The invention pertains to the art of motor vehicles and, more particularly, to a sensor self-calibration system used in the exhaust of a vehicle.
Due to the increasing government regulation of vehicle emissions, exhaust sensors have been employed to ensure that a vehicle is within emissions standards. To this end, most current gasoline vehicles in the United States incorporate one or more exhaust gas oxygen sensors (EGO). Basically, typical exhaust gas oxygen sensors provide either voltage or current signals dependent on the oxygen concentration in an exhaust stream, with the signals being used as feedback to adjust an operating air/fuel ratio. Furthermore, many diesel vehicle manufacturers and sensor suppliers have begun development toward sensors for nitrogen oxides (NOx), hydrocarbon (HC) and soot in engine exhaust, as well as ammonia (NH3).
Prior to use, an exhaust gas sensor needs to be calibrated. For example, to calibrate an oxygen sensor, a calibration gas containing a mixture of oxygen and other gases having a known concentration of oxygen is applied to the sensor. The measured value of oxygen is compared to the known concentration of oxygen in the calibration gas and a correction factor is calculated. Over time, the sensitivity of an exhaust gas sensor can drift, at least in part because the sensor is exposed to extreme temperatures, debris and water from the exhaust. That is, these sensors are subjected to damage during operation of the vehicle because debris from the exhaust and accumulating soot over time can alter the signal outputs of the sensor. Therefore, to remain accurate, the exhaust gas sensor may require periodic calibration.
To address the above, it would be extremely beneficial to incorporate a self-calibrating sensor system into a vehicle to enable periodic self-calibration of an exhaust gas sensor. More specifically, it would be desirable to employ components already in the vehicle to periodically provide a calibration gas having a known gas concentration to the exhaust gas sensor to test the exhaust gas sensor and make any necessary adjustments to a correction factor established for the sensor. It would be particularly advantageous to provide a system that would enable calibration of an exhaust gas sensor while an engine of the vehicle is running. Finally, it would be desirable to provide protection of the sensor from debris, water and accumulating soot.
In accordance with the present invention, a system is incorporated into a vehicle that enables an exhaust gas sensor to be periodically self-calibrated, even during operation of the vehicle. The sensor self-calibration system includes the gas sensor arranged in an exhaust passage for the vehicle, a valve interposed between the exhaust gas sensor and a source of calibration gas having a known gas concentration, and a controlling unit. The controlling unit functions to periodically open the valve to deliver calibration gas to the sensor. The controlling unit then receives one or more signals from the sensor based on the known gas concentration and derives a modified correction factor for signals from the sensor. In this sense, the exhaust gas sensor can be periodically calibrated to compensate for sensitivity drifts which develop over time.
In accordance with a preferred embodiment of the invention, the vehicle is provided with an air booster, such as a turbocharger or a supercharger, having an air inlet and multiple air outlets. One of the air outlets is used to direct inlet air to an engine of the vehicle, while another one of the air outlets is connected to the valve of the self-calibrating system. With this arrangement, the controlling unit enables the intake air, which has a known gas concentration, such as 21% oxygen in the case of calibrating an exhaust oxygen sensor, to be selectively delivered directly to the sensor for calibration purposes. In accordance with one preferred embodiment of the invention, the self-calibration system includes an exhaust gas oxygen sensor employed with a diesel engine. In any case, the sensor itself has a body with a bore, a gas inlet tube arranged in the bore, a sensing element coupled to the controlling unit. When the calibration gas is directed to the gas inlet tube through the valve, the sensing element measures the known concentration and sends a signal to the controlling unit. The controlling unit then compares the measured concentration with the known concentration and the sensor is calibrated accordingly for subsequent exhaust gas readings.
Additional objects, features and advantages of the present invention will become more readily apparent from the following detailed description of preferred embodiments of the invention when taken in conjunction with the drawings wherein like reference numerals refer to corresponding parts in the several views.
With initial reference to
At this point, it should be recognized that vehicle 10 can take various forms, such as engine 22 being either a gasoline or diesel engine. In addition, controlling unit 32 need not be dedicated for use with the self-calibration system 20, but preferably constitutes a main ECU for vehicle 10, so as to also control various engine, transmission and other functions.
During normal operation of vehicle 10 with valve 28 closed, booster 24 receives intake air 26 and supplies the air to engine 22 for combustion purposes in a manner known in the art. Exhaust from engine 22 is shown to flow past sensor 30 prior to being exhausted. As discussed above, sensor 30 is pre-calibrated such that signals received by controlling unit 32 have applied thereto a correction factor to establish an actual gas concentration in the exhaust flow from a gas concentration measured by the sensor. To this end, exhaust gas sensor 30 can actually be designed to sense oxygen, nitrogen oxide (NOx), hydrocarbon (HC) and/or soot concentrations in the exhaust produced by engine 22.
A preferred embodiment of the invention is shown in
In accordance with the invention, sensing element 308 can take any shape, including planar or cylindrical. Sensing element 308 is preferably made of a ceramic material, but other known materials could be used. Furthermore, sensing element 308 may be heated, enabling sensing element 308 to be at a high enough temperature where exhaust soot is oxidized or vaporized Lastly, as indicated above, sensing element 308 can constitute an oxygen, a NOx, or any other type of exhaust gas sensor. Again, the most preferred form of the invention employs sensor 30 in combination with a diesel or other lean-burning combustion engine.
Protective cap 310 is actually coupled to sensor body 302 and encapsulates sensing element 308 so as to define a sensor calibration chamber 314. Protective cap 310 is provided with a plurality of openings, such as holes or slots 312, that control exhaust gas flow through sensor 30 as indicated by the flow lines in
During normal operation of vehicle 10, sensor 30 functions to sense the concentration of a predetermined gas in the exhaust flow by allowing the exhaust to flow through slots 312 of protective cap 310 and into sensor calibration chamber 314. When the exhaust enters chamber 314, sensing element 308 sends a signal to controlling unit 32 indicative of a concentration of the gas in the exhaust stream. Left with only its initial calibration, the measured concentrations from sensor 30 will tend to drift over time such that the accuracy of the readings is diminished. To counter this problem, controlling unit 32 periodically activates or otherwise opens valve 28 which causes sensor 30 to receive a stream of gas of known concentration. During this time period, controlling unit 32 compares signals from sensor 30 with predetermined values for the known concentration and sensor 30 is re-calibrated. More specifically, a modified corrective factor is established for subsequent readings taken by sensor 30 to improve overall sensing accuracy. Although the invention is not limited in this respect, preferably, a zero calibration of sensor 30 is performed with the use of air as the gas of known concentration, without the presence of NOx, HC, water and NH3. Zero calibration in accordance with the invention is seen to be particularly advantageous in connection with NOx sensors and is also considered to be useful for NH3 sensors. In any case, with this self-calibrating arrangement, sensor 30 is able to render accurate readings even as it ages.
If booster 24 is coupled directly with valve 28, then calibration preferably occurs when there is enough power for booster 24 to generate a supplement flow of pressurized gas. However, if reservoir 36 is used, the calibration gas (air in this case) may be stored in reservoir 36 through the use of valves 28 and 37, thereby enabling a calibration operation to be performed even when the flow of air through booster 24 is low or engine 22 is not even running. The use of an air pump also makes available a wide range of calibration periods. In any case, if sufficient pressure exists, sensor 30 may be calibrated while vehicle 10 is moving or when engine 22 is idle. When calibration is desired, controlling unit 32 opens valve 28 to cause pressurized fluid having a known gas concentration to be delivered through gas inlet tube 306 to completely fill sensor calibration chamber 314 for a calibration period. That is, the pressurized gas of the known concentration supplied from valve 28, either directly from booster 24 or optional reservoir 36, flows into gas inlet tube 306 and then into sensor calibration chamber 314, thereby forcibly displacing any prior exhaust gas in sensor calibration chamber 314. Sensing element 308 then measures the concentration of the gas, with the measurement signals being sent to controlling unit 32. Controlling unit 32 compares the measurement of the concentration of the gas with the known concentration and calibrates sensor 30 accordingly. By way of example, if sensing element 308 is a NOx sensor and pressurized air is supplied to sensor calibration chamber 314, then zero calibration can be readily established based on an amount of O2 sensing element 308 detects that deviates from 21% O2.
In further accordance with the present invention, controlling unit 32 may also be programmed to allow pressurized air to flow through sensor 30 during a cold start and until the exhaust is warm. This aspect of the invention is employed to eliminate the potential danger of having water droplets directly contact sensing element 308.
Based on the above, it should be readily apparent that the present invention advantageously enables an exhaust gas sensor to be automatically self-calibrated to remain highly sensitive throughout its operational life, thereby increasing system accuracy. By providing a self-calibration system that can be employed during operation of the vehicle, calibration can be performed without vehicle operators being burdened with time consuming service requirements. Although described with reference to preferred embodiments of the invention, it should be readily understood that various changes and/or modifications can be made to the invention without departing from the spirit thereof. For example, as mentioned above, one or more self-calibrating sensors may be used in the exhaust path. While
Number | Name | Date | Kind |
---|---|---|---|
4283256 | Howard et al. | Aug 1981 | A |
4532013 | Dietz et al. | Jul 1985 | A |
6076348 | Falandino et al. | Jun 2000 | A |
6085582 | Tripathi et al. | Jul 2000 | A |
6131439 | Hamburg et al. | Oct 2000 | A |
6227033 | Kainz | May 2001 | B1 |
6389874 | Huff et al. | May 2002 | B1 |
6581571 | Kubesh et al. | Jun 2003 | B2 |
6632674 | Warburton | Oct 2003 | B1 |
6789533 | Hashimoto et al. | Sep 2004 | B1 |
6820603 | Yasui et al. | Nov 2004 | B2 |
6862915 | Staphanos et al. | Mar 2005 | B2 |
7249489 | Allmendinger | Jul 2007 | B2 |
20070119172 | Barbe et al. | May 2007 | A1 |
20070144250 | Ramsesh | Jun 2007 | A1 |