The present invention is related to sensor position adjusting device and more particularly to a sensor position adjusting device for a coin dispenser that can be adjusted easily and precisely.
A coin dispenser having a dispensing disk having a plurality of pins on the dispensing disk for dispensing coins one at a time, is known. The dispensed coins can move a lever arm in proximity to a sensor for detecting dispensed coins. However, the position of the sensor relative to the lever arm cannot be easily and precisely adjusted, and often can move out of the desired position as the sensor is secured.
U.S. Pat. No. 4,437,478 granted to Abe discloses a device where the dispensed coins or tokens contact a roller that moves an actuating arm to interact with a sensor. The actuating arm moves between a pair of spaced-apart sensor coils to define a slot for receiving one end of the actuating arm.
Japanese Patent No. 09-259318 granted to Takashi discloses a coin dispenser with a lever and an adjustable sensor. The position of the sensor can be adjusted relative to the lever by adjusting a screw, but the adjustment is performed by hand and can be imprecise. This imprecision may require multiple attempts to properly position the sensor relative to the lever.
Accordingly, there is still a demand in the prior art to provide a highly accurate and easy to use sensor positioning device.
The present invention addresses the limitations of the prior art by providing a sensor position adjusting device including a screw unit for accurately adjusting the position of the sensor unit relative to a driven member moved by a dispensed coin.
The sensor position adjusting device includes a rotatable coin selecting disc member for selectively dispensing coins, a driven member that is moved by the dispensed coins, a sensor unit for detecting the movement of the driven member, and a screw unit for accurately adjusting the position of the sensor unit relative to the driven member.
The position adjusting unit includes a fixed base plate attached to the coin dispenser and a movable base plate carrying the sensor unit. The movable base plate can move relative to the fixed base plate in order to adjust the position of the sensor unit relative to the driven member. A screw unit can adjust the position of the movable base plate relative to the fixed base plate by turning the screw in a predetermined direction.
The fixed base plate has a bracket extending perpendicular to the fixed base plate and the movable base plate has a bracket extending perpendicular to the movable base plate. The movable base plate is placed adjacent to the fixed base plate in such a way that the brackets are parallel. A screw is passed through a through hole in the fixed base plate bracket and threaded into the movable base plate bracket so that by turning the screw the position of the movable base plate can be adjusted relative to the fixed base plate.
Once the proper position of the sensor unit is determined, a fixing unit can secure the movable base plate against movement relative to the fixed base plate so the sensor unit can maintain the determined position. The fixing unit applies force in a direction that is perpendicular to the plane of adjustment so that by fixing the position of the movable base plate, the adjustment position of the sensor is not altered.
The objects and features of the present invention, which are believed to be novel, are set forth with particularity in the appended claims. The present invention, both as to its organization and manner of operation, together with further objects and advantages, may best be understood by reference to the following description, taken in connection with the accompanying drawings.
Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the intention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.
Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.
In reference to
In this specification, a coin can be a token, a medal or medallion, a disc or any similar thin article of a substantially circular shape that may be stored, manipulated, and dispensed as herein described.
The rotating disk 104 is supported by a base plate 114 and is inclined at an angle to the horizontal plane so that, when a coin bowl (not shown) containing coins 108 is attached to the coin dispenser 100, some coins 108 in the coin bowl will rest against a lower portion of the rotating disk 104. The pins 102 on the rotating disk 104 have contact with the coins 108 as the rotating disk 104 moves in a counter clockwise direction, as shown in
During rotation of the rotating disk 104, the churning motion of the coins 108 causes a coin 108 to fall against the flat surface of the rotating disk 104 between adjacent pins 102 termed leading and lagging pins. The lagging pin in the direction of rotation pushes the coin 108 in the direction of rotation, and brings the coin 108 out from the quantity of coins in the coin bowl that are pressed against the rotating disk 104. The flat surface of the coin 108 is supported by the flat surface of the rotating disk 104, while an edge of the coin is supported by the raised section 106 as the rotating disk 104 is inclined at an angle to the horizontal plane.
The pin 102 pushes the coin 108 to the knife unit 110, as shown in
In reference to
In reference to
Attached to lever 130 is a driven member 120. The driven member 120 includes an L-shaped operating member 146 that is detachably mounted to lever 130 by a pair of screws 148. The driven member 120 is moved by a coin 108 as the coin is dispensed by the coin dispenser 100. The coin detecting unit 112 includes a driven member 120, a sensor unit 122, and a sensor position adjusting unit 126. The sensor unit 122 detects movement of the driven member 120 attached to lever 130 while the position adjusting unit 126 adjusts the position of the sensor 122 to accurately detect the presence of the operating member 146 in proximity to the sensor unit 122, thereby detecting a dispensed coin 108. Preferably, the end of the operating member 146 is sensed by the sensor unit 122, but the exact position of the operating member 146 during sensing depends on the particular sensor unit 122.
As a coin 108 contacts the roller 136 to move the first lever 132 in an upwards direction, the second lever 138 moves in a counter clockwise direction, as shown in
The sensor unit 122 is attached to a bracket 150 which is mounted on a movable base plate 152. The sensor unit 122 has the function of detecting the presence of the operating member 146 in proximity to the sensor unit 122, and may be implemented using an optical emitter and sensor pair, a proximity sensor, a coil, a switch, an electromagnetic sensor, or any equivalent device that implements the sensing function as herein described.
Sensor unit 122 is channel like in shape and has a slit 154 for admitting a portion of the operating member 146 as shown in
In reference to
The screw unit 160 can adjust the relative position between the movable base plate 152 and the fixed base plate 158. The guiding unit 162 restricts the movement of the movable base plate 152 to a predetermined direction. In reference to
The screw unit 160 can accurately move the movable base plate 152 relative to the fixed base plate 158. In reference to
The fixed bracket 166 has a through hole 170 while the movable bracket 168 has a threaded hole 180 for receiving a screw 172 drawn through in a direction from the through hole 170 to the threaded hole 180 by turning a driving groove 174 at the screw head 176 of the screw 172. The screw 172 has a threaded section 178 for engaging with the threaded hole 180 in the movable bracket 168.
The size of the through hole 170 is larger in diameter than the outer diameter of the threaded section 178 so the screw threads do not engage the fixed bracket 166. The base of the screw head 176 is larger than the through hole 170 to retain the fixed bracket as the screw 172 is threaded into the threaded hole 180. The threaded section 178 has a predetermined pitch or number of turns per unit length. The finer the pitch, the more accurately may the relative distance be adjusted between the fixed base plate 158 and the movable base plate 152.
A spring 182 is interposed between the fixed bracket 166 and the movable bracket 168 in a position over the threaded section 178 in order to apply an axial, opposing force between the fixed bracket 166 and the movable bracket 168. The relative distance between the fixed bracket 166 and the movable bracket 168 can be adjusted by turning the screw head 176 in a first direction to advance the screw 172, compressing the spring 182, and drawing the movable bracket 168 closer to the fixed bracket 166. Alternatively, the relative distance between the fixed bracket 166 and the movable bracket 168 can be adjusted by turning the screw head 176 in a second direction, lengthening the spring 182, and causing the movable bracket 168 to move farther away from the fixed bracket 166.
In reference to
Each fixing screw (186, 188) can be placed through a spring washer 194, then through a hole on each end of the retainer 192, then through an elongated hole (182, 184) in the movable base plate 158, and finally can be secured to the fixed base plate 158. The fixing screws (186, 188) of the fixing unit 190 are loosened to permit the screw unit 160 to accurately adjust the position of the sensor unit 122 by moving the movable base plate 152 relative to the fixed base plate 158 along the axis of the elongated holes (182, 184).
When the fixing screws (186, 188) are loosened, the screw head 176 may be turned in a predetermined direction to accurately adjust the position of the sensor unit 122. Once the proper position of the sensor unit 122 is determined, the fixing screws (186, 188) are tightened to press the spring washers 194 to the retainer 192, pressing the retainer 192 against the movable base plate 152, thereby fixing the position of the movable base plate 152 on the fixed base plate 158. In this way, the movable base plate 152 is secured against movement relative to the fixed base plate 158 and the determined position of the sensor unit 122 is preserved.
Advantageously, the torque of tightening of the fixing screws (186, 188) is not transmitted to the movable base plate 152. As a result, the movable base plate 152 carrying the sensor unit 122 may be more accurately positioned and secured. This greater accuracy in positioning the sensing unit 122 relative to the operating member 146 will avoid time consuming and costly re-adjustments. In this embodiment, some elements of the guiding unit 162 and the fixing unit 190 are shared to reduce cost, but the guiding unit 162 and the fixing unit 190 may also be independent.
As a review, when a coin 108 is being dispensed, the coin 108 encounters the roller 136 causing the roller 136 to move in an upwards direction as shown in
The movement of the first lever 132 in a clockwise direction to an active position is driven by a dispensing coin 108, as shown in
If the diameter of the coin 108 is changed, either larger or smaller, the position of the sensing unit 122 and the operating member 146 can be adjusted. To adjust the position of the sensing unit 122, the fixing screws (186, 188) are loosened thereby allowing the movable base plate 152 to move relative to the fixed base plate 158 under the control of the screw unit 160. The screw head 176 can be turned by a screwdriver (not shown) to cause the movable bracket 168 to move closer to, or farther from, the fixed bracket 166 thereby adjusting the position of the sensor unit 122 relative to the end of the operating member 146.
The spring 182 provides an axial force along the screw 172 that pushes the movable bracket 168 away from the fixed bracket 166, thereby allowing the screw 172 to adjust the relative position of the sensing unit 122 in either direction, towards or away from the operating member 146. The amount of movement along the axis of the screw 172 for each turn of the screw head 176 depends on the pitch of the screw 172 defined by the number of turns per unit length.
A screw 172 with a finer pitch, defined by more turns per unit length, would require more turns of the screw head 176 to effect a predetermined amount of movement. Conversely, a screw 172 with a coarser pitch, defined by fewer turns per unit length, would require fewer turns of the screw head 176 to effect the same predetermined amount of movement.
Once the new position of the sensor unit 122 is determined for a coin 108 of a new diameter, the fixing screws (186, 188) can be tightened to push the spring washers 194 against the retainer 192 which pushes the movable base plate 152 against the fixed base plate 158, thereby securing the movable base plate 152 in a fixed position relative to the fixed base plate 158.
The driving member 120 defines a plane of motion when moved by a dispensed coin 108. This plane of motion is parallel to the base plate 114 since the shaft 128 is mounted perpendicular to the base plate 114 as shown in
The fixing unit 190 secures the movable base plate 152 against movement relative to the fixed base plate 158 by fastening the movable base plate 152 to the fixed base plate 158 with a force applied perpendicular to the plane of the base plate 114. This allows the sensor unit 122 to be adjusted and fixed in position more accurately since the torque of the fixing screws (186, 188) is not transmitted in the direction of the adjustment.
Although in the preferred embodiment the sensor unit 122 detects the position of the end of the operating member 146 in proximity to the sensor, the actual position of the operating member 146 at the point of detection may change depending on the particular sensor unit 122. Various technologies may be employed for the sensor unit 122 as well as manufacturing variances that may affect the exact position of the operating member relative to the sensor unit 122.
As shown in
The descriptions of various orientations of elements, positions, and movements herein by using words such as up, down, left, right, clockwise rotation, and counter clockwise rotation are for convenience, and are not to be considered as limiting.
Those skilled in the art will appreciate that various adaptations and modifications of the just-described preferred embodiment can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the amended claims, the invention may be practiced other than as specifically described herein.