik et al. | Apr 2013 | B2 |
8453058 | Coccaro et al. | May 2013 | B1 |
8483853 | Lambourne | Jul 2013 | B1 |
8484025 | Moreno et al. | Jul 2013 | B1 |
8831761 | Kemp et al. | Sep 2014 | B2 |
8831957 | Taubman et al. | Sep 2014 | B2 |
8938394 | Faaborg et al. | Jan 2015 | B1 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8983383 | Haskin | Mar 2015 | B1 |
8983844 | Thomas et al. | Mar 2015 | B1 |
9042556 | Kallai et al. | May 2015 | B2 |
9094539 | Noble | Jul 2015 | B1 |
9215545 | Dublin et al. | Dec 2015 | B2 |
9251793 | Lebeau et al. | Feb 2016 | B2 |
9253572 | Beddingfield, Sr. et al. | Feb 2016 | B2 |
9262612 | Cheyer | Feb 2016 | B2 |
9288597 | Carlsson et al. | Mar 2016 | B2 |
9300266 | Grokop | Mar 2016 | B2 |
9307321 | Unruh | Apr 2016 | B1 |
9318107 | Sharifi | Apr 2016 | B1 |
9319816 | Narayanan | Apr 2016 | B1 |
9374634 | Macours | Jun 2016 | B2 |
9412392 | Lindahl et al. | Aug 2016 | B2 |
9426567 | Lee et al. | Aug 2016 | B2 |
9431021 | Scalise et al. | Aug 2016 | B1 |
9443527 | Watanabe et al. | Sep 2016 | B1 |
9472201 | Sleator | Oct 2016 | B1 |
9472203 | Ayrapetian et al. | Oct 2016 | B1 |
9484030 | Meaney et al. | Nov 2016 | B1 |
9489948 | Chu et al. | Nov 2016 | B1 |
9494683 | Sadek | Nov 2016 | B1 |
9509269 | Rosenberg | Nov 2016 | B1 |
9510101 | Polleros | Nov 2016 | B1 |
9514752 | Sharifi | Dec 2016 | B2 |
9536541 | Chen et al. | Jan 2017 | B2 |
9548066 | Jain et al. | Jan 2017 | B2 |
9552816 | Vanlund et al. | Jan 2017 | B2 |
9560441 | McDonough, Jr. et al. | Jan 2017 | B1 |
9601116 | Casado et al. | Mar 2017 | B2 |
9615170 | Kirsch et al. | Apr 2017 | B2 |
9615171 | O'Neill et al. | Apr 2017 | B1 |
9632748 | Faaborg et al. | Apr 2017 | B2 |
9633186 | Ingrassia, Jr. et al. | Apr 2017 | B2 |
9633368 | Greenzeiger et al. | Apr 2017 | B2 |
9633660 | Haughay et al. | Apr 2017 | B2 |
9633671 | Giacobello et al. | Apr 2017 | B2 |
9633674 | Sinha et al. | Apr 2017 | B2 |
9640179 | Hart et al. | May 2017 | B1 |
9640183 | Jung et al. | May 2017 | B2 |
9641919 | Poole et al. | May 2017 | B1 |
9646614 | Bellegarda et al. | May 2017 | B2 |
9653060 | Hilmes et al. | May 2017 | B1 |
9653075 | Chen et al. | May 2017 | B1 |
9659555 | Hilmes et al. | May 2017 | B1 |
9672821 | Krishnaswamy et al. | Jun 2017 | B2 |
9685171 | Yang | Jun 2017 | B1 |
9691378 | Meyers et al. | Jun 2017 | B1 |
9691379 | Mathias et al. | Jun 2017 | B1 |
9697826 | Sainath et al. | Jul 2017 | B2 |
9697828 | Prasad et al. | Jul 2017 | B1 |
9698999 | Mutagi et al. | Jul 2017 | B2 |
9704478 | Vitaladevuni et al. | Jul 2017 | B1 |
9721568 | Polansky et al. | Aug 2017 | B1 |
9721570 | Beal et al. | Aug 2017 | B1 |
9728188 | Rosen et al. | Aug 2017 | B1 |
9734822 | Sundaram et al. | Aug 2017 | B1 |
9747011 | Lewis et al. | Aug 2017 | B2 |
9747899 | Pogue et al. | Aug 2017 | B2 |
9747920 | Ayrapetian et al. | Aug 2017 | B2 |
9747926 | Sharifi et al. | Aug 2017 | B2 |
9754605 | Chhetri | Sep 2017 | B1 |
9762967 | Clarke et al. | Sep 2017 | B2 |
9811314 | Plagge et al. | Nov 2017 | B2 |
9813810 | Nongpiur | Nov 2017 | B1 |
9813812 | Berthelsen | Nov 2017 | B2 |
9820036 | Tritschler et al. | Nov 2017 | B1 |
9820039 | Lang | Nov 2017 | B2 |
9826306 | Lang | Nov 2017 | B2 |
9881616 | Beckley et al. | Jan 2018 | B2 |
20010042107 | Palm | Nov 2001 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020034280 | Infosino | Mar 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030070869 | Hlibowicki | Apr 2003 | A1 |
20030072462 | Hlibowicki | Apr 2003 | A1 |
20030095672 | Hobelsberger | May 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20050031131 | Browning | Feb 2005 | A1 |
20050031132 | Browning | Feb 2005 | A1 |
20050031133 | Browning | Feb 2005 | A1 |
20050031134 | Leske | Feb 2005 | A1 |
20050031137 | Browning | Feb 2005 | A1 |
20050031138 | Browning | Feb 2005 | A1 |
20050031139 | Browning | Feb 2005 | A1 |
20050031140 | Browning | Feb 2005 | A1 |
20050047606 | Lee | Mar 2005 | A1 |
20050164664 | DiFonzo et al. | Jul 2005 | A1 |
20050195988 | Tashev et al. | Sep 2005 | A1 |
20050207584 | Bright | Sep 2005 | A1 |
20050268234 | Rossi et al. | Dec 2005 | A1 |
20050283330 | Laraia | Dec 2005 | A1 |
20060104451 | Browning | May 2006 | A1 |
20060147058 | Wang | Jul 2006 | A1 |
20060190968 | Jung et al. | Aug 2006 | A1 |
20060247913 | Huerta et al. | Nov 2006 | A1 |
20060262943 | Oxford | Nov 2006 | A1 |
20070018844 | Sutardja | Jan 2007 | A1 |
20070019815 | Asada et al. | Jan 2007 | A1 |
20070033043 | Hyakumoto | Feb 2007 | A1 |
20070071255 | Schobben | Mar 2007 | A1 |
20070076131 | Li et al. | Apr 2007 | A1 |
20070076906 | Takagi | Apr 2007 | A1 |
20070140058 | McIntosh | Jun 2007 | A1 |
20070140521 | Mitobe | Jun 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20070147651 | Mitobe | Jun 2007 | A1 |
20080037814 | Shau | Feb 2008 | A1 |
20080090537 | Sutardja | Apr 2008 | A1 |
20080248797 | Freeman et al. | Oct 2008 | A1 |
20080301729 | Broos et al. | Dec 2008 | A1 |
20090003620 | McKillop et al. | Jan 2009 | A1 |
20090005893 | Sugii et al. | Jan 2009 | A1 |
20090018828 | Nakadai et al. | Jan 2009 | A1 |
20090076821 | Brenner et al. | Mar 2009 | A1 |
20090197524 | Haff et al. | Aug 2009 | A1 |
20090228919 | Zott et al. | Sep 2009 | A1 |
20090238377 | Ramakrishnan et al. | Sep 2009 | A1 |
20090326949 | Douthitt et al. | Dec 2009 | A1 |
20100014690 | Wolff et al. | Jan 2010 | A1 |
20100023638 | Bowman | Jan 2010 | A1 |
20100075723 | Min et al. | Mar 2010 | A1 |
20100092004 | Kuze | Apr 2010 | A1 |
20100172516 | Lastrucci | Jul 2010 | A1 |
20100179874 | Higgins et al. | Jul 2010 | A1 |
20100211199 | Naik et al. | Aug 2010 | A1 |
20110033059 | Bhaskar et al. | Feb 2011 | A1 |
20110044489 | Saiki | Feb 2011 | A1 |
20110091055 | Leblanc | Apr 2011 | A1 |
20110145581 | Malhotra et al. | Jun 2011 | A1 |
20110267985 | Wilkinson et al. | Nov 2011 | A1 |
20110276333 | Wang et al. | Nov 2011 | A1 |
20110280422 | Neumeyer et al. | Nov 2011 | A1 |
20110299706 | Sakai | Dec 2011 | A1 |
20120123268 | Tanaka | May 2012 | A1 |
20120131125 | Seidel et al. | May 2012 | A1 |
20120148075 | Goh et al. | Jun 2012 | A1 |
20120163603 | Abe et al. | Jun 2012 | A1 |
20120177215 | Bose | Jul 2012 | A1 |
20120297284 | Matthews, III et al. | Nov 2012 | A1 |
20120308046 | Muza | Dec 2012 | A1 |
20130006453 | Wang et al. | Jan 2013 | A1 |
20130024018 | Chang et al. | Jan 2013 | A1 |
20130039527 | Jensen | Feb 2013 | A1 |
20130058492 | Silzle et al. | Mar 2013 | A1 |
20130066453 | Seefeldt | Mar 2013 | A1 |
20130148821 | Sorensen | Jun 2013 | A1 |
20130179173 | Lee et al. | Jul 2013 | A1 |
20130183944 | Mozer et al. | Jul 2013 | A1 |
20130191122 | Mason | Jul 2013 | A1 |
20130216056 | Thyssen | Aug 2013 | A1 |
20130317635 | Bates et al. | Nov 2013 | A1 |
20130324031 | Loureiro | Dec 2013 | A1 |
20130329896 | Krishnaswamy et al. | Dec 2013 | A1 |
20130331970 | Beckhardt | Dec 2013 | A1 |
20130332165 | Beckley et al. | Dec 2013 | A1 |
20130343567 | Triplett et al. | Dec 2013 | A1 |
20140003611 | Mohammad et al. | Jan 2014 | A1 |
20140003635 | Mohammad et al. | Jan 2014 | A1 |
20140006026 | Lamb et al. | Jan 2014 | A1 |
20140034929 | Hamada | Feb 2014 | A1 |
20140064501 | Olsen et al. | Mar 2014 | A1 |
20140075306 | Rega | Mar 2014 | A1 |
20140094151 | Klappert et al. | Apr 2014 | A1 |
20140100854 | Chen et al. | Apr 2014 | A1 |
20140145168 | Ohsawa | May 2014 | A1 |
20140167931 | Lee et al. | Jun 2014 | A1 |
20140195252 | Gruber et al. | Jul 2014 | A1 |
20140244013 | Reilly | Aug 2014 | A1 |
20140252386 | Ito | Sep 2014 | A1 |
20140254805 | Su | Sep 2014 | A1 |
20140258292 | Thramann et al. | Sep 2014 | A1 |
20140270282 | Tammi et al. | Sep 2014 | A1 |
20140274185 | Luna et al. | Sep 2014 | A1 |
20140277650 | Zurek et al. | Sep 2014 | A1 |
20140291642 | Watabe | Oct 2014 | A1 |
20140340888 | Ishisone | Nov 2014 | A1 |
20140363022 | Dizon et al. | Dec 2014 | A1 |
20150010169 | Popova et al. | Jan 2015 | A1 |
20150014680 | Yamazaki | Jan 2015 | A1 |
20150016642 | Walsh et al. | Jan 2015 | A1 |
20150036831 | Klippel | Feb 2015 | A1 |
20150063580 | Huang et al. | Mar 2015 | A1 |
20150086034 | Lombardi et al. | Mar 2015 | A1 |
20150104037 | Lee et al. | Apr 2015 | A1 |
20150154976 | Mutagi | Jun 2015 | A1 |
20150180432 | Gao et al. | Jun 2015 | A1 |
20150181318 | Gautama | Jun 2015 | A1 |
20150189438 | Hampiholi | Jul 2015 | A1 |
20150200454 | Heusdens et al. | Jul 2015 | A1 |
20150221678 | Yamazaki | Aug 2015 | A1 |
20150222987 | Angel, Jr. et al. | Aug 2015 | A1 |
20150228274 | Leppänen et al. | Aug 2015 | A1 |
20150228803 | Koezuka | Aug 2015 | A1 |
20150249889 | Iyer | Sep 2015 | A1 |
20150253292 | Larkin et al. | Sep 2015 | A1 |
20150253960 | Lin et al. | Sep 2015 | A1 |
20150263174 | Yamazaki | Sep 2015 | A1 |
20150271593 | Sun et al. | Sep 2015 | A1 |
20150280676 | Holman et al. | Oct 2015 | A1 |
20150296299 | Klippel | Oct 2015 | A1 |
20150302856 | Kim et al. | Oct 2015 | A1 |
20150319529 | Klippel | Nov 2015 | A1 |
20150341406 | Rockefeller et al. | Nov 2015 | A1 |
20150363061 | De, III et al. | Dec 2015 | A1 |
20150363401 | Chen et al. | Dec 2015 | A1 |
20150371657 | Gao et al. | Dec 2015 | A1 |
20150380010 | Srinivasan | Dec 2015 | A1 |
20160007116 | Holman | Jan 2016 | A1 |
20160021458 | Johnson et al. | Jan 2016 | A1 |
20160029142 | Isaac et al. | Jan 2016 | A1 |
20160036962 | Rand et al. | Feb 2016 | A1 |
20160042748 | Jain et al. | Feb 2016 | A1 |
20160057522 | Choisel et al. | Feb 2016 | A1 |
20160077710 | Lewis et al. | Mar 2016 | A1 |
20160088392 | Huttunen et al. | Mar 2016 | A1 |
20160093304 | Kim et al. | Mar 2016 | A1 |
20160094917 | Wilk | Mar 2016 | A1 |
20160098393 | Hebert | Apr 2016 | A1 |
20160111110 | Gautama | Apr 2016 | A1 |
20160134982 | Iyer | May 2016 | A1 |
20160157035 | Russell | Jun 2016 | A1 |
20160173578 | Sharma et al. | Jun 2016 | A1 |
20160173983 | Berthelsen | Jun 2016 | A1 |
20160212538 | Fullam et al. | Jul 2016 | A1 |
20160225385 | Hammarqvist | Aug 2016 | A1 |
20160232451 | Scherzer | Aug 2016 | A1 |
20160234204 | Rishi et al. | Aug 2016 | A1 |
20160239255 | Chavez et al. | Aug 2016 | A1 |
20160260431 | Newendorp et al. | Sep 2016 | A1 |
20160302018 | Russell | Oct 2016 | A1 |
20160314782 | Klimanis | Oct 2016 | A1 |
20160336519 | Seo | Nov 2016 | A1 |
20160343866 | Koezuka | Nov 2016 | A1 |
20160343949 | Seo | Nov 2016 | A1 |
20160343954 | Seo | Nov 2016 | A1 |
20160345114 | Hanna | Nov 2016 | A1 |
20160352915 | Gautama | Dec 2016 | A1 |
20160353218 | Starobin et al. | Dec 2016 | A1 |
20160366515 | Mendes | Dec 2016 | A1 |
20160372688 | Seo | Dec 2016 | A1 |
20170003931 | Dvortsov et al. | Jan 2017 | A1 |
20170012207 | Seo | Jan 2017 | A1 |
20170012232 | Kataishi | Jan 2017 | A1 |
20170019732 | Mendes | Jan 2017 | A1 |
20170025615 | Seo | Jan 2017 | A1 |
20170025630 | Seo | Jan 2017 | A1 |
20170026769 | Patel | Jan 2017 | A1 |
20170060526 | Barton et al. | Mar 2017 | A1 |
20170062734 | Suzuki | Mar 2017 | A1 |
20170070478 | Park et al. | Mar 2017 | A1 |
20170076720 | Gopalan et al. | Mar 2017 | A1 |
20170078824 | Heo | Mar 2017 | A1 |
20170084292 | Yoo | Mar 2017 | A1 |
20170090864 | Jorgovanovic | Mar 2017 | A1 |
20170092278 | Evermann et al. | Mar 2017 | A1 |
20170092297 | Sainath et al. | Mar 2017 | A1 |
20170092889 | Seo | Mar 2017 | A1 |
20170092890 | Seo | Mar 2017 | A1 |
20170103755 | Jeon et al. | Apr 2017 | A1 |
20170117497 | Seo | Apr 2017 | A1 |
20170123251 | Nakada | May 2017 | A1 |
20170125037 | Shin | May 2017 | A1 |
20170125456 | Kasahara | May 2017 | A1 |
20170177585 | Rodger et al. | Jun 2017 | A1 |
20170178662 | Ayrapetian et al. | Jun 2017 | A1 |
20170188150 | Brunet | Jun 2017 | A1 |
20170193999 | Aleksic et al. | Jul 2017 | A1 |
20170206896 | Ko et al. | Jul 2017 | A1 |
20170214996 | Yeo | Jul 2017 | A1 |
20170236512 | Williams et al. | Aug 2017 | A1 |
20170242651 | Lang et al. | Aug 2017 | A1 |
20170242653 | Lang et al. | Aug 2017 | A1 |
20170257686 | Gautama | Sep 2017 | A1 |
20170270919 | Parthasarathi et al. | Sep 2017 | A1 |
20170353789 | Kim et al. | Dec 2017 | A1 |
20180033428 | Kim et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
2017100486 | Jun 2017 | AU |
2017100581 | Jun 2017 | AU |
1349146 | Oct 2003 | EP |
1389853 | Feb 2004 | EP |
2351021 | Sep 2017 | EP |
2001236093 | Aug 2001 | JP |
2004347943 | Dec 2004 | JP |
2004354721 | Dec 2004 | JP |
2005284492 | Oct 2005 | JP |
2008079256 | Apr 2008 | JP |
2008158868 | Jul 2008 | JP |
2010141748 | Jun 2010 | JP |
2013037148 | Feb 2013 | JP |
2014071138 | Apr 2014 | JP |
2014137590 | Jul 2014 | JP |
20100111071 | Oct 2010 | KR |
200153994 | Jul 2001 | WO |
2003093950 | Nov 2003 | WO |
2015037396 | Mar 2015 | WO |
2015178950 | Nov 2015 | WO |
2016033364 | Mar 2016 | WO |
2017039632 | Mar 2017 | WO |
Entry |
---|
US 9,299,346, 03/2016, Hart et al. (withdrawn) |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Corrected Notice of Allowability dated Mar. 8, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 6 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
Final Office Action dated Aug. 11, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 7 pages. |
Final Office Action dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 23, 2017, issued in connection with International Application No. PCT/US2017/018739, Filed on Feb. 21, 2017, 10 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 30, 2017, issued in connection with International Application No. PCT/US2017/018728, Filed on Feb. 21, 2017, 11 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 retrieved Jun. 18, 2014, 2 pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Non-Final Office Action dated Jun, 1, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Non-Final Office Action dated Feb. 7, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 12 pages |
Non-Final Office Action dated Feb. 8, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 17 pages. |
Non-Final Office Action dated Mar. 9, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 13 pages. |
Non-Final Office Action dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Jan. 13, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Jul. 25, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Jul. 22, 2016, 11 pages. |
Non-Final Office Action dated Jan. 26, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 16 pages. |
Non-Final Office Action dated Jun. 30, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 13 pages. |
Non-Final Office Action dated Sep. 6, 2017, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 13 pages. |
Notice of Allowance dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 4, 2016, 8 pages. |
Notice of Allowance dated Aug. 14, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 10 pages. |
Notice of Allowance dated Feb. 14, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Jun. 14, 2017, issued in connection with U.S. Appl. No. 15/282,554, filed Sep. 30, 2016, 11 pages. |
Notice of Allowance dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 9 pages. |
Notice of Allowance dated Aug. 17, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 9 pages. |
Notice of Allowance dated Aug. 22, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Sep. 22, 2016, 5 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
European Patent Office, European Extended Search Report dated Oct. 30, 2017, issued in connection with EP Application No. 17174435.2, 11 pages. |
Final Office Action dated Oct. 6, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 25 pages. |
Fiorenza Arisio et al. “Deliverable 1.1 User Study, analysis of requirements and definition of the application task,” May 31, 2012, http://dirha.fbk.eu/sites/dirha.fbk.eu/files/docs/DIRHA_D1.1., 31 pages. |
Freiberger, Karl, “Development and Evaluation of Source Localization Algorithms for Coincident Microphone Arrays,” Diploma Thesis, Apr. 1, 2010, 106 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 22, 2017, issued in connection with International Application No. PCT/US2017/054063, filed on Sep. 28, 2017, 11 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 23, 2017, issued in connection with International Application No. PCT/US2017/042170, filed on Jul. 14, 2017, 15 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2017/042227, filed on Jul. 14, 2017, 16 pages. |
Morales-Cordovilla et al. “Room Localization for Distant Speech Recognition,” Proceedings of Interspeech 2014, Sep. 14, 2014, 4 pages. |
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 11 pages. |
Non-Final Office Action dated Nov. 3, 2017, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 11 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 13 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 15 pages. |
Non-Final Office Action dated Sep. 14, 2017, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 16 pages. |
Non-Final Office Action dated Feb. 20, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2016, 31 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 32 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 6 pages. |
Notice of Allowance dated Dec. 4, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 5 pages. |
Notice of Allowance dated Dec. 13, 2017, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 9 pages. |
Notice of Allowance dated Dec. 15, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Notice of Allowance dated Jan. 22, 2018, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 9 pages. |
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 13 pages. |
Tsiami et al. “Experiments in acoustic source localization using sparse arrays in adverse indoors environments”, 2014 22nd European Signal Processing Conference, Sep. 1, 2014, 5 pages. |
Vacher at al. “Recognition of voice commands by multisource ASR and noise cancellation in a smart home environment” Signal Processing Conference 2012 Proceedings of the 20th European, IEEE, Aug. 27, 2012, 5 pages. |
Xiao et al. “A Learning-Based Approach to Direction of Arrival Estimation in Noisy and Reverberant Environments,” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19, 2015, 5 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 18 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 20 pages. |
Non-Final Office Action dated Mar. 16, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 5 pages. |
Non-Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 14 pages. |
Non-Final Office Action dated May 22, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 19 pages. |
Non-Final Office Action dated Jun. 27, 2018, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 16 pages. |
Non-Final Office Action dated Apr. 9, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Non-Final Office Action dated May 9, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 22 pages. |
Notice of Allowance dated Jul. 5, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 5 pages. |
Notice of Allowance dated Jul. 9, 2018, issued in connection with U.S. Appl. No. 15/438,741, filed dated Feb. 21, 2017, 5 pages. |
Notice of Allowance dated Apr. 11, 2018, issued in connection with U.S. Appl. No. 15/719,454, filed Sep. 28, 2017, 15 pages. |
Notice of Allowance dated Mar. 20, 2018, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 7 pages. |
Notice of Allowance dated Mar. 9, 2018, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170245054 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62298433 | Feb 2016 | US |