This disclosure relates to the field of touch-sensors and, in particular, to capacitive touch-sensor arrays.
Computing devices, such as notebook computers, personal data assistants (PDAs), kiosks, and mobile handsets, have user interface devices, which are also known as human interface devices (HID). One user interface device that has become more common is a touch-sensor pad (also commonly referred to as a touchpad). A basic notebook computer touch-sensor pad emulates the function of a personal computer (PC) mouse. A touch-sensor pad is typically embedded into a PC notebook for built-in portability. A touch-sensor pad replicates mouse X/Y movement by using two defined axes which contain a collection of sensor electrodes that detect the position of one or more conductive objects, such as a finger. Mouse right/left button clicks can be replicated by two mechanical buttons, located in the vicinity of the touchpad, or by tapping commands on the touch-sensor pad itself. The touch-sensor pad provides a user interface device for performing such functions as positioning a pointer, or selecting an item on a display. These touch-sensor pads may include multi-dimensional sensor arrays for detecting movement in multiple axes. The sensor array may include a one-dimensional sensor array, detecting movement in one axis. The sensor array may also be two dimensional, detecting movements in two axes.
Another user interface device that has become more common is a touch screen. Touch screens, also known as touchscreens, touch windows, touch panels, or touchscreen panels, are transparent display overlays which are typically either pressure-sensitive (resistive or piezoelectric), electrically-sensitive (capacitive), acoustically-sensitive (surface acoustic wave (SAW)) or photo-sensitive (infra-red). The effect of such overlays allows a display to be used as an input device, removing the keyboard and/or the mouse as the primary input device for interacting with the display's content. Such displays can be attached to computers or, as terminals, to networks. Touch screens have become familiar in retail settings, on point-of-sale systems, on ATMs, on mobile handsets, on kiosks, on game consoles, and on PDAs where a stylus is sometimes used to manipulate the graphical user interface (GUI) and to enter data. A user can touch a touch screen or a touch-sensor pad to manipulate data. For example, a user can apply a single touch, by using a finger to touch the surface of a touch screen, to select an item from a menu.
The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings.
The following description sets forth numerous specific details such as examples of specific systems, components, methods, and so forth, in order to provide a good understanding of several embodiments of the present invention. It will be apparent to one skilled in the art, however, that at least some embodiments of the present invention may be practiced without these specific details. In other instances, well-known components or methods are not described in detail or are presented in a simple block diagram format in order to avoid unnecessarily obscuring the present invention. Thus, the specific details set forth are merely exemplary. Particular implementations may vary from these exemplary details and still be contemplated to be within the spirit and scope of the present invention.
In one embodiment, a capacitive sensor array used to track the movement of a contact, such as a finger or stylus touch, across its surface may include multiple signal-spreading dummy electrodes within its sensor pattern. The inclusion of such signal-spreading dummy electrodes increases linearity of the touch tracking relative to a sensor array that does not include signal-spreading dummy electrodes. As described herein, the term “dummy electrode” may refer to an electrode that is not conductively coupled with a row or column sensor electrode, but does not necessarily imply a lack of electrical function.
In one embodiment, the sensor array 121 includes sensor electrodes 121(1)-121(N) (where N is a positive integer) that are disposed as a two-dimensional matrix (also referred to as an XY matrix). The sensor array 121 is coupled to pins 113(1)-113(N) of the processing device 110 via one or more analog buses 115 transporting multiple signals. In this embodiment, each sensor electrode 121(1)-121(N) is represented as a capacitor.
In one embodiment, the capacitance sensor 101 may include a relaxation oscillator or other means to convert a capacitance into a measured value. The capacitance sensor 101 may also include a counter or timer to measure the oscillator output. The processing device 110 may further include software components to convert the count value (e.g., capacitance value) into a sensor electrode detection decision (also referred to as switch detection decision) or relative magnitude. It should be noted that there are various known methods for measuring capacitance, such as current versus voltage phase shift measurement, resistor-capacitor charge timing, capacitive bridge divider, charge transfer, successive approximation, sigma-delta modulators, charge-accumulation circuits, field effect, mutual capacitance, frequency shift, or other capacitance measurement algorithms. It should be noted however, instead of evaluating the raw counts relative to a threshold, the capacitance sensor 101 may be evaluating other measurements to determine the user interaction. For example, in the capacitance sensor 101 having a sigma-delta modulator, the capacitance sensor 101 is evaluating the ratio of pulse widths of the output, instead of the raw counts being over or under a certain threshold.
In one embodiment, the processing device 110 further includes processing logic 102. Operations of the processing logic 102 may be implemented in firmware; alternatively, it may be implemented in hardware or software. The processing logic 102 may receive signals from the capacitance sensor 101, and determine the state of the sensor array 121, such as whether an object (e.g., a finger) is detected on or in proximity to the sensor array 121 (e.g., determining the presence of the object), where the object is detected on the sensor array (e.g., determining the location of the object), tracking the motion of the object, or other information related to an object detected at the touch sensor.
In another embodiment, instead of performing the operations of the processing logic 102 in the processing device 110, the processing device 110 may send the raw data or partially-processed data to the host 150. The host 150, as illustrated in
In another embodiment, the processing device 110 may also include a non-sensing actions block 103. This block 103 may be used to process and/or receive/transmit data to and from the host 150. For example, additional components may be implemented to operate with the processing device 110 along with the sensor array 121 (e.g., keyboard, keypad, mouse, trackball, LEDs, displays, or other peripheral devices).
The processing device 110 may reside on a common carrier substrate such as, for example, an integrated circuit (IC) die substrate, or a multi-chip module substrate. Alternatively, the components of the processing device 110 may be one or more separate integrated circuits and/or discrete components. In one embodiment, the processing device 110 may be the Programmable System on a Chip (PSoC™) processing device, developed by Cypress Semiconductor Corporation, San Jose, Calif. Alternatively, the processing device 110 may be one or more other processing devices known by those of ordinary skill in the art, such as a microprocessor or central processing unit, a controller, special-purpose processor, digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable device. In an alternative embodiment, for example, the processing device 110 may be a network processor having multiple processors including a core unit and multiple micro-engines. Additionally, the processing device 110 may include any combination of general-purpose processing device(s) and special-purpose processing device(s).
In one embodiment, the electronic system 100 is implemented in a device that includes the touch-sensing surface 116 as the user interface, such as handheld electronics, portable telephones, cellular telephones, notebook computers, personal computers, personal data assistants (PDAs), kiosks, keyboards, televisions, remote controls, monitors, handheld multi-media devices, handheld video players, gaming devices, control panels of a household or industrial appliances, or other computer peripheral or input devices. Alternatively, the electronic system 100 may be used in other types of devices. It should be noted that the components of electronic system 100 may include all the components described above. Alternatively, electronic system 100 may include only some of the components described above, or include additional components not listed herein.
Capacitance sensor 101 includes multiplexer control 211, demultiplexer 212 and multiplexer 213, clock generator 214, signal generator 215, demodulation circuit 216, and analog to digital converter (ADC) 217. ADC 217 is further coupled with touch coordinate converter 218. Touch coordinate converter 218 may be implemented in the processing logic 102.
The transmit and receive electrodes in the electrode matrix 225 may be arranged so that each of the transmit electrodes overlap and cross each of the receive electrodes such as to form an array of intersections, while maintaining galvanic isolation from each other. Thus, each transmit electrode may be capacitively coupled with each of the receive electrodes. For example, transmit electrode 222 is capacitively coupled with receive electrode 223 at the point where transmit electrode 222 and receive electrode 223 overlap.
Clock generator 214 supplies a clock signal to signal generator 215, which produces a TX signal 224 to be supplied to the transmit electrodes of touch sensor 121. In one embodiment, the signal generator 215 includes a set of switches that operate according to the clock signal from clock generator 214. The switches may generate a TX signal 224 by periodically connecting the output of signal generator 215 to a first voltage and then to a second voltage, wherein said first and second voltages are different.
The output of signal generator 215 is connected with demultiplexer 212, which allows the TX signal 224 to be applied to any of the M transmit electrodes of touch sensor 121. In one embodiment, multiplexer control 211 controls demultiplexer 212 so that the TX signal 224 is applied to each transmit electrode 222 in a controlled sequence. Demultiplexer 212 may also be used to ground, float, or connect an alternate signal to the other transmit electrodes to which the TX signal 224 is not currently being applied. In an alternate embodiment the TX signal 224 may be presented in a true form to a subset of the transmit electrodes 222 and in complement form to a second subset of the transmit electrodes 222, wherein there is no overlap in members of the first and second subset of transmit electrodes 222.
Because of the capacitive coupling between the transmit and receive electrodes, the TX signal 224 applied to each transmit electrode induces a current within each of the receive electrodes. For instance, when the TX signal 224 is applied to transmit electrode 222 through demultiplexer 212, the TX signal 224 induces an RX signal 227 on the receive electrodes in matrix 225. The RX signal 227 on each of the receive electrodes can then be measured in sequence by using multiplexer 213 to connect each of the N receive electrodes to demodulation circuit 216 in sequence.
The mutual capacitance associated with each intersection between a TX electrode and an RX electrode can be sensed by selecting every available combination of TX electrode and an RX electrode using demultiplexer 212 and multiplexer 213. To improve performance, multiplexer 213 may also be segmented to allow more than one of the receive electrodes in matrix 225 to be routed to additional demodulation circuits 216. In an optimized configuration, wherein there is a 1-to-1 correspondence of instances of demodulation circuit 216 with receive electrodes, multiplexer 213 may not be present in the system.
When an object, such as a finger, approaches the electrode matrix 225, the object causes a change in the measured mutual capacitance between only some of the electrodes. For example, if a finger is placed near the intersection of transmit electrode 222 and receive electrode 223, the presence of the finger will decrease the charge coupled between electrodes 222 and 223. Thus, the location of the finger on the touchpad can be determined by identifying the one or more receive electrodes having a decrease in measured mutual capacitance in addition to identifying the transmit electrode to which the TX signal 224 was applied at the time the decrease in capacitance was measured on the one or more receive electrodes.
By determining the mutual capacitances associated with each intersection of electrodes in the matrix 225, the presence and locations of one or more conductive objects may be determined. The determination may be sequential, in parallel, or may occur more frequently at commonly used electrodes.
In alternative embodiments, other methods for detecting the presence of a finger or other conductive object may be used where the finger or conductive object causes an increase in measured capacitance at one or more electrodes, which may be arranged in a grid or other pattern. For example, a finger placed near an electrode of a capacitive sensor may introduce an additional capacitance to ground that increases the total capacitance between the electrode and ground. The location of the finger can be determined based on the locations of one or more electrodes at which a change in measured capacitance is detected.
The induced current signal 227 is integrated by demodulation circuit 216. The rectified current output by demodulation circuit 216 can then be filtered and converted to a digital code by ADC 217.
A series of such digital codes measured from adjacent sensor or intersections may be converted to touch coordinates indicating a position of an input on touch sensor array 121 by touch coordinate converter 218. In one embodiment, the touch coordinate converter 218 may be coupled with a lookup table (LUT) 230. The LUT stores a number of correction vectors each corresponding to a different location on the capacitive sensor array. For example, each of the correction vectors may include correction values for adjusting along one or both of the x-axis and y-axis the touch coordinates calculated by the touch coordinate converter 218. In one embodiment, the touch-coordinate converter 218 selects from the LUT 230 the appropriate correction vector corresponding to the location of the calculated touch coordinates, then adjusts the touch coordinates according to the correction vector. In one embodiment, the correction vectors compensate for any systematic displacement error affecting the calculated touch coordinates. The corrected touch coordinates may then be used to detect gestures or perform other functions by the processing logic 102.
In one embodiment, the capacitance sensor 101 can be configured to detect multiple touches. One technique for the detection and location resolution of multiple touches uses a two-axis implementation: one axis to support rows and another axis to support columns. Additional axes, such as a diagonal axis, implemented on the surface using additional layers, can allow resolution of additional touches.
In one embodiment, the processing device 310 is connected to a host 150 which may receive the measured capacitances or calculate high precision locations from the processing device 310.
The sensor array 320 illustrated in
Touch screen assembly 410 includes an LCD 411, over which a glass 412 may be positioned. In one embodiment, sensor pattern 413 may be constructed on the surface of glass 412 that faces the LCD 411. In one embodiment, an air gap 414 may separate the glass 412 from the LCD 411.
In one embodiment, a capacitive sensor pattern such as the SSD pattern, DSD pattern, or other capacitive sensor pattern described herein may include row and column sensor electrodes that can be expressed as a matrix of the intersections between the row and column electrodes. Resolution of these sensor arrays may be represented as the product of the number of columns and the number of rows. For example, for a sensor array with N row electrodes and M column electrodes, the number of intersections would be N×M.
Each unit cell is associated with a particular pairing of a row sensor electrode and a column sensor electrode, and corresponds to an area within which the capacitive coupling between the row sensor electrode and the column sensor electrode is greater than for any other pairing of sensor electrodes. For example, unit cell 520 includes an area where the capacitance between sensor electrodes 502 and 512 is greater than the capacitance between any other pair of electrodes.
In one embodiment, capacitance sensor 101 performs a scan of the sensor array 500 by applying a transmit (TX) signal to each of the row sensor electrodes 501-503 and measuring a resulting receive (RX) signal generated at each of the column sensor electrodes 511-513. The sensor array 500 includes multiple signal-spreading dummy electrodes that are each capacitively coupled with at least two of the TX sensor electrodes. For example, each of the dummy electrodes 531 and 532 overlaps and is capacitively coupled with both of TX sensor electrodes 501 and 502.
Thus, each of the dummy electrodes 531 and 532 is situated at least partially within the area of two adjacent unit cells 520 and 521. As illustrated in
In one embodiment, the connecting trace 532b overlaps a gap between the adjacent row sensor electrodes 501 and 502 to mitigate the effects of lamination offset during the manufacturing process. For instance, a manufacturing process that positions a top layer of conductive material (including dummy electrode 532) over a bottom layer (including row electrodes 501 and 502) may result in an offset between the layers of as much as 0.2 millimeters in either direction along the y-axis from a nominal position which evenly divides the area of dummy electrode 532 between unit cells 520 and 521. Accordingly, the length of the connecting trace 532b along the longitudinal axis 601 of the column sensor electrode (i.e., parallel to the indicated y-axis) may be selected as 0.5 millimeters (at least double the tolerance of 0.2 millimeters). Since only the smaller area of the connecting trace 532b is subject to unequal division between unit cells 520 and 521 due to lamination offset, the possible variation of the total area of dummy electrode 532 caused by lamination offset can be reduced, relative to embodiments where the dummy electrode is not narrower across the gap between row electrodes.
Additionally, each of the dummy electrodes 531 and 532 also capacitively coupled with the RX column sensor electrode 512, illustrated in
Optical dummy electrode 701 is positioned between the signal-spreading dummy electrodes 531 and 703 and optical dummy electrode 702 is positioned between the signal-spreading dummy electrodes 532 and 704. In one embodiment, each of the optical dummy electrodes 701 and 702 is formed from the same layer of conductive material as the column sensor electrode 512 and the signal-spreading dummy electrodes 531, 532, 703, and 704. Optical dummy electrodes such as electrodes 701 and 702 may minimize the gaps between the column sensor electrode 512 and the signal-spreading dummy electrodes 531, 532, 703, and 704, to improve optical uniformity for applications such as, for example, touch screens or transparent touch-sensing surfaces.
The pattern of conductive material in unit cell 520 also includes isolation regions 708a, 708b, 708c, and 708d between the subtraces 512a, 512b, and 512c of the RX column sensor electrode 512 and the dummy electrodes 531, 532, and 701-704. As illustrated in
In one embodiment, the isolation regions 708a-708d reduce crosstalk between the RX sensor electrode 512 and the signal-spreading dummy electrodes, while the optical dummy electrodes such as 706 and 707 occupy the space in the isolation regions 708a-708d to improve optical uniformity in the isolation regions 708a-708d. Accordingly, optical dummy electrodes may be positioned between a column sensor electrode and a signal-spreading dummy electrode; for example, dummy electrodes 706 are positioned between the column sensor electrode 512 and the signal-spreading dummy electrode 532. Other dummy electrodes may be positioned between a column sensor electrode and an optical dummy electrode; for example, dummy electrodes 707 are positioned between column sensor electrode 512 and optical dummy electrode 702. In an alternative embodiments, the isolation regions 708a-708d may not contain any dummy electrodes.
In one embodiment, the length of each signal-spreading dummy electrode is at least half the length of the unit cell; for example, the length 531d of the dummy electrode 531 along the y-axis is at least half the length of the unit cell 520 along the y-axis. In alternative embodiments, the lengths of the signal spreading dummy electrodes may be greater or less than half the length of the unit cell.
When a stylus tip 806 moves over the three unit cells 803, 804, and 805 in a direction 807 parallel to the y-axis, the unit cells 803, 804, and 805 produce corresponding signal profiles 803a, 804a, and 805a, respectively. As illustrated in
A maximum signal for a sensor electrode is observed when the stylus 806 is above a center of the sensor electrode. The capacitive sensor array with signal-spreading dummy electrodes, such as electrodes 531 and 703, widens the signal profiles 501a, 502a, and 503a. In contrast with the signal profiles illustrated in
The adjacent TX row sensor electrodes 501 and 503 operate in similar fashion; for example, sensor electrode 501 is capacitively coupled with signal-spreading dummy electrodes 531 and 814, while sensor electrode 503 is capacitively coupled with signal-spreading dummy electrodes 813 and 703. This results in wider signal profiles 501a and 503a corresponding to the sensor electrodes 501 and 503, respectively.
Provided the same sensor pitch as the sensor pattern illustrated in
In one embodiment, signal spreading dummies widen the signal profile for a stylus or other conductive object moving along the y-axis, while the differences in widths of the RX subtraces widen the signal profile for conductive objects moving in the direction of the x-axis. With reference to
Among the signal-spreading dummy electrodes 1002-1006, electrodes 1002-1004 are located within the perimeter of the column sensor electrode 1001, while electrodes 1005 and 1006 are located outside the perimeter of the column sensor electrode 1001. In other words, electrodes 1002-1004 are located between the subtraces of sensor electrode 1001, while electrodes 1005 and 1006 are not located between the subtraces of sensor electrode 1001.
Sensor array 1000 additionally includes more than one optical dummy electrode 1012 and 1013 in between the subtraces of the column sensor electrode 1001 and between the signal-spreading dummy electrodes 1002 and 1004. Additional optical dummy electrodes 1014 and 1015 are located outside the perimeter of the column sensor electrode 1001, between the column sensor electrode 1001 and an adjacent column sensor electrode, and between the signal-spreading dummy electrodes 1005 and 1006.
In
In the foregoing embodiments, various modifications can be made; for example, row sensor electrodes and column sensor electrodes may be interchanged, and row or column sensor electrodes may be used as either TX or RX sensor electrodes. Furthermore, in some embodiments, intersections between row and column sensor electrodes may be replaced with conductive bridges. For example, bridges may be used to electrically connect portions of sensor electrodes when both row and column sensor electrodes are constructed from a single layer of conductive material. As described herein, conductive electrodes that are “electrically connected” or “electrically coupled” may be coupled such that a relatively low resistance conductive path exists between the conductive electrodes. The terms “substantially” and “approximately” may indicate values or characteristics that may deviate from a nominal value or ideal characteristic (where such deviation may result from manufacturing tolerances, rounding error, and the like) while the desired effect of the nominal value or ideal characteristic is preserved.
Embodiments of the present invention, described herein, include various operations. These operations may be performed by hardware components, software, firmware, or a combination thereof. As used herein, the term “coupled to” may mean coupled directly or indirectly through one or more intervening components. Any of the signals provided over various buses described herein may be time multiplexed with other signals and provided over one or more common buses. Additionally, the interconnection between circuit components or blocks may be shown as buses or as single signal lines. Each of the buses may alternatively be one or more single signal lines and each of the single signal lines may alternatively be buses.
Certain embodiments may be implemented as a computer program product that may include instructions stored on a computer-readable medium. These instructions may be used to program a general-purpose or special-purpose processor to perform the described operations. A computer-readable medium includes any mechanism for storing or transmitting information in a form (e.g., software, processing application) readable by a machine (e.g., a computer). The computer-readable storage medium may include, but is not limited to, magnetic storage medium (e.g., floppy diskette); optical storage medium (e.g., CD-ROM); magneto-optical storage medium; read-only memory (ROM); random-access memory (RAM); erasable programmable memory (e.g., EPROM and EEPROM); flash memory, or another type of medium suitable for storing electronic instructions.
Additionally, some embodiments may be practiced in distributed computing environments where the computer-readable medium is stored on and/or executed by more than one computer system. In addition, the information transferred between computer systems may either be pulled or pushed across the transmission medium connecting the computer systems.
Although the operations of the method(s) herein are shown and described in a particular order, the order of the operations of each method may be altered so that certain operations may be performed in an inverse order or so that certain operation may be performed, at least in part, concurrently with other operations. In another embodiment, instructions or sub-operations of distinct operations may be in an intermittent and/or alternating manner.
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.
This application claims priority to U.S. Provisional Application No. 61/946,560, filed on Feb. 28, 2014, and is a continuation-in-part of U.S. patent application Ser. No. 14/098,057, filed on Dec. 5, 2013, which claims priority to U.S. Provisional Application No. 61/875,863, filed on Sep. 10, 2013, all of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6370965 | Knapp | Apr 2002 | B1 |
6639315 | Kazama et al. | Oct 2003 | B2 |
7129935 | Mackey | Oct 2006 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7755026 | Pittel et al. | Jul 2010 | B2 |
7755612 | Park et al. | Jul 2010 | B2 |
7808255 | Hristov et al. | Oct 2010 | B2 |
7812827 | Hotelling et al. | Oct 2010 | B2 |
7864160 | Geaghan et al. | Jan 2011 | B2 |
7973771 | Geaghan | Jul 2011 | B2 |
8004497 | Xiaoping | Aug 2011 | B2 |
8174507 | Xiaoping | May 2012 | B2 |
8217916 | Anno | Jul 2012 | B2 |
8237453 | Badaye et al. | Aug 2012 | B2 |
8432170 | Walsh | Apr 2013 | B1 |
8502796 | Yilmaz | Aug 2013 | B1 |
8519973 | Xiaoping | Aug 2013 | B1 |
8531418 | Nolting et al. | Sep 2013 | B2 |
8536880 | Philipp | Sep 2013 | B2 |
8614690 | Grunthaner et al. | Dec 2013 | B2 |
8638107 | Schwartz et al. | Jan 2014 | B2 |
8648819 | Philipp | Feb 2014 | B2 |
8749518 | Kuo | Jun 2014 | B2 |
8872526 | Hoshtanar et al. | Oct 2014 | B1 |
9151790 | Hoshtanar | Oct 2015 | B1 |
20050200799 | Murai | Sep 2005 | A1 |
20070008299 | Hristov | Jan 2007 | A1 |
20070074914 | Geaghan et al. | Apr 2007 | A1 |
20070257894 | Philipp | Nov 2007 | A1 |
20070268265 | Xiaoping | Nov 2007 | A1 |
20070268266 | Xiaoping | Nov 2007 | A1 |
20070291009 | Wright et al. | Dec 2007 | A1 |
20080156546 | Hauck | Jul 2008 | A1 |
20080158175 | Hotelling et al. | Jul 2008 | A1 |
20080309633 | Hotelling et al. | Dec 2008 | A1 |
20090002396 | Andrews et al. | Jan 2009 | A1 |
20090120697 | Wilner et al. | May 2009 | A1 |
20090135157 | Harley | May 2009 | A1 |
20090159344 | Hotelling et al. | Jun 2009 | A1 |
20090189866 | Haffenden et al. | Jul 2009 | A1 |
20090252386 | Dean et al. | Oct 2009 | A1 |
20090267916 | Hotelling | Oct 2009 | A1 |
20090273570 | Degner et al. | Nov 2009 | A1 |
20090303196 | Furukawa | Dec 2009 | A1 |
20100045614 | Gray et al. | Feb 2010 | A1 |
20100045615 | Gray et al. | Feb 2010 | A1 |
20100046561 | Grant et al. | Feb 2010 | A1 |
20100073301 | Yousefpor et al. | Mar 2010 | A1 |
20100079384 | Grivna | Apr 2010 | A1 |
20100079402 | Grunthaner et al. | Apr 2010 | A1 |
20100096193 | Yilmaz et al. | Apr 2010 | A1 |
20100110038 | Mo et al. | May 2010 | A1 |
20100123670 | Philipp | May 2010 | A1 |
20100163394 | Tang et al. | Jul 2010 | A1 |
20100193257 | Hotelling et al. | Aug 2010 | A1 |
20100214233 | Lee | Aug 2010 | A1 |
20100220075 | Kuo et al. | Sep 2010 | A1 |
20100253651 | Day | Oct 2010 | A1 |
20100271330 | Philipp | Oct 2010 | A1 |
20100289503 | Reynolds et al. | Nov 2010 | A1 |
20100295821 | Chang et al. | Nov 2010 | A1 |
20100302201 | Ritter et al. | Dec 2010 | A1 |
20100328228 | Elias | Dec 2010 | A1 |
20100328255 | Ishizaki et al. | Dec 2010 | A1 |
20110006832 | Land et al. | Jan 2011 | A1 |
20110007020 | Hong et al. | Jan 2011 | A1 |
20110025629 | Grivna et al. | Feb 2011 | A1 |
20110063251 | Geaghan et al. | Mar 2011 | A1 |
20110095990 | Philipp et al. | Apr 2011 | A1 |
20110115729 | Kremin et al. | May 2011 | A1 |
20110141062 | Yu et al. | Jun 2011 | A1 |
20110157050 | Jang et al. | Jun 2011 | A1 |
20110171998 | Westerman | Jul 2011 | A1 |
20110279410 | Han et al. | Nov 2011 | A1 |
20120044197 | Polishchuk et al. | Feb 2012 | A1 |
20120044201 | Xiaoping | Feb 2012 | A1 |
20120044203 | Ishizaki et al. | Feb 2012 | A1 |
20120062472 | Yilmaz | Mar 2012 | A1 |
20120062510 | Mo et al. | Mar 2012 | A1 |
20120092350 | Ganapathi et al. | Apr 2012 | A1 |
20120127099 | Liu et al. | May 2012 | A1 |
20120154324 | Wright et al. | Jun 2012 | A1 |
20120169651 | Chang | Jul 2012 | A1 |
20120169653 | Chang | Jul 2012 | A1 |
20120169655 | Chang | Jul 2012 | A1 |
20120169656 | Chang | Jul 2012 | A1 |
20120227259 | Badaye et al. | Sep 2012 | A1 |
20120268416 | Pirogov et al. | Oct 2012 | A1 |
20120319974 | Kim et al. | Dec 2012 | A1 |
20130015868 | Peng | Jan 2013 | A1 |
20130027344 | Choon | Jan 2013 | A1 |
20130033451 | Olson | Feb 2013 | A1 |
20130049771 | Peng et al. | Feb 2013 | A1 |
20130082719 | Prendergast et al. | Apr 2013 | A1 |
20130242485 | Ohtani et al. | Sep 2013 | A1 |
20130285975 | Hong et al. | Oct 2013 | A1 |
20140009215 | Prest et al. | Jan 2014 | A1 |
20140125361 | Tevs | May 2014 | A1 |
20140152919 | Philipp | Jun 2014 | A1 |
20140160374 | Wang et al. | Jun 2014 | A1 |
20140313159 | Wilson | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2214084 | Aug 2010 | EP |
2592533 | May 2013 | EP |
20100032283 | Mar 2010 | KR |
100979910 | Sep 2010 | KR |
20100116281 | Nov 2010 | KR |
2008079596 | Jul 2008 | WO |
2010062808 | Jun 2010 | WO |
2011015827 | Feb 2011 | WO |
2011058562 | May 2011 | WO |
Entry |
---|
U.S. Appl. No. 13/242,703: “Methods and Apparatus to Detect a Conductive Object” Oleksandr Hoshtanar et al., filed on Sep. 23, 2011; 62 pages. |
Camacho, Oscar, “Designing Touch Sensing Electrodes,” Freescale Semiconductor Application Note, Document No. AN3863, Rev. 4, Jul. 2011; 28 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/IB2011/003294 mailed Jun. 22, 2012; 11 pages. |
Lee, et al., “A Multi-Touch Three Dimensional Touch-Sensitive Tablet”, Computer Systems Research Institute, University of Toronto, Apr. 1985; 5 pages. |
ST Microelectronics, “Guidelines for Designing Touch Sensing Applications with Surface Sensors”, retrieved from http://www.st.com/st-web-ui/static/active/jp/resource/technical/document/application—note/DM00087990.pdf, dated Sep. 30, 2013; 36 pages. |
USPTO Advisory Action for U.S. Appl. No. 13/242,703 dated Mar. 5, 2015; 2 pages. |
USPTO Advisory Action for U.S. Appl. No. 13/242,703 dated Jun. 20, 2014; 3 pages. |
USPTO Final Rejection for U.S. Appl. No. 13/242,703 dated Apr. 8, 2014; 19 pages. |
USPTO Final Rejection for U.S. Appl. No. 13/242,703 dated Dec. 10, 2015; 21 pages. |
USPTO Final Rejection for U.S. Appl. No. 13/342,703 dated Dec. 15, 2014; 21 pages. |
USPTO Final Rejection for U.S. Appl. No. 14/098,057 dated Jun. 19, 2014; 14 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/242,703 dated May 28, 2015; 16 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/242,703 dated Aug. 1, 2014; 21 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/242,703 dated Sep. 14, 2015; 14 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/242,703 dated Sep. 26, 2013; 18 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 13/693,927 dated Mar. 16, 2015; 9 pages. |
USPTO Non-Final Rejection for U.S. Appl. No. 14/098,057 dated Feb. 20, 2014; 19 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 13/693,927 dated Jun. 8, 2015; 7 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/098,057 dated Jul. 7, 2014; 8 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/098,057 dated Aug. 15, 2014; 8 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 14/098,057 dated Sep. 16, 2014; 8 pages. |
Yazici, Serkan, “Suppression of Spurious Modes via Dummy Electrodes and 2% Frequency Shift via Cavity Size Selection for 1 GHz AIN MEMS Contour-Mode Resonators,” IEEE Frequency Control Symposium (FCS), May 21-24, 2012, pp. 1-5; 5 pages. |
Number | Date | Country | |
---|---|---|---|
61875863 | Sep 2013 | US | |
61946560 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14098057 | Dec 2013 | US |
Child | 14297115 | US |