In general, embodiments of the present disclosure relate to sensors for use with absorbent articles. In particular, embodiments of the present disclosure relate to sensor systems comprising a transmitter that utilizes one or more sensors to manage the amount of energy it emits.
The art discloses many different types of sensors that are integral with or attached to an absorbent article. These sensors are used to monitor wetness, temperature, etc. These sensors normally comprise a sensor component and a transmitting component. The transmitting component may send signals to a remote device, such as a cell phone or a remote, e.g. mobile, receiver, etc. One of the concerns with many of these designs is the amount of energy emitted by the transmitter, since many of these systems place the transmitter on or near the baby—and often around the genitals. Some transmitters emit energy constantly. In addition, some systems having sensors and a power source comprise sensors that are constantly under power. Many of the sensors are also placed in the genital area of the absorbent article and therefore emit some level of electrical energy in the genital area. From a functionality and power conservation standpoint, it is often not necessary to continually check for a change of state (e.g., within the absorbent article, such as an insult of urine and/or fecal matter). In fact, intermittent checks, for example 1 second out of 10 seconds, will provide a level of accuracy sufficient for many applications and will reduce exposure 10 fold. Some sensors may be able to detect a change in state with as little as a few milliseconds potentially reducing the exposure by more than 100 times potentially reducing the exposure by as much as 1000 times.
It is a goal to overcome the challenges mentioned above. Particularly, one object of the present disclosure is to create sensor systems having one or more sensors such that the sensor system can use low energy to check on the various sensors before initiating transmission of a stronger signal to a remote device. Further, it is an object of the present disclosure to avoid sending any signal to a second or third sensor if the first sensor is of a certain status. It is also an object of the present disclosure to use a single sensor with multiple leads that can collect information from multiple parts of the absorbent article. All of these objects help to minimize exposing the wearer of absorbent articles to energy emitted by the sensor system.
Sensors of the present disclosure may be used with various absorbent articles and/or auxiliary articles to make a sensor system.
Absorbent Article
The absorbent article may be one for personal wear, including but not limited to diapers, training pants, feminine hygiene products, incontinence products, medical garments, surgical pads and bandages, other personal care or health care garments, and the like. Various materials and methods for constructing absorbent articles such as diapers and pants are disclosed in U.S. application Ser. No. 12/914,494 (Publication No. 2011-0041999, filed on Oct. 28, 2010 (hereinafter, “the '494 App.”), U.S. application Ser. No. 12/781,993 (Publication No. 2010-0228211, filed on May 18, 2010 (hereinafter, “the '993 App.”), U.S. application Ser. No. 11/709,500 (Publication No. 2008-0208155, filed on Feb. 22, 2007 (hereinafter, “the '500 App.”), and U.S. application Ser. No. 12/434,927 (Publication No. 2009-0312734, filed on May 4, 2009 (hereinafter, “the '927 App.”).
The sensor may be discrete from or integral with the absorbent article. The absorbent article may comprise sensors that can sense various aspects of the absorbent article associated with insults of bodily exudates such as urine and/or BM (e.g., the sensor may sense variations in temperature, humidity, presence of ammonia or urea, various other vaporous components of the exudates (urine and feces), changes in moisture vapor transmission through the absorbent articles garment-facing layer, changes in translucence of the garment-facing layer, color changes through the garment-facing layer, etc.). Additionally, the sensors my sense components of urine, such as ammonia or urea and/or byproducts resulting from reactions of these components with the absorbent article. The sensor may sense byproducts that are produced when urine and/or BM contacts or mixes with other components of the absorbent article (e.g., adhesives, agm, etc.). The components or byproducts being sensed may be present as vapors that may pass through the garment-facing layer. It may also be desirable to place reactants in the diaper that change state (e.g. color, temperature, etc.) or create a measurable byproduct when mixed with urine and/or BM. The sensor may also sense changes in pH, pressure, mechanical (example—strain, stress, and/or failure), motion, light, odor, thickness, density, the presence of gas, blood, a chemical marker or a biological marker or combinations thereof.
One or more parts or portions of the sensor system may be removably integrated with the absorbent article and/or an auxiliary article (designed to fit over at least a portion of the absorbent article) with hook and loops fasteners, adhesives, thermal bonds, mating fasteners like snaps or buttons, or may be disposed in pockets, recesses or void spaces built into the absorbent article, or combinations thereof. Many of these integration means enable removal of and/or attachment of the sensor from or to the absorbent article. The absorbent article may further comprise graphics for the purpose of properly locating the sensor. In addition, in cases where an auxiliary article is present, the auxiliary article may be joined to the absorbent article by similar integration means.
The wearer-facing layer 152A may be a layer of one or more materials that forms at least a portion of the inside of the front-fastenable wearable absorbent article and faces a wearer when the absorbent article 100A is worn by the wearer. In
The absorbent material 154A may be disposed subjacent to the wearer-facing layer 152A and superjacent to the garment-facing layer 150A, in at least a portion of the absorbent article 100A. In some embodiments, an absorbent material of an absorbent article is part of a structure referred to as an absorbent core. The absorbent material 154A may be configured to be liquid absorbent, such that the absorbent material 154A can absorb bodily fluids received by the absorbent article 100A. In various embodiments, an absorbent material can include cellulosic fibers (e.g., wood pulp fibers), other natural fibers, synthetic fibers, woven or nonwoven sheets, scrim netting or other stabilizing structures, superabsorbent material, foams, binder materials, adhesives, surfactants, selected hydrophobic materials, pigments, lotions, odor control agents or the like, as well as combinations thereof. The absorbent structure may comprise one or more storage layers and one or more surge management layers. A pair of containment flaps, elasticated leg cuffs, may form a portion of the interior surface of the absorbent assembly for inhibiting the lateral flow of body exudates. One or more of the layers of the absorbent structure may comprise apertures or openings therein. One such embodiment would be one or more apertures or openings in the crotch region in the region of the absorbent article wherein BM is deposited. The opening will provide a more direct means of measurement by a sensor when BM is present or may provide a more direct means for the sensor to monitor the environment inside the article.
The garment-facing layer 150A may be a layer formed of one or more materials that form at least a portion of an outside of the wearable absorbent article and may face a wearer's garments when the absorbent article 100A is worn by the wearer. A garment-facing layer is sometimes referred to as a backsheet. The garment-facing layer 150A may be configured to be liquid impermeable, such that bodily fluids received by the absorbent article 100A cannot pass through the garment-facing layer 150A. In various embodiments, a garment-facing layer can include a nonporous film, a porous film, a woven material, a non-woven fibrous material or combinations thereof. The outer cover may also be stretchable, extensible, and in some embodiments it may be elastically extensible or elastomeric. The garment-facing layer 150A may also be vapor permeable and yet liquid impervious.
Throughout the present disclosure, a reference to a pant-type absorbent article can refer to an embodiment that is side-fastenable or to an embodiment without fasteners. A reference to a pant-type absorbent article refers to an article having preformed waist and/or leg openings. Thus, each embodiment of an absorbent article of the present disclosure that is described as pant-type can be configured in any of these ways, as will be understood by one of ordinary skill in the art.
In
A reference to an inboard location, without a lateral or longitudinal limitation, refers to a location of the absorbent article 100C that is laterally inboard and/or longitudinally inboard to another location. In the same way, a reference to an outboard location, without a lateral or longitudinal limitation, refers to a location of the absorbent article 100C that is laterally outboard and/or longitudinally outboard from another location.
Inboard and outboard can also be understood with reference to a center of an absorbent article. The longitudinal centerline 113 and the lateral centerline 116 cross at a center 119 of the absorbent article 100C. When one location is nearer to the center 119 than another location, the one location can be considered inboard to the other location. The one location can be inboard laterally, or longitudinally, or both laterally and longitudinally. The other location can be considered outboard from the one location. The other location can be outboard laterally, or longitudinally, or both laterally and longitudinally.
The absorbent article 100C may include a number of sensors in various exemplary locations and orientations. The absorbent article 100C may include a longitudinally oriented sensor such as sensor 131 and 135, along the longitudinal centerline 113 in the front 101 and/or back 105. The front 101 and/or back 105 may include at least one angled sensor such as sensors 132, 134, 136 and 138 oriented at an angle between the longitudinal centerline 113 and the lateral centerline 116. The absorbent article 100C may include one or more laterally oriented sensors such as sensors 133 and 137 along the lateral centerline 116.
In the absorbent article 100C, the sensors may be oriented substantially radially out from the center 119. However, in addition to the locations and orientations illustrated in
The absorbent article or an auxiliary article of the present disclosure may comprise (1) materials, (2) construction (e.g., may comprise pockets, be in taped or pant form), as described by U.S. application Ser. No. 13/483,456 (Publication No. 2012-0310190), filed on May 30, 2012 (hereinafter, “the '456 App.”) and U.S. application Ser. No. 13/483,463 (Publication No. 2012-0310191), filed on May 30, 2012 (hereinafter, “the '463 App.) and may be refastenable as described by U.S. application Ser. No. 13/010,040 (Publication No. US 2011-0178485), filed on Jan. 20, 2011 (hereinafter, “the '040 App.”), U.S. application Ser. No. 13/010,052 (Publication No. US 2011-0173796), filed on Jan. 20, 2011 (hereinafter, “the '052 App.”), U.S. application Ser. No. 13/010,062 (Publication No. US 2011-0178486), filed on Jan. 20, 2011 (hereinafter, “the '062 App.”), U.S. application Ser. No. 13/010,072 (Publication No. US 2011-0174432), filed on Jan. 20, 2011 (hereinafter, “the '072 App.”), and U.S. application Ser. No. 13/010,083 (Publication No.—US 2011-0178490), filed on Jan. 20, 2011 (hereinafter, “the '083 App.”). As shown in
The portion 308 of the absorbent article 300 may include a sensor 320. The sensor 320 may be disposed offset from the center 319. In various embodiments, one or more parts of a sensor can be disposed near, at, or overlapping a center of an absorbent article. For example, a single sensing area can extend from a front of an absorbent article, through the center of the absorbent article, to the back of the absorbent article. In such an embodiment, a farthest inboard point along the sensing area can be considered an inboard end of two sensors.
The sensor 320 may include an inboard end 322 and an outboard end 323. The sensor 320 has an overall sensor length 321, measured along the sensor 320 from the inboard end 322 to the outboard end 323. The sensor 320 may have an overall shape that is substantially elongated and substantially rectangular. The sensor 320 may have a substantially uniform width along the entire overall sensor length 321. It may be desirable that the sensor, or a portion of the sensor, has a bending stiffness of less than about 1000 N/m, 600 N/m, or 400 N/m (as determined by ASTM D 790-03) to keep it from irritating the wearer. It may alternatively or additionally be desirable to design the sensor, or a portion of the sensor, to have a bending modulus (N/m2) of less than 2.0E+09, 1.0E+08, or 1.0E+06.
In various embodiments a sensor can have an overall shape that is more or less elongated. In some embodiments, all or part of a sensor may be linear, curved, angled, segmented, or any regular or irregular geometric shape (such as a circle, square, rectangle, triangle, trapezoid, octagon, hexagon, star, half circle, a quarter circle, a half oval, a quarter oval, a radial pattern, etc.), a recognizable image (such as a letter, number, word, character, face of an animal, face of a person, etc.), or another recognizable image (such as a plant, a car, etc.), another shape, or combinations of any of these shapes. Also, in various embodiments, an indicator can have varying widths over all or part of its length.
The sensor 320 may include one or more sensing areas for example, a first sensing area 340 and a second sensing area 360. In various embodiments, a sensor can include three or more sensing areas.
The first sensing area 340 may include a first area inboard end 342, a first area outboard end 343, and a first area overall length 341 measured along the first sensing area 340 from the first area inboard end 342 to the first area outboard end 343. The first sensing area 340 may have an overall shape that is substantially elongated and substantially rectangular. The first sensing area 340 may have a substantially uniform width along the entire first area overall length 341. However, in some embodiments, a sensing area can have various shapes and various widths over all or part of its length, as described above in connection with the sensor.
In addition to the first sensing area 340, the sensor 320 may include a second sensing area 360. In the embodiment of
The second sensing area 360 may have an overall shape that is substantially elongated and substantially rectangular. The second sensing area 360 may have a substantially uniform width along the entire second area overall length 361.
Sensor Structure
As used in this application, the term “sensor” (e.g., 435) refers not only to the elements (e.g., 470, 471, and 472) responsible for detecting a stimulus and/or change in status of the article and signaling such detection (via impulse), but also may include the housing or carrier layer or substrate (e.g., 473) around such element(s). A “sensor” may include a carrier layer (e.g., 473) with multiple elements (e.g., 470, 471, and 472) capable of detecting one or more stimuli; and, the multiple elements may create multiple locations capable of detecting one or more stimuli. The sensors of the present disclosure may form a part of a sensor system capable of monitoring urine and/or fecal insults. The system may take on a variety of configurations, which are determined by the means in which the presence of urine and/or feces is detected. After detection of urine and/or feces, the system may inform a caregiver and/or a child by generating a notification. The notification may be and auditory signal, an olfactory signal, a tactile signal or a visual signal. It is understood that the system may comprise a device for sending a wireless signal to a remote receiver which may in turn result in an auditory signal, visual signal, tactile signal or other sensory signal and/or combinations thereof.
Various sensors may be used, including inductive, capacitive, ultra sonic, optical, moisture, humidity (e.g., MVTR), pH, biological, chemical, mechanical, temperature, electromagnetic and combinations thereof, as described and illustrated (see FIGS. 5A-7C) in the '463 and '456 Apps.
The sensor system may include one or more transmitters. A transmitter is a device that sends electromagnetic waves carrying messages or signals, for instance, one or more of the sensor elements (e.g., 470, 471, or 472) may comprise a transmitter. Alternatively, a transmitter may be removably fixed to the absorbent article or to an auxiliary article such that it is in contact or in communication with the sensor elements, as described in the '463 and '456 Apps., and as illustrated in
Regarding the safety concerns associated with transmitters, proposed safety guidelines for exposure to non-ionizing radiation include thresholds for power density, electric field strength, and Electromagnetic Field (EMF) exposure. Under some hypotheses, EMF exposure is particularly relevant with respect to Ultra High Frequency (UHF, 300 MHz to 3 GHz) and Super High Frequency (SHF, 3 GHz to 30 GHz) radio frequencies. Each of these measures can be calculated to provide a reasonable approximation of the exposure generated by transmitters as described herein, based on the power of the outgoing signals and the distance from the transmitter to the target (e.g., the sensor(s) or the mobile device(s)). Watts are the units used to describe the amount of power generated by a transmitter. Microvolts per meter (μV/m) are the units used to describe the strength of an electric field created by the operation of a transmitter. A particular transmitter that generates a constant level of power (Watts) can produce electric fields of different strengths (μV/m) depending on, among other things, the type of transmission line and antenna connected to it. Because it is the electric field that causes interference to authorized radio communications, and because particular electric field strengths do not directly correspond to a particular level of transmitter power, the emission limits of, for example, short range devices and broadcasting transmitters, are specified by field strength.
Although the precise relationship between power and field strength can depend on a number of additional factors, the relationship can be approximated based on the following formula:
where P is transmitter power in Watts, G is the numerical gain of the transmitting antennae relative to an isotropic source, d is the distance of the measuring point from the electrical center of the antenna in meters, and E is the field strength in Volts/meter. As to the denominators, 4d2 is the surface area of the sphere centered at the radiating source whose surface is d meters from the radiating source, and 120 is the characteristic impedance of free space in Ohms. Using this equation, and assuming a unity gain antenna (G=1) and a measurement distance of 3 meters (d=3), a formula for determining power given field strength can be developed:
P=0.3E2
where P is the transmitter power (EIRP) in Watts and E is the field strength in Volts/meter. The following expression relates power flux-density in dB(W/m2) with field strength in dB(μV/m):
E=S+145.8
where E is field strength in dB(μV/m) and S is power flux-density in dB(W/m2).
The maximum safe level of exposure is a matter of ongoing investigation. Extremely high exposure to electromagnetic radiation is known to cause heating, and the thermal effects in turn can influence biological tissues in undesirable ways. However, it is unclear whether exposures unassociated with thermal effects are themselves harmful, and if so, at what levels.
Based on the information available today, for continuous monitoring, it may be desirable to limit the average maximum power density of any transmitter on the wearer to less than 10 mW/cm2 (milliwatts per square centimeter). This limit is based on studies on healthy adult humans, and so different limits may be desirable for infants, children, or adults. Thus, it may be desirable to limit the average maximum power density of the transmitter on the wearer to no more than 500 μW/cm2 (microwatts per square centimeter), or no more than 50 μW/cm2, or even no more than 20 μW/cm2. It may be desirable to limit the average maximum energy density of the transmitter on the wearer to no more than 1 mW hr/cm2 (milliwatt-hour per square centimeter) for interrupted or modulated electromagnetic radiation. Each of these averages is taken over any possible six minute (0.1 hour) period.
In the embodiment illustrated by
Alternatively, transmitter 250, which may be located in the font or the back, may send a low energy signal (an average maximum energy density less than 1 mW hr/cm2) periodically to check the status of a first sensor 235A and will not transmit a higher energy signal (an average maximum energy density greater than 1 mW hr/cm2) to a remote device (e.g., a phone, a monitor, etc.) until the sensor status changes from a first status to a second status. For instance, transmitter 250 may check the status of sensor 235A every 1, 5, 15, 30, 150 or 300 seconds. If after the first check of sensor 235A, the status is A (e.g., moisture or temperature threshold not exceeded), the transmitter will check again in the programmed amount of time. In this situation, the sensor gate of 235A is closed. If the status of sensor 235 is status B (e.g., moisture or temperature threshold is exceeded, or presence of a certain chemical is detected—like a byproduct of urine), then the transmitter may send a signal to the mobile device. In this situation, the sensor gate of 235A is open.
Before the transmitter 250 sends a signal to the mobile device, it may first check the status of second sensor 235B. If the second sensor 235B has changed from status C to status D, transmitter 250 may send a signal to the mobile device.
Transmitter 250 may activate periodically in order to check the status of sensor 235 and will not transmit a signal to a remote device (e.g., a phone, a monitor, etc.) until the sensor status changes. For instance, transmitter 250 may check the status of sensor 235 every 1, 5, 15, 30, 150 or 300 seconds. If after the first check of sensor 235, the status is status unchanged from previous, the transmitter will check again in the programmed amount of time. If the status of sensor 235 is status has changed from previous, then the transmitter can send a signal to the receiver or mobile device.
Sensors A, B, and C may be placed longitudinally inward of one another such that they are disposed in zones of that may indicative of how wet the absorbent article is. For instance, sensor A may be placed at the common initial pee point, but sensor B may be placed in a zone outside of the zone of an initial gush, but may be disposed in a zone commonly wetted by a second gush. Sensor C may be disposed in a zone outside of a the zone of the initial or second gush, but may be placed in a zone commonly wetted by a third gush and may signify that the absorbent article is out of capacity or is near the end of capacity.
As illustrated in
To keep the emissions of energy as low as possible, the transmitter may not check the status of the second or third sensors 235B or C until the status of the first sensor changes from status A to status B.
The transmitter may check the sensor(s) more periodically after a certain period of time passes. For instance, in a system that monitors for a wet diaper, the transmitter may check the sensor every 15 seconds until a change in status then it may check the sensor at a longer interval for a set period of time for example every minute for 90 minutes and then every 30 seconds for another 90 minutes and then every 15 seconds until another change in status is perceived. The transmitter may also alter its checking frequency based on the wearer's event history (e.g., the transmitter may take into consideration the time of day, the day of the week, and the wearer's previous urination events). The user may also manually override the periodic sensor polling by opening an application on the remote device such as a mobile phone. The override could come in the form of opening the application to automatically check the status or by pressing a button on the remote device or the transmitter in order to check the current status. The application interface may also provide information such as: time of last diaper change, calendar showing frequency of changes, baby development characteristics (e.g., time between loading events), time of last application check, and/or recommendations on diaper sizes, supporting products, etc.
The transmitter as illustrated in
Transmitters on or in absorbent articles of the present disclosure may be programmed to emit no more than an average maximum power density of 20 μW/cm2 per hour and no more than an average maximum power density of 500 μW/cm2 per day.
In another embodiment, illustrated in
The leads 535A and B may be disposed at different longitudinal positions. One advantage of such positioning, when each of the leads detects moisture, is to have a means of sensing different capacities of the core and/or sensing the number of insults in the article. Such information may be helpful for utilizing the fullest capacity of the article, thus decreasing waste by changing the absorbent article earlier than needed or waiting too long to change the article. Sensor placement could also help differentiate between bowel movements (“BM”) and fullness of the article. For example, a BM sensor could be placed in a pre-determined position in the back of the diaper and a fullness sensor could be placed in a pre-determined position in the front of the diaper. Additionally, this information may be helpful for training toddlers and also for decreasing bed sores of incontinent adults that are being cared for by others (e.g., a nursing home institution). The information of what is happening in the absorbent article can become more sophisticated with the use of more leads and/or more sensors.
The transmitter 550 may check the status of sensor 535 every 1, 5, 15, 30, 150 or 300 seconds. If after the first check of sensor 535, the status is A-A (i.e., both leads have not detected their stimuli), the transmitter will check again in the programmed amount of time. If the status of sensor 535 is status A-B or B-A or B-B (e.g., moisture or temperature threshold is exceeded by one or both of the leads), then the transmitter may send a signal to the remote or mobile device.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests, or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present disclosure have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application is a continuation of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 14/455,088, filed on Aug. 8, 2014, which claims the benefit, under 35 USC § 119(e), of U.S. Provisional Patent Application Ser. No. 61/863,595 filed on Aug. 8, 2013, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3848594 | Buell | Nov 1974 | A |
3860003 | Buell | Jan 1975 | A |
3911173 | Sprague, Jr. | Oct 1975 | A |
4022210 | Glassman | May 1977 | A |
4265245 | Glassman | May 1981 | A |
4286331 | Anderson | Aug 1981 | A |
4515595 | Kievit et al. | May 1985 | A |
4554662 | Suzuki | Nov 1985 | A |
4573986 | Minetola et al. | Mar 1986 | A |
4662875 | Hirotsu et al. | May 1987 | A |
4681793 | Linman et al. | Jul 1987 | A |
4695278 | Lawson | Sep 1987 | A |
4699622 | Toussant et al. | Oct 1987 | A |
4710189 | Lash | Dec 1987 | A |
4785996 | Ziecker et al. | Nov 1988 | A |
4795454 | Dragoo | Jan 1989 | A |
4808178 | Aziz | Feb 1989 | A |
4842666 | Werenicz | Jun 1989 | A |
4846815 | Molloy | Jul 1989 | A |
4894060 | Nestegard | Jan 1990 | A |
4909803 | Aziz et al. | Mar 1990 | A |
4940464 | Van Gompel et al. | Jul 1990 | A |
4946527 | Battrell | Aug 1990 | A |
4963140 | Robertson et al. | Oct 1990 | A |
5137537 | Herron et al. | Aug 1992 | A |
5151092 | Buell et al. | Sep 1992 | A |
5221274 | Buell et al. | Jun 1993 | A |
5242436 | Weil et al. | Sep 1993 | A |
5264830 | Kline et al. | Nov 1993 | A |
5354289 | Mitchell et al. | Oct 1994 | A |
5433715 | Tanzer et al. | Jul 1995 | A |
5469145 | Johnson | Nov 1995 | A |
5499978 | Buell et al. | Mar 1996 | A |
5507736 | Clear et al. | Apr 1996 | A |
5554145 | Roe et al. | Sep 1996 | A |
5569234 | Buell et al. | Oct 1996 | A |
5571096 | Dobrin et al. | Nov 1996 | A |
5580411 | Nease et al. | Dec 1996 | A |
5591152 | Buell et al. | Jan 1997 | A |
5607414 | Richards et al. | Mar 1997 | A |
5700254 | McDowall et al. | Dec 1997 | A |
5709222 | Davallou | Jan 1998 | A |
5714156 | Schmidt et al. | Feb 1998 | A |
5838240 | Johnson | Nov 1998 | A |
5865823 | Curro | Feb 1999 | A |
5902222 | Wessman | May 1999 | A |
5938648 | LaVon et al. | Aug 1999 | A |
5959535 | Remsburg | Sep 1999 | A |
6004306 | Robles et al. | Dec 1999 | A |
6160198 | Roe et al. | Mar 2000 | A |
6066774 | Roe | May 2000 | A |
6093869 | Roe et al. | Jul 2000 | A |
6121509 | Ashraf et al. | Sep 2000 | A |
6203496 | Gael et al. | Mar 2001 | B1 |
6359190 | Ter-Ovanesyan | Mar 2002 | B1 |
6372951 | Ovanesyan et al. | Apr 2002 | B1 |
6384296 | Roe et al. | May 2002 | B1 |
6432098 | Kline et al. | Aug 2002 | B1 |
6501002 | Roe et al. | Dec 2002 | B1 |
6534149 | Daley et al. | Mar 2003 | B1 |
6603403 | Jeutter et al. | Aug 2003 | B2 |
6609068 | Cranley | Aug 2003 | B2 |
6617488 | Springer | Sep 2003 | B1 |
6632504 | Gillespie et al. | Oct 2003 | B1 |
6645190 | Olson et al. | Nov 2003 | B1 |
6645569 | Cramer et al. | Nov 2003 | B2 |
6863933 | Cramer et al. | Mar 2005 | B2 |
6946585 | London Brown | Sep 2005 | B2 |
6975230 | Brilman | Dec 2005 | B1 |
7002054 | Allen et al. | Feb 2006 | B2 |
7049969 | Tamai | May 2006 | B2 |
7112621 | Rohrbaugh et al. | Sep 2006 | B2 |
7174774 | Pawar | Feb 2007 | B2 |
7241627 | Wilhelm et al. | Jul 2007 | B2 |
7250547 | Hofmeister et al. | Jul 2007 | B1 |
7295125 | Gabriel | Nov 2007 | B2 |
7355090 | Alex, III et al. | Apr 2008 | B2 |
7394391 | Long | Jul 2008 | B2 |
7449614 | Alex, III | Nov 2008 | B2 |
7477156 | Long et al. | Jan 2009 | B2 |
7489252 | Long et al. | Feb 2009 | B2 |
7498478 | Long et al. | Mar 2009 | B2 |
7504550 | Tippey et al. | Mar 2009 | B2 |
7524195 | Ales et al. | Apr 2009 | B2 |
7537832 | Carlucci et al. | May 2009 | B2 |
7595734 | Long et al. | Sep 2009 | B2 |
7642396 | Alex, III et al. | Jan 2010 | B2 |
7649125 | Ales, III et al. | Jan 2010 | B2 |
7659815 | Cohen et al. | Feb 2010 | B2 |
7667806 | Ales et al. | Feb 2010 | B2 |
7700820 | Tippey et al. | Apr 2010 | B2 |
7700821 | Ales, III et al. | Apr 2010 | B2 |
7737322 | Alex, III et al. | Jun 2010 | B2 |
7753691 | Ales et al. | Jul 2010 | B2 |
7760101 | Ales, III et al. | Jul 2010 | B2 |
7786341 | Schneider et al. | Aug 2010 | B2 |
7789869 | Berland et al. | Sep 2010 | B2 |
7803319 | Yang et al. | Sep 2010 | B2 |
7812731 | Bunza et al. | Oct 2010 | B2 |
7834235 | Long et al. | Nov 2010 | B2 |
7835925 | Roe et al. | Nov 2010 | B2 |
7846383 | Song | Dec 2010 | B2 |
7850470 | Ales et al. | Dec 2010 | B2 |
7855653 | Rondoni et al. | Dec 2010 | B2 |
7879392 | Wenzel et al. | Feb 2011 | B2 |
7956754 | Long | Apr 2011 | B2 |
7946869 | Ales et al. | May 2011 | B2 |
7973210 | Long et al. | Jul 2011 | B2 |
8044258 | Hietpas | Oct 2011 | B2 |
8053625 | Nhan et al. | Nov 2011 | B2 |
8057454 | Long et al. | Nov 2011 | B2 |
8058194 | Nhan et al. | Nov 2011 | B2 |
8101813 | Ales et al. | Jan 2012 | B2 |
8111165 | Ortega et al. | Feb 2012 | B2 |
8115643 | Wada et al. | Feb 2012 | B2 |
8172982 | Ales et al. | May 2012 | B2 |
8173380 | Yang et al. | May 2012 | B2 |
8183876 | Wada et al. | May 2012 | B2 |
8196270 | Mandzsu | Jun 2012 | B2 |
8196809 | Thorstensson | Jun 2012 | B2 |
8207394 | Feldkamp et al. | Jun 2012 | B2 |
8215973 | Ales et al. | Jul 2012 | B2 |
8222476 | Song et al. | Jul 2012 | B2 |
8237572 | Clement et al. | Aug 2012 | B2 |
8248249 | Clement et al. | Aug 2012 | B2 |
8264362 | Ales et al. | Sep 2012 | B2 |
8274393 | Ales et al. | Sep 2012 | B2 |
8299317 | Tippey et al. | Oct 2012 | B2 |
8304598 | Masbacher et al. | Nov 2012 | B2 |
8314284 | Novello | Nov 2012 | B1 |
8334226 | Nhan et al. | Dec 2012 | B2 |
8334425 | Ales et al. | Dec 2012 | B2 |
8338659 | Collins et al. | Dec 2012 | B2 |
8350694 | Trundle | Jan 2013 | B1 |
8372242 | Ales et al. | Feb 2013 | B2 |
8372766 | Nhan et al. | Feb 2013 | B2 |
8378167 | Allen et al. | Feb 2013 | B2 |
8381536 | Nhan et al. | Feb 2013 | B2 |
8384378 | Feldkamp et al. | Feb 2013 | B2 |
8395014 | Helmer et al. | Mar 2013 | B2 |
8416088 | Ortega et al. | Apr 2013 | B2 |
8431766 | Lonero | Apr 2013 | B1 |
8440877 | Collins et al. | May 2013 | B2 |
8452388 | Feldkamp et al. | May 2013 | B2 |
8471715 | Solazzo et al. | Jun 2013 | B2 |
8507746 | Ong et al. | Aug 2013 | B2 |
8546639 | Wada et al. | Oct 2013 | B2 |
8563801 | Berland et al. | Oct 2013 | B2 |
8570175 | Rahimi | Oct 2013 | B2 |
8604268 | Cohen et al. | Dec 2013 | B2 |
8623292 | Song et al. | Jan 2014 | B2 |
8628506 | Ales, III et al. | Jan 2014 | B2 |
8882731 | Suzuki et al. | Jan 2014 | B2 |
8642832 | Ales et al. | Feb 2014 | B2 |
8697933 | Ales, III et al. | Apr 2014 | B2 |
8697934 | Nhan et al. | Apr 2014 | B2 |
8697935 | Daanen | Apr 2014 | B2 |
8698641 | Abraham et al. | Apr 2014 | B2 |
8742198 | Wei et al. | Jun 2014 | B2 |
8773117 | Feldkamp et al. | Jul 2014 | B2 |
8779785 | Wada et al. | Jul 2014 | B2 |
8785716 | Schaefer et al. | Jul 2014 | B2 |
8816149 | Richardson et al. | Aug 2014 | B2 |
8866052 | Nhan et al. | Oct 2014 | B2 |
8866624 | Ales et al. | Oct 2014 | B2 |
8884769 | Novak | Nov 2014 | B2 |
8889944 | Abraham et al. | Nov 2014 | B2 |
8920731 | Nhan et al. | Dec 2014 | B2 |
8933291 | Wei et al. | Jan 2015 | B2 |
8933292 | Abraham et al. | Jan 2015 | B2 |
8962909 | Groosman et al. | Feb 2015 | B2 |
8975465 | Hong et al. | Mar 2015 | B2 |
8978452 | Johnson et al. | Mar 2015 | B2 |
8988231 | Chen | Mar 2015 | B2 |
9018434 | Ruman | Apr 2015 | B2 |
9034593 | Martin et al. | May 2015 | B2 |
9070060 | Forster | Jun 2015 | B2 |
9072634 | Hundorf et al. | Jul 2015 | B2 |
9131893 | Faybishenko | Sep 2015 | B2 |
9211218 | Rinnert et al. | Dec 2015 | B2 |
9295593 | Van Malderen | Mar 2016 | B2 |
9380977 | Abir | Jul 2016 | B2 |
20020021220 | Dreyer | Feb 2002 | A1 |
20020070864 | Jeutter et al. | Jun 2002 | A1 |
20030105190 | Diehl et al. | Jun 2003 | A1 |
20030148684 | Cramer et al. | Aug 2003 | A1 |
20030208133 | Mault | Nov 2003 | A1 |
20040064114 | David | Apr 2004 | A1 |
20040106202 | Zainiev et al. | Jun 2004 | A1 |
20040127867 | Odorzynski et al. | Jul 2004 | A1 |
20040220538 | Panopoulos | Nov 2004 | A1 |
20040236302 | Wilhelm | Nov 2004 | A1 |
20040254549 | Olson et al. | Dec 2004 | A1 |
20050008839 | Cramer et al. | Jan 2005 | A1 |
20050033250 | Collette | Feb 2005 | A1 |
20050065487 | Graef et al. | Mar 2005 | A1 |
20050099294 | Bogner | May 2005 | A1 |
20050124947 | Fernfors | Jun 2005 | A1 |
20050137542 | Underhill et al. | Jun 2005 | A1 |
20050195085 | Cretu-Petra | Sep 2005 | A1 |
20060061477 | Yeh | Mar 2006 | A1 |
20060069362 | Odorzynski | Mar 2006 | A1 |
20060195068 | Lawando | Aug 2006 | A1 |
20060222675 | Sabnis et al. | Oct 2006 | A1 |
20060264861 | LaVon | Nov 2006 | A1 |
20070044805 | Wedler | Mar 2007 | A1 |
20070055210 | Kao | Mar 2007 | A1 |
20070100666 | Stivoric | May 2007 | A1 |
20070142797 | Long et al. | Jun 2007 | A1 |
20070151885 | Loyd | Jul 2007 | A1 |
20070156106 | Klofta | Jul 2007 | A1 |
20070185467 | Klofta et al. | Aug 2007 | A1 |
20070233027 | Roe et al. | Oct 2007 | A1 |
20070252710 | Long | Nov 2007 | A1 |
20070252713 | Rondoni et al. | Nov 2007 | A1 |
20070255241 | Weber et al. | Nov 2007 | A1 |
20070255242 | Ales, III et al. | Nov 2007 | A1 |
20070270774 | Bergman et al. | Nov 2007 | A1 |
20080001735 | Tran | Jan 2008 | A1 |
20080021423 | Klofta | Jan 2008 | A1 |
20080021428 | Klofta et al. | Jan 2008 | A1 |
20080052030 | Olson et al. | Feb 2008 | A1 |
20080054408 | Tippey et al. | Mar 2008 | A1 |
20080057693 | Tippey et al. | Mar 2008 | A1 |
20080058740 | Sullivan et al. | Mar 2008 | A1 |
20080058741 | Long et al. | Mar 2008 | A1 |
20080082062 | Cohen et al. | Apr 2008 | A1 |
20080082063 | Ales | Apr 2008 | A1 |
20080132859 | Pires | Jun 2008 | A1 |
20080147031 | Long et al. | Jun 2008 | A1 |
20080208155 | LaVon | Aug 2008 | A1 |
20080234644 | Hansson et al. | Sep 2008 | A1 |
20080266117 | Song et al. | Oct 2008 | A1 |
20080266122 | Ales et al. | Oct 2008 | A1 |
20080266123 | Ales | Oct 2008 | A1 |
20080269707 | Song | Oct 2008 | A1 |
20080300559 | Gustafson | Dec 2008 | A1 |
20080312622 | Hundorf et al. | Dec 2008 | A1 |
20090058072 | Weber et al. | Mar 2009 | A1 |
20090062756 | Long et al. | Mar 2009 | A1 |
20090124990 | Feldkamp et al. | May 2009 | A1 |
20090155753 | Ales et al. | Jun 2009 | A1 |
20090326409 | Cohen et al. | Dec 2009 | A1 |
20100013778 | Liu | Jan 2010 | A1 |
20100030173 | Song et al. | Feb 2010 | A1 |
20100145294 | Song et al. | Jun 2010 | A1 |
20100152688 | Handwerker et al. | Jun 2010 | A1 |
20100159599 | Song et al. | Jun 2010 | A1 |
20100159611 | Song et al. | Jun 2010 | A1 |
20100160882 | Lowe | Jun 2010 | A1 |
20100164733 | Ales | Jul 2010 | A1 |
20100168694 | Gakhar et al. | Jul 2010 | A1 |
20100168702 | Ales et al. | Jul 2010 | A1 |
20100241094 | Sherron | Sep 2010 | A1 |
20100277324 | Yeh | Nov 2010 | A1 |
20110251038 | LaVon | Oct 2011 | A1 |
20110298597 | Kaihori | Dec 2011 | A1 |
20120061016 | LaVon | Mar 2012 | A1 |
20120116337 | Ales | May 2012 | A1 |
20120130330 | Wilson et al. | May 2012 | A1 |
20120157947 | Nhan et al. | Jun 2012 | A1 |
20120172824 | Khaknazarov | Jul 2012 | A1 |
20120190956 | Connolly | Jul 2012 | A1 |
20120206265 | Solazzo | Aug 2012 | A1 |
20120215190 | Kawashima | Aug 2012 | A1 |
20120225200 | Mandzsu | Sep 2012 | A1 |
20120245541 | Suzuki | Sep 2012 | A1 |
20120245542 | Suzuki | Sep 2012 | A1 |
20120253303 | Suzuki | Oct 2012 | A1 |
20120256750 | Novak | Oct 2012 | A1 |
20120282681 | Teixeira et al. | Nov 2012 | A1 |
20120299721 | Jones | Nov 2012 | A1 |
20120310190 | LaVon et al. | Dec 2012 | A1 |
20120310192 | Suzuki et al. | Dec 2012 | A1 |
20120323194 | Suzuki et al. | Dec 2012 | A1 |
20130012896 | Suzuki et al. | Jan 2013 | A1 |
20130018340 | Abraham et al. | Jan 2013 | A1 |
20130023786 | Mani et al. | Jan 2013 | A1 |
20130041334 | Prioleau | Feb 2013 | A1 |
20130076509 | Ahn | Mar 2013 | A1 |
20130110061 | Abraham et al. | May 2013 | A1 |
20130110063 | Abraham | May 2013 | A1 |
20130131618 | Abraham et al. | May 2013 | A1 |
20130151186 | Feldkamp | Jun 2013 | A1 |
20130161380 | Joyce et al. | Jun 2013 | A1 |
20130162402 | Amann et al. | Jun 2013 | A1 |
20130162403 | Stiemer et al. | Jun 2013 | A1 |
20130162404 | Stiemer et al. | Jun 2013 | A1 |
20130165809 | Abir | Jun 2013 | A1 |
20130261409 | Pathak | Oct 2013 | A1 |
20130303867 | Elfström et al. | Nov 2013 | A1 |
20130307570 | Bosaeus et al. | Nov 2013 | A1 |
20130321007 | Elfström et al. | Dec 2013 | A1 |
20130324955 | Wong et al. | Dec 2013 | A1 |
20140014716 | Joyce et al. | Jan 2014 | A1 |
20140015644 | Amann et al. | Jan 2014 | A1 |
20140015645 | Stiemer et al. | Jan 2014 | A1 |
20140022058 | Stiemer et al. | Jan 2014 | A1 |
20140062663 | Bourilkov et al. | Mar 2014 | A1 |
20140121487 | Faybishenko et al. | May 2014 | A1 |
20140152442 | Li | Jun 2014 | A1 |
20140155850 | Shah et al. | Jun 2014 | A1 |
20140155851 | Ales et al. | Jun 2014 | A1 |
20140163502 | Arzti et al. | Jun 2014 | A1 |
20140188063 | Nhan et al. | Jul 2014 | A1 |
20140198203 | Vardi | Jul 2014 | A1 |
20140200538 | Euliano et al. | Jul 2014 | A1 |
20140241954 | Phillips et al. | Aug 2014 | A1 |
20140242613 | Takeuchi et al. | Aug 2014 | A1 |
20140242715 | Nhan et al. | Aug 2014 | A1 |
20140266736 | Cretu-Petra | Sep 2014 | A1 |
20140329212 | Ruman et al. | Nov 2014 | A1 |
20140329213 | Ruman et al. | Nov 2014 | A1 |
20140363354 | Phillips et al. | Dec 2014 | A1 |
20150025347 | Song | Jan 2015 | A1 |
20150042489 | LaVon | Feb 2015 | A1 |
20150112202 | Abir | Apr 2015 | A1 |
20150130637 | Sengstaken, Jr. | May 2015 | A1 |
20150150732 | Abir | Jun 2015 | A1 |
20150157512 | Abir | Jun 2015 | A1 |
20150317684 | Abir | Nov 2015 | A1 |
20170156594 | Stivoric | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
0 149 880 | May 1984 | EP |
149880 | Jul 1985 | EP |
1 216 673 | Oct 2005 | EP |
1 542 635 | Apr 2012 | EP |
2679209 | Jan 2014 | EP |
2740450 | Jun 2014 | EP |
2 491 899 | Jul 2014 | EP |
2002022687 | Jan 2002 | JP |
2002143199 | May 2002 | JP |
2003190209 | Jul 2003 | JP |
2004230135 | Aug 2004 | JP |
2006296566 | Nov 2006 | JP |
WO 9510996 | Apr 1995 | WO |
WO 9511652 | May 1995 | WO |
WO 95016746 | Jun 1995 | WO |
WO 99034841 | Jul 1999 | WO |
WO 9934842 | Jul 1999 | WO |
WO 200059430 | Oct 2000 | WO |
WO 02064877 | Aug 2002 | WO |
WO 02067809 | Sep 2002 | WO |
WO 2007122524 | Nov 2007 | WO |
WO 2008155699 | Dec 2008 | WO |
WO 2010123364 | Oct 2010 | WO |
WO 2010123425 | Oct 2010 | WO |
WO 2011013874 | Feb 2011 | WO |
WO 2012052172 | Apr 2012 | WO |
WO 2012084925 | Jun 2012 | WO |
WO 2012126507 | Sep 2012 | WO |
WO 2012166765 | Dec 2012 | WO |
WO 2013003905 | Jan 2013 | WO |
WO 2013016765 | Feb 2013 | WO |
WO 2013061963 | May 2013 | WO |
WO 2013091707 | Jun 2013 | WO |
WO 2013091728 | Jun 2013 | WO |
WO 2013095222 | Jun 2013 | WO |
WO 2013095226 | Jun 2013 | WO |
WO 2013095230 | Jun 2013 | WO |
WO 2013095231 | Jun 2013 | WO |
WO 2013097899 | Jul 2013 | WO |
WO 2013181436 | Dec 2013 | WO |
WO 2013185419 | Dec 2013 | WO |
WO 2013189284 | Dec 2013 | WO |
WO 2014035302 | Mar 2014 | WO |
WO 2014035340 | Mar 2014 | WO |
WO 2014122169 | Aug 2014 | WO |
WO 2014137671 | Sep 2014 | WO |
WO 2014146693 | Sep 2014 | WO |
WO 2014146694 | Sep 2014 | WO |
WO 2014148957 | Sep 2014 | WO |
WO 2014177200 | Nov 2014 | WO |
WO 2014177203 | Nov 2014 | WO |
WO 2014177204 | Nov 2014 | WO |
WO 2014177205 | Nov 2014 | WO |
WO 2014178763 | Nov 2014 | WO |
WO 2014192978 | Dec 2014 | WO |
WO 2015003712 | Jan 2015 | WO |
WO 2015068124 | May 2015 | WO |
WO 2015102084 | Jul 2015 | WO |
WO 2015102085 | Jul 2015 | WO |
Entry |
---|
Author: Federal Communication Commission; Title: Reassessment of Federal Communications Commission Radiofrequency Exposure Limits and Policies; Date: Mar. 29, 2013 (Year: 2013). |
All Office Actions, U.S. Appl. No. 14/455,088. |
International Search Report and Written Opinion, PCT/US2014/050083, dated Oct. 28, 2014. |
Number | Date | Country | |
---|---|---|---|
20190208475 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
61863595 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14455088 | Aug 2014 | US |
Child | 16296329 | US |