The present disclosure relates to the technical field of angle measurement of an isolating switch, and in particular to a sensor system for measuring an angle of a gate of an isolating switch of overhead lines.
Overhead lines' isolating switch is one of widely used electrical devices for electrified railroads, which can operate a circuit system without load to form isolated disconnection points to ensure the safety of the power supply when a train changes phase. When the isolating switch is opened, it is necessary to ensure that there is sufficient pull-off angle between movable and static contacts, as well as to ensure the safety of the electrical device and maintenance staff adjacent to the isolating switch. When the isolating switch is closed, it is necessary to ensure that there is sufficient contact area between the movable and static contacts to achieve a state of closing in place. Therefore, whether the overhead lines' isolating switch can be opened and closed in place directly affects the safety of train operation. Therefore, it is necessary to monitor the gate angle of the isolating switch to ensure that the isolating switch is in place during opening and closing operations.
An existing method for measuring the isolating switch of the overhead lines mainly include: 1. Applying an image recognition method, which obtains a position of the gate of the isolating switch by image processing, and calculates the current angle of the gate, while this method is easily affected by weather and leads to a high false detection rate. 2. Applying an angle measurement method based on a photoelectric encoder; the photoelectric encoder currently used is integrated in the sensor with photoelectric integration, direct outputting an electrical signal to determine the collected angle value, the sensor is arranged on a conductive arm of the isolating switch with 27.5 kV, which is difficult to obtain power. 3. Potentiometer, Hall angle sensor and other angle sensors belonging to electronic sensors, arranged on the conductive arm of the isolating switch with 27.5 kV, which is also difficult to supply power and vulnerable to electromagnetic interference.
In order to solve the above problems, the purpose of the present disclosure is to provide a sensor system for measuring an angle of a gate of an isolating switch of overhead lines. Based on the operating characteristics and conditions of the overhead lines' isolating switch, the principle of structural fiber optic sensors is applied to design an optical fiber angle sensor for measuring the gate angle of the isolating switch of the overhead lines. Since the optical fiber has excellent characteristics such as resistance to electromagnetic and atomic radiation interference, fine diameter, soft quality, light weight, mechanical properties, insulation, non-inductive electrical properties, water resistance, high temperature resistance, corrosion resistance, etc., the optical fiber angle sensor can meet the measurement of the gate angle of the isolating switch of the overhead lines under operating conditions.
In order to achieve the above purpose, the present disclosure provides a sensor system for measuring an angle of a gate of an isolating switch of overhead lines.
A sensor system for measuring an angle of a gate of an isolating switch of overhead lines, comprising an optical fiber angle sensor, a base, a support plate, a light source fiber, a laser transmitter, an aluminum box, a relay, a step-down power module, a control circuit board, a photoelectric converter, and a receiving optical fiber; wherein the support plate is arranged on an upper part of a pillar insulator on a side of a rotatory shaft of the gate of the isolating switch of the overhead lines, as a supporting point of the base; the optical fiber angle sensor is arranged on the base, and a rotation shaft of the optical fiber angle sensor is connected to the rotatory shaft of the gate of the isolating switch of the overhead lines to detect a rotation angle of the gate of the isolating switch of the overhead lines; the laser transmitter, the relay, the step-down power module, the control circuit board, and the photoelectric converter are arranged in the aluminum box, and the aluminum box is placed far away from the isolating switch; the laser transmitter is controlled by an opening and closing of the relay by means of the control circuit board to emit a laser beam into the light source fiber; the laser beam reflected from the light source optical fiber is received by the receiving optical fiber and transmitted to the photoelectric converter to convert a light intensity into a voltage signal to realize photoelectric conversion; the converted voltage signal is transmitted to the control circuit board for processing, and the angle of the gate collected by the optical fiber angle sensor is finally output; the step-down power module reduces 220V voltage used on a railway to two voltage levels, 12V and 5V, for powering the laser transmitter, the control circuit board, the relay, and the photoelectric converter, respectively.
The optical fiber angle sensor comprises a rotation shaft, a housing, a bracket, an optical fiber probe, and a dial; the rotation shaft passes through a top of the housing and is connected to the dial; the light source fiber and the receiving fiber extending within the housing are each connected to a corresponding fiber probe; the two fiber probes are same and each fixed on an inner wall of the housing by a corresponding bracket, the two brackets being same; a probe on the light source fiber and a probe on the receiving optical fiber are arranged in a same straight line; an opening is defined on the dial for every 1 degree; the laser beam reflected from the light source fiber irradiates the dial; when the dial is rotated by 1 degree, the laser beam from the light source fiber is directed through a corresponding opening into the optical fiber probe on the receiving optical fiber, and propagates through the receiving optical fiber to the photoelectric converter for photoelectric conversion; each optical signal received by the receiving optical fiber indicates that the rotation shaft is rotated by 1 degree; the photoelectric converter converts each optical signal into a voltage signal, which is recorded as a pulse signal; the number of the pulse signals from the photoelectric converter is recorded by the control circuit board to calculate the rotation angle of the optical fiber angle sensor.
The dial defines 360 openings, and each opening corresponds to an angle value; after the laser beam from the light source fiber passes through each opening of the dial and incident into the receiving optical fiber, the laser beam is converted into the voltage signal by the photoelectric converter to obtain a pulse corresponding to 1 degree.
The support plate comprises an aluminum plate, a hinge, a steel bar, a nut, screws, and four first screw holes; the four first screw holes are defined on the aluminum plate, such that the base is fixed on the aluminum plate; an end of the steel bar and an end of the aluminum plate are connected by the hinge, and the other end of the steel bar and the other end of the aluminum plate are connected by the nut and the screws; by controlling a distance between the screws and the nut, the support plate is fixed on the pillar insulator on the side of the rotatory shaft of the gate of the isolating switch of the overhead lines.
The base defines a U-shaped groove and second screw holes; the U-shaped groove is defined in the middle of the base, and the second screw holes are defined on two bottom sides of the base, so that the base is fixed on the aluminum plate.
The control circuit board transmits the processed gate angle of the isolating switch of the overhead lines to a personal computer of a management department for isolating gates of overhead lines through RS485 communication, so that the staff can view it.
A solution applied to the sensor system is as follows: the sensor system is initialized; when the angle of the gate is required to be measured, the control circuit board controls the relay to turn on, so that the step-down power module supplies power to the laser transmitter for emitting the laser beam into the light source fiber; the laser beam is emitted through the optical fiber probe on the light source fiber; a rotation of the gate drives the rotation shaft of the optical fiber angle sensor to rotate, causing the dial to follow to rotate; when the dial rotates a corresponding opening to just below the optical fiber probe on the light source fiber, the laser beam emitted by the optical fiber probe on the light source fiber passes through the corresponding opening of the dial and enters the optical fiber probe of the receiving optical fiber, and is transmitted to the photoelectric converter through the receiving optical fiber; the photoelectric converter converts the received each optical signal into a corresponding voltage signal, which is a corresponding pulse signal; the corresponding pulse signal is transmitted to the control circuit board, and the number of the transmitted pulse signals is counted by the control circuit board; the rotation angle of the gate is calculated by calculating the number of the pulse signals, and the rotation angle is transmitted to a computer of a management department for isolating gates of overhead lines through a RS485 communication, so that a staff is able to view the rotation angle.
Since the present disclosure adopts the principle of structural optical fiber sensor to design an optical fiber angle sensor for measuring an angle of a gate of an isolating switch of overhead lines, the structure of the number of pulses to determine the rotation angle of the gate can be obtained the following beneficial effects.
The present disclosure adopts the principle of structural optical fiber sensor to design an optical fiber angle sensor for measuring an angle of a gate of an isolating switch of overhead lines, which has excellent characteristics such as resistance to electromagnetic and atomic radiation interference, fine diameter, soft quality, light weight, mechanical properties, insulation, non-inductive electrical properties, water resistance, high temperature resistance, corrosion resistance, etc., which can meet the measurement of the gate angle of the isolating switch of the overhead lines under operating conditions. Since the optical fiber is insulated, the optical fiber angle sensor can be installed directly on the rotatory shaft of the isolating switch of overhead lines, which is convenient for power supply and more accurate for angle measurement, reduces the false detection rate, and resists electromagnetic interference, solving the defects of the existing electronic angle sensors.
The present disclosure will be further described in detail below in conjunction with the embodiments and the accompanying drawings.
Referring to
As shown in
As shown in
As shown in
The aluminum box 6 is arranged under the isolating switch of the overhead lines and far away from the gate, to prevent the electromagnetic field from interfering with the control circuit board 9.
As shown in
As shown in
Among the two voltage levels of 12V and 5V processed by the step-down power supply module 8, the laser transmitter 5 and the control circuit board 9 are provided with 12V voltage, and the relay 7 and the photoelectric converter 10 are provided with 5V voltage.
The control circuit board 9 transmits the processed gate angle of the isolating switch of the overhead lines to a personal computer (PC) of a management department for isolating gates of overhead lines through RS485 communication, so that the staff can view it.
The PC is arranged with an upper computer for monitoring the angle of the isolating switch of the overhead lines, which is configured to check the angle of the corresponding isolating switch.
The control circuit board 9 may be a STM32F103ZET6 control board.
As shown in
As shown in
The working principle and working process of the present disclosure are as follows.
As shown in 8, when the gate angle is required to be measured, the control circuit board 9 controls the relay 7 to turn on, so that the step-down power supply module 8 supplies power to the laser transmitter 5 for emitting a laser beam into the light source fiber 4, which is emitted through the optical fiber probe 15 on the light source fiber 4; the rotation of the gate drives the rotation shaft 12 of the optical fiber angle sensor 1 to rotate, causing the dial 16 to follow to rotate; when the dial 16 rotates one of the openings to just below the optical fiber probe 15 on the light source fiber 4, the laser beam emitted by the optical fiber probe 15 on the light source fiber 4 passes through the opening of the dial 16 and enters the optical fiber probe 15 of the receiving optical fiber 11, and is transmitted to the photoelectric converter 10 through the receiving optical fiber 11; the photoelectric converter 10 converts the received optical signal into a corresponding voltage signal, which is a pulse signal; the pulse signal is transmitted to the control circuit board 9, and the number of transmitted pulse signals is counted by the control circuit board 9; the rotation angle of the gate is calculated by calculating the number of the pulse signals, and the angle is transmitted to the PC of the management department for isolating gates of overhead lines through RS485 communication, so that the staff can view it.
Number | Date | Country | Kind |
---|---|---|---|
202010077510.4 | Jan 2020 | CN | national |
Number | Date | Country |
---|---|---|
102323542 | Jan 2012 | CN |
202342034 | Jul 2012 | CN |
103487077 | Jan 2014 | CN |
103618387 | Mar 2014 | CN |
107917681 | Apr 2018 | CN |
108317971 | Jul 2018 | CN |
209249317 | Aug 2019 | CN |
111238407 | Jun 2020 | CN |
112781528 | May 2021 | CN |
S63238428 | Oct 1988 | JP |
0118492 | Mar 2001 | WO |
WO-2021151340 | Aug 2021 | WO |
Entry |
---|
InternationaL Search Report issued in corresponding International application No. PCT/CN2020/129766, dated Feb. 22, 2021. |
Written Opinion of the International Search Authority in corresponding International application No. PCT/CN2020/129766. |
Zhaojie Tan, Cui Meng: “Design and Implementation of Electromagnetic Compatibility for Optical Receiver”, ((Journal of Hebei University of Science and Technology)) , pp. 51, 52, 55. |
Meihua Guan:“((Numerical Control Technology—Principle and Modern Control System))”, pp. 184-189. |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2020/129766 | Nov 2020 | US |
Child | 17870771 | US |