In downhole tool design, maximizing tool function can be limited by the space available on the surface of and/or within the tool for sensors and other functional components. Space and/or function may also be limited by the fact that sensing operations may include controlling sensor standoff (the distance between the sensor and the wellbore wall) and/or the material/media between the sensors and the formation. Moreover, the sensors may be exposed on an external surface of the downhole tool, but may instead be covered by and/or housed within one or more internal and/or external features, which may further affect standoff control. Other related factors at issue during tool operations include ensuring adequate flow of drilling fluids within the downhole tool and along the exterior of the tool, as well as ensuring that steerability of the bottom hole assembly (BHA) is not compromised.
The present disclosure is understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments or examples for implementing various aspects within the present scope. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for simplicity and/or clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
The bottom-hole-assembly (BHA) and/or other portions of a drill string may include one or more logging-while-drilling (LWD) and/or measurement-while-drilling (MWD) tools to, for example, perform various downhole measurements during drilling operations. Some LWD and/or MWD tools, such as those for obtaining gamma density and neutron porosity, include sensors that are placed as close as possible to the formation. The media composition and thickness between the detectors and the formation may also be controlled.
In this context, a downhole tool may include one or more stabilizers covering one or more sensors. The detectors may be grouped into multiple sets each corresponding to one of multiple stabilizers, or the detectors may be collocated in a single grouping corresponding to a single (although perhaps longer) stabilizer. In either case, the single longer stabilizer or the two shorter stabilizers may create tortuosity for drilling fluids flowing past the downhole tool and/or otherwise generate well cleaning issues, such as during tripping out or reaming up operations in deviated beds. Such stabilizers may also increase the stiffness of the BHA, which may decrease steerability.
However, one or more aspects of the present disclosure may allow collocating multiple different sensors (e.g., sensors corresponding to gamma density, neutron porosity, neutron gamma density, and/or others) without sacrificing sensor accuracy, well cleaning performance, and/or BHA steerability. For example, the multiple sensors may correspond to a combination of a stabilizer and one or more blades each fixed to a collar of the downhole tool. The stabilizer and blade combination may cover one or more pressurized and/or otherwise sealed housings that may encapsulate the multiple sensors and perhaps associated electronics. The sensors may be connected to internal electronics of the downhole tool via, for example, one or more electrical connectors or bulkheads and jumpers and/or other cables. As such, the multiple sensors may be packaged in a limited axial space. Thus, one or more aspects of the present disclosure may be utilized to lessen the above-described effects on well cleaning and BHA steerability.
The surface system at the wellsite may comprise a platform and derrick assembly 10 positioned over the wellbore 11. The assembly 10 may include a rotary table 16, a kelly 17, a hook 18, and/or a rotary swivel 19. The conveyance means 12 may be rotated by the rotary table 16, energized by means not shown, which may engage the kelly 17 at the upper end of the conveyance means 12. The conveyance means 12 may be suspended from the hook 18, which may be attached to a traveling block (not shown), and through the kelly 17 and the rotary swivel 19, which permits rotation of the drillstring 12 relative to the hook 18. Additionally, or alternatively, a top drive system may be used.
The surface system may also include drilling fluid 26, which is commonly referred to in the industry as mud, stored in a pit 27 formed at the well site. A pump 29 may deliver the drilling fluid 26 to the interior of the conveyance means 12 via a port (not shown) in the swivel 19, causing the drilling fluid to flow downwardly through the conveyance means 12 as indicated by the directional arrow 8. The drilling fluid 26 may exit the conveyance means 12 via ports in the drill bit 105 and/or one or more dedicated openings in the conveyance means, and then circulate upwardly through the annulus region between the outside of the conveyance means 12 and the wall of the wellbore, as indicated by the directional arrows 9. The drilling fluid 26 may be used to lubricate the drill bit 105, carry formation cuttings up to the surface as it is returned to the pit 27 for recirculation, and/or create a mudcake layer (not shown) on the walls of the wellbore 11. Although not pictured, one or more other circulation implementations are also within the scope of the present disclosure, such as a reverse circulation implementation in which the drilling fluid 26 is pumped down the annulus region (i.e., opposite to the directional arrows 9) to return to the surface within the interior of the conveyance means 12 (i.e., opposite to the directional arrow 8).
The BHA 100 may include any number and/or type(s) of downhole tools, schematically depicted in
The downhole tools 120, 130, and/or 150 may be housed in a special type of drill collar, as it is known in the art, and may include capabilities for measuring, processing, and/or storing information, as well as for communicating with the other downhole tools 120, 130, and/or 150, and/or directly with surface equipment, such as the logging and control system 160. Such communication may utilize any conventional and/or future-developed two-way telemetry system, such as a mud-pulse telemetry system, a wired drill pipe telemetry system, an electromagnetic telemetry system, and/or an acoustic telemetry system, among others within the scope of the present disclosure. One or more of the downhole tools 120, 130, and/or 150 may also comprise an apparatus (not shown) for generating electrical power for use by the BHA 100. Example devices to generate electrical power include, but are not limited to, a battery system and a mud turbine generator powered by the flow of the drilling fluid.
During drilling operations, the downhole tools 120, 130, and/or 150 may be operable to perform measurements that may be utilized to characterize downhole conditions and/or formation properties. This information may be transmitted to the surface in real time, such as via an MWD one of the downhole tools 120, 130, and/or 150. Acquiring formation/wellbore data as early as possible during drilling operations may be desired for proactive geosteering operations and well control. Thus, logging sensors of one or more of the downhole tools 120, 130, and/or 150 may be located as close as possible to the drill bit 105 when possible.
The sensors 205 and/or 210 may be contained and/or sealed in pressure housings 215 and 220, respectively, and may be coupled to internal electronics 225 via bulkhead and/or other types of connectors 230/232. The internal electronics 225 may be disposed in either or both of the pressure housing 215 and 220. For example, the internal electronics 225 may digitize the signals from the sensors 205 and/or 210, and their interconnections may comprise one or more serial or parallel digital buses, power supplied from the downhole tool 200 and/or surface, and perhaps additional signal connections. Power to the sensors 205 and/or 210 and/or the internal electronics 225 in either or both of the pressure housings 215 and 220 may be provided by one or more batteries and/or by power generation means operable in the downhole environment (such as power generated by mud flow and/or tool motion, for example).
The upper pressure housing 215 may be coupled to or otherwise located on an external surface 202 of the downhole tool, and may be substantially covered by a blade 235 that is coupled to the external surface 202. The lower pressure housing 220 may be coupled to and/or otherwise located on the external surface 202, and may be substantially covered by a stabilizer 240 that may be secured by a locking ring 245 and/or other means for positionally fixing the stabilizer 240 relative to the external surface 202. Thus, for example, the pressure housings 215 and 220 may be implemented in a manner permitting control of the sensor/formation standoff, such as to accommodate for the particular drilling fluid and/or other materials in the wellbore between the sensors 205 and/or 210 and the formation.
The blade 235 may project radially outward from the external surface 202 and extend axially along a portion of the length of the external surface 202 in a direction substantially parallel to the longitudinal axis of the downhole tool 200, perhaps to a length just sufficient to cover the sensor 205 (and perhaps other proximate sensors). The blade 235 may have any shape and/or size that accommodates the upper pressure housing 215 and sensor(s) 205 therein, although the shape may be selected to minimize any undesired effects of the blade 235 on the flow of drilling fluid along the external surface 202 of the downhole tool 200. The blade 235 may comprise stainless steel and/or other materials generally utilized for downhole drilling apparatus, and may be secured to the external surface 202 by any means permitting the removal of the blade 235 at surface, such as by threaded fasteners and/or other fastening means. Some implementations within the scope of the present disclosure may comprise more than one instance of the blade 235, perhaps with different sensors and/or sensor combinations.
The stabilizer 240 depicted in
The number of pressure housings carried by the stabilizer 240 may be equal to or less than the number of fins 250 carried by the stabilizer 240. In some implementations, one or more additional sensors may be packaged between the fins 250.
The stabilizer 240 and the blade 235 may be axially separated from each other by a distance D that may be less than about three feet (0.9 m), although other dimensions are also within the scope of the present disclosure. The extent to which the blade 235 projects radially from the external surface 202 may vary within the scope of the present disclosure, but may generally be within the effective outer diameter of the stabilizer 240. The effective outer diameter of the stabilizer 240 may be the minimum diameter that completely encircles the outermost edges of the fins 250.
The upper pressure housing 215 and/or the blade 235 may comprise a window 265 aligned with the sensor 205, and the lower pressure housing 220 and/or the stabilizer 240 may comprise one or more windows 270 aligned with the sensor 210. Each window 265 and 270 may comprise a material having a transmittance greater than the transmittance of the corresponding pressure housing, blade, and/or stabilizer portion in which the window 265/270 is located. For example, where the sensors 205 and 210 are for sensing radiation, such as gamma-gamma, neutron, and/or gamma ray sensors, the windows 265 and 270 may comprise polyether-ketone (PEK), polyether-ether-ketone (PEEK), epoxy, glass-filled epoxy, glass-filled PEEK, fiberglass, nitrile rubber, titanium, beryllium (coated or otherwise protected to avoid direct contact with corrosive borehole fluid), zirconium and/or other materials that are more transparent to such radiation relative to the steel and/or other materials forming the body or structure of the corresponding pressure housing, blade, and/or stabilizer portion. One or more of the windows 265 and 270 may comprise more than one layer of these and/or other materials. The use of hydrogenous materials as windows of epithermal and/or thermal neutron radiation may be utile for thermalizing faster (epithermal) neutrons and/or increase the probability of neutron detection in a detector of epithermal and/or thermal neutrons. One or more of the windows 265 and/or 270 may comprise a coating that may improve wear resistance without adversely affecting their function, such as one or more coatings comprising boron carbide (B4C), chromium carbide (Cr3C2), tungsten carbide (WC), and/or other materials. For example, in implementations in which one or more of the windows 265 and 270 are gamma ray windows, they may be coated with boron carbide and/or chromium carbide. As another example, in implementations in which one or more of the windows 265 and 270 are neutron windows, they may be coated with chromium carbide and/or tungsten carbide. However, other coatings are also within the scope of the present disclosure.
The downhole tool 200 may also comprise a locking feature 620 operable to retain the radiation source 610 within the feature 615. For example, the locking feature 620 may be threaded into the collar 415 after the radiation source 610 has been inserted into the feature 615. Of course, other means for retaining the radiation source 610 during operations are also within the scope of the present disclosure.
The downhole tool 700 comprises one or more sensors and perhaps associated electronics sealed within the upper pressure housing 215. A recess and/or other feature 705 extending into the external surface 202 of the collar 415 may be configured to receive the upper pressure housing 215, perhaps in a manner designed to aid in properly orienting the upper pressure housing 215 relative to other components of the downhole tool 200 during assembly. For example, the length, depth, perimeter shape, and/or other aspects of the upper pressure housing 215 may be substantially similar to corresponding aspects of the feature 705, such that the upper pressure housing 215 may be installed solely in the position which properly orients the electrical connector 230 relative to a corresponding receptacle 710, and/or which properly orients the one or more sensors contained within the upper pressure housing 215 relative to a radiation source and/or the formation. The radiation source (not shown) may be installed into the collar 415 via the feature 615. The receptacle 710 may be a portion of or otherwise associated with the feature 705, such as via a channel 715 extending between the receptacle 710 and the feature 705, which may be configured to receive cabling 720 extending between the upper pressure housing 215 and the connector 230. The cabling 720 may be flexible, and extend in a direction substantially parallel to the longitudinal axis of the downhole tool 700 (as shown in
The blade 235 may then be installed and thus cover the upper pressure housing 215. For example, a number of threaded fasteners 730 may extend through corresponding openings in the blade 235 and into corresponding threaded apertures 735 in the collar 415. However, additional and/or alternative means for securing the blade 235 to the collar 415 over the upper pressure housing 215 are also within the scope of the present disclosure.
The blade 235 may also comprise one or more features operable to engage corresponding components or features of the collar 415, such that the blade 235 may be installed in a sole orientation relative to the other components of the downhole tool 200. For example, one or more edges of the blade 235 may comprise indentations, recesses, and/or other features 740 configured to engage corresponding bosses, protrusions, and/or other features 745 of the collar 415. The features 745 may be integral to the collar 415, or may be features of one or more discrete members coupled to the collar 415 by threaded fasteners, welding, and/or other means.
The downhole tool 700 comprises one or more sensors sealed within the lower pressure housing 220. A recess and/or other feature 805 extending into the external surface 202 of the collar 415 may be configured to receive the lower pressure housing 220, perhaps in a manner designed to aid in properly orienting the lower pressure housing 220 relative to other components of the downhole tool 200 during assembly. For example, the length, depth, perimeter shape, and/or other aspects of the lower pressure housing 220 may be substantially similar to corresponding aspects of the feature 805, such that the lower pressure housing 220 may be installed solely in the position which properly orients the electrical connector 232 relative to a corresponding receptacle 810, and/or which properly orients the one or more sensors contained within the lower pressure housing 220 relative to a radiation source. The radiation source (not shown) may be installed into the collar 415 via the feature 615. The receptacle 810 may be a portion of or otherwise associated with the feature 805, such as via a channel 815 extending between the receptacle 810 and the feature 805, which may be configured to receive cabling 820 extending between the lower pressure housing 220 and the connector 232. The lower pressure housing 220 may be secured within the feature 805 by one or more clamps and/or other fastening means 825.
The stabilizer 240 may then be installed by sliding over the external surface 202 of the collar 415 until covering the lower pressure housing 220. The stabilizer 240 may also comprise one or more features operable to engage corresponding components or features of the collar 415, such that the stabilizer 240 may be installed in a sole orientation relative to the other components of the downhole tool 200. For example, one or more bosses, protrusions, and/or other features 830 of the stabilizer 240 may be configured to engage corresponding indentations, recesses, and/or other features 835 of the collar 415. The features 835 may be integral to the collar 415, or may be features of one or more discrete members coupled to the collar 415 by threaded fasteners, welding, and/or other means. The engagement of such orientation features 830/835 may ensure the window 270 of the stabilizer 240 is properly aligned with the one or more sensors contained within the lower pressure housing 220.
The ring 245 may then be installed by sliding over the external surface 202 of the collar 415 until contacting the stabilizer 240. The stabilizer 240 may also comprise one or more features operable to engage corresponding components or features of the ring 245, such as may further aid in proper orientation. For example, one or more indentations, recesses, and/or other features 840 of the stabilizer 240 may be configured to engage corresponding bosses, protrusions, and/or other features 845 of the ring 245. In such implementations, the ring 245 may serve to prevent relative rotation between the collar 415 and the stabilizer 240. The ring 245 may also comprise multiple rings, such as one serving to prevent rotation, and another to prevent axial motion.
For example, the method 900 may comprise a method 902 of assembling pressurized sensors into a downhole tool and further protecting the sensors under a blade and/or other external cover. In the example of
Thereafter, a blade may be installed (910) over the upper pressure housing. For example, this may entail coupling the blade 235 shown in
The method 900 may also or alternatively comprise a method 904 of assembling pressurized sensors into a downhole tool and further protecting the sensors under a stabilizer and/or other external cover. In the example of
Thereafter, a stabilizer may be installed (920) over the lower pressure housing. For example, this may entail sliding the stabilizer 240 shown in
The method 904 may further comprise securing (925) the stabilizer to the downhole tool, such as via the retaining and/or rotation-locking ring 245 shown in
The method 900 may also or alternatively comprise assembling (930), into a downhole tool string, the downhole tool which may comprise the above-described, blade-protected, upper pressure housing and/or the above-described, stabilizer-protected, lower pressure housing. For example, the downhole tool may thus be, comprise, or constitute a portion of one or more of the downhole tools 120, 130, and/or 150 shown in
The tool string (e.g., BHA) may then be conveyed (935) within a wellbore that extends into a subterranean formation to be evaluated by the pressure-housed sensor(s) of the upper and/or lower pressure housing. In the example implementation depicted in
The sensor(s) of the upper pressure housing may then be utilized (940) to obtain data pertaining to the formation of interest. For example, the sensor(s) of the upper pressure housing may comprise one or more sensors corresponding to gamma density, neutron porosity, neutron gamma density, and/or others. The sensor(s) of the lower pressure housing may also or alternatively be utilized (945) to obtain data pertaining to the formation of interest. For example, the sensor(s) of the lower pressure housing may comprise one or more sensors corresponding to gamma density, neutron porosity, neutron gamma density, and/or others. In implementations of the method 900 comprising utilizing the sensor(s) of both the upper and lower pressure housings, such sensors may be utilized substantially simultaneously or in series.
In view of the entirety of the present disclosure, including the figures, a person of ordinary skill in the art will readily recognize that the present disclosure introduces an apparatus comprising a downhole tool operable for conveyance within a wellbore extending into a subterranean formation, wherein the downhole tool comprises: a pressure housing mounted on an external surface of the downhole tool; a sensor contained within the pressure housing; and a stabilizer operable to slide between a first position covering the pressure housing and a second position not covering the pressure housing. The stabilizer may be operable to axially and/or rotationally slide between the first and second positions. The downhole tool may be or comprise a gamma ray tool.
The stabilizer may comprise a window having a transmittance that is substantially greater than that of the stabilizer. The downhole tool may further comprise internal electronics, and at least one of the pressure housing and the sensor may be electrically connected to the internal electronics via an electrical connector. The pressure housing may seal the sensor. The downhole tool may further comprise one or more chemical or electronic radioactive sources.
The stabilizer may comprise: a first portion extending helically around the external surface; and a second portion extending axially along the external surface. The stabilizer and the blade may be axially separated by a distance of less than about three feet. The blade and the downhole tool may each be smaller in diameter than an effective outer diameter of the stabilizer.
The sensor may be a gamma density sensor, a neutron porosity sensor, a neutron gamma density sensor, an ultrasonic sensor, or a resistivity sensor. The sensor may be one of a plurality of sensors of the downhole tool, and the plurality of sensors may comprise a gamma density sensor, a neutron porosity sensor, and a neutron gamma density sensor.
In the first position, the stabilizer may be configurable between a locked configuration and an unlocked configuration, wherein motion of the stabilizer relative to the pressure housing may be prevented when the stabilizer is in the locked configuration, and wherein motion of the stabilizer relative to the pressure housing may be permitted when the stabilizer is in the unlocked configuration. A member removably coupled to the external surface of the downhole tool nay prevent the motion of the stabilizer when the stabilizer is in the locked configuration. The member may be one of a threaded fastener, a locking pin, a clamp, and a locking ring. A plurality of fasteners inserted into a corresponding one of a plurality of openings machined on the external surface of the downhole tool may prevent the motion of the stabilizer when the stabilizer is in the locked configuration. The plurality of fasteners may comprise threaded fasteners, and the plurality of openings may comprise threaded openings.
The apparatus may further comprise an assembly comprising: a suspender positioned over a wellbore extending into a subterranean formation, and the downhole tool may be suspended within the wellbore from the suspender. The suspender may comprise a derrick and/or a platform.
The pressure housing may be a first pressure housing, the sensor may be a first sensor, and the downhole tool may further comprise: a second pressure housing mounted on the external surface of the downhole tool; a second sensor contained within the second pressure housing; and a blade covering the second pressure housing. The blade may comprise a window of material having a transmittance that is substantially greater than that of the blade. The downhole tool may further comprise internal electronics, and at least one of the second pressure housing and the second sensor may be electrically connected to the internal electronics via an electrical connector. The second pressure housing may seal the second sensor. The blade may be located proximate to an uphole end of the stabilizer.
The present disclosure also introduces an apparatus comprising: a downhole tool operable for conveyance within a wellbore extending into a subterranean formation, wherein the downhole tool comprises: a first pressure housing mounted on an external surface of the downhole tool; a first sensor contained within the first pressure housing; a stabilizer operable to slide between a first position covering the pressure housing and a second position not covering the pressure housing; a second pressure housing mounted on the external surface of the downhole tool; a second sensor contained within the second pressure housing, wherein the second pressure housing seals the second sensor; a blade covering the second pressure housing, wherein the blade comprises a window of material having a transmittance that is substantially greater than that of the blade; and internal electronics, wherein at least one of the second pressure housing and the second sensor is electrically connected to the internal electronics via an electrical connector. The stabilizer may be operable to axially and/or rotationally slide between the first and second positions. The stabilizer may comprise a window having a transmittance that is substantially greater than that of the stabilizer. At least one of the first pressure housing and the first sensor may be electrically connected to the internal electronics via an electrical connector.
In the first position, the stabilizer may be configurable between a locked configuration and an unlocked configuration, wherein motion of the stabilizer relative to the pressure housing may be prevented when the stabilizer is in the locked configuration, and wherein motion of the stabilizer relative to the pressure housing may be permitted when the stabilizer is in the unlocked configuration. The stabilizer may comprise a pitched portion extending helically around the external surface, and an axial portion extending axially along the external surface.
The stabilizer and the blade may be axially separated by a distance of less than about three feet. The blade and the downhole tool may each be smaller in diameter than an effective outer diameter of the stabilizer. A member removably coupled to the external surface of the downhole tool may prevent the motion of the stabilizer when the stabilizer is in the locked configuration. The member may be a threaded fastener, a locking pin, a clamp, and a locking ring. A plurality of fasteners inserted into corresponding ones of a plurality of openings machined on the external surface of the downhole tool may prevent relative motion of the stabilizer when the stabilizer is in the locked configuration. The plurality of fasteners may comprise threaded fasteners, and the plurality of openings may comprise threaded openings.
The downhole tool may further comprise one or more radioisotopic and/or electronic radiation sources. The downhole tool may be or comprise at least one of a gamma gamma density tool and/or a natural gamma ray tool. The sensors may include one or more of a gamma density sensor, a neutron porosity sensor, a neutron gamma density sensor, an ultrasonic sensor, or a resistivity sensor. The first pressure housing may seal the first sensor. The second pressure housing may seal the second sensor.
The present disclosure also introduces a method comprising: sliding a stabilizer from a first position to a second position along an external surface of a downhole tool, wherein the stabilizer covers a pressurized sensor housing mounted on the external surface of the downhole tool when the stabilizer is in the second position but not when the stabilizer is in the first position; and then inserting the downhole tool into a wellbore extending into a subterranean formation. The method may further comprise operating the downhole tool within the wellbore. The method may further comprise collecting data from a sensor in the pressurized sensor housing, wherein the data may be indicative of a characteristic of a subterranean formation adjacent to the downhole tool. The method may further comprise using a first sensor and a second sensor. Using the first sensor and using the second sensor may occur substantially simultaneously.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. A person skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same uses and/or achieving the same aspects introduced herein. A person skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure. For example, although the preceding description has been described herein with reference to particular means, materials and embodiments, it is not intended to be limited to the particulars disclosed herein; rather, it extends to functionally equivalent structures, methods, and uses, such as are within the scope of the appended claims.
The Abstract at the end of this disclosure is provided to comply with 37 C.F.R. ยง1.72(b) to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Number | Date | Country | Kind |
---|---|---|---|
13305450.2 | Apr 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/033354 | 4/8/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61809801 | Apr 2013 | US |