Sensor systems for absorbent articles comprising sensor gates

Information

  • Patent Grant
  • 10462750
  • Patent Number
    10,462,750
  • Date Filed
    Friday, March 8, 2019
    5 years ago
  • Date Issued
    Tuesday, October 29, 2019
    5 years ago
Abstract
A sensor system for detecting a property of or within an absorbent article. The system may comprise a first sensor and a first transmitter. The sensor may be disposed in or on the absorbent article. The sensor may have a first status and may be capable of changing to a second status. The first transmitter may be capable of sensing a change in status of the sensor from the first status to the second status. The first transmitter may be capable of checking the status of the sensor noncontinuously. The first transmitter may programmed to check the status of the first sensor at least every 5 minutes but not longer than every 2 hours.
Description
FIELD

In general, embodiments of the present disclosure relate to sensors for use with absorbent articles. In particular, embodiments of the present disclosure relate to sensor systems comprising a transmitter that utilizes one or more sensors to manage the amount of energy it emits.


BACKGROUND

The art discloses many different types of sensors that are integral with or attached to an absorbent article. These sensors are used to monitor wetness, temperature, etc. These sensors normally comprise a sensor component and a transmitting component. The transmitting component may send signals to a remote device, such as a cell phone or a remote, e.g. mobile, receiver, etc. One of the concerns with many of these designs is the amount of energy emitted by the transmitter, since many of these systems place the transmitter on or near the baby—and often around the genitals. Some transmitters emit energy constantly. In addition, some systems having sensors and a power source comprise sensors that are constantly under power. Many of the sensors are also placed in the genital area of the absorbent article and therefore emit some level of electrical energy in the genital area. From a functionality and power conservation standpoint, it is often not necessary to continually check for a change of state (e.g., within the absorbent article, such as an insult of urine and/or fecal matter). In fact, intermittent checks, for example 1 second out of 10 seconds, will provide a level of accuracy sufficient for many applications and will reduce exposure 10 fold. Some sensors may be able to detect a change in state with as little as a few milliseconds potentially reducing the exposure by more than 100 times potentially reducing the exposure by as much as 1000 times.


It is a goal to overcome the challenges mentioned above. Particularly, one object of the present disclosure is to create sensor systems having one or more sensors such that the sensor system can use low energy to check on the various sensors before initiating transmission of a stronger signal to a remote device. Further, it is an object of the present disclosure to avoid sending any signal to a second or third sensor if the first sensor is of a certain status. It is also an object of the present disclosure to use a single sensor with multiple leads that can collect information from multiple parts of the absorbent article. All of these objects help to minimize exposing the wearer of absorbent articles to energy emitted by the sensor system.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates a perspective view a pant-type absorbent article with a sensor in the front, according to embodiments of the present disclosure.



FIG. 1B illustrates a perspective view a pant-type absorbent article with a sensor in the back, according to embodiments of the present disclosure.



FIG. 1C illustrates a top plan view of the inner (wearer-facing) surface of a pant-type absorbent article opened and laid flat with a plurality of sensors, according to embodiments of the present disclosure.



FIG. 2 illustrates a perspective view of a pant-type absorbent article with a sensor in the front, according to embodiments of the present disclosure.



FIG. 3 illustrates a portion of an absorbent article with a sensor having a first sensing area and a second sensing area, according to embodiments of the present disclosure.



FIG. 4 illustrates a top plan view of the inner (wearer-facing) surface of a pant-type absorbent article opened and laid flat with sensors disposed at different locations, including the front, back, and cuffs, according to embodiments of the present disclosure.



FIG. 5 illustrates a perspective view of a pant-type absorbent article with a sensor comprising leads according to embodiments of the present disclosure.





DETAILED DESCRIPTION

Sensors of the present disclosure may be used with various absorbent articles and/or auxiliary articles to make a sensor system.


Absorbent Article


The absorbent article may be one for personal wear, including but not limited to diapers, training pants, feminine hygiene products, incontinence products, medical garments, surgical pads and bandages, other personal care or health care garments, and the like. Various materials and methods for constructing absorbent articles such as diapers and pants are disclosed in U.S. application Ser. No. 12/914,494 (Publication No. 2011-0041999, filed on Oct. 28, 2010 (hereinafter, “the '494 App.”), U.S. application Ser. No. 12/781,993 (Publication No. 2010-0228211, filed on May 18, 2010 (hereinafter, “the '993 App.”), U.S. application Ser. No. 11/709,500 (Publication No. 2008-0208155, filed on Feb. 22, 2007 (hereinafter, “the '500 App.”), and U.S. application Ser. No. 12/434,927 (Publication No. 2009-0312734, filed on May 4, 2009 (hereinafter, “the '927 App.”).


The sensor may be discrete from or integral with the absorbent article. The absorbent article may comprise sensors that can sense various aspects of the absorbent article associated with insults of bodily exudates such as urine and/or BM (e.g., the sensor may sense variations in temperature, humidity, presence of ammonia or urea, various other vaporous components of the exudates (urine and feces), changes in moisture vapor transmission through the absorbent articles garment-facing layer, changes in translucence of the garment-facing layer, color changes through the garment-facing layer, etc.). Additionally, the sensors my sense components of urine, such as ammonia or urea and/or byproducts resulting from reactions of these components with the absorbent article. The sensor may sense byproducts that are produced when urine and/or BM contacts or mixes with other components of the absorbent article (e.g., adhesives, agm, etc.). The components or byproducts being sensed may be present as vapors that may pass through the garment-facing layer. It may also be desirable to place reactants in the diaper that change state (e.g. color, temperature, etc.) or create a measurable byproduct when mixed with urine and/or BM. The sensor may also sense changes in pH, pressure, mechanical (example—strain, stress, and/or failure), motion, light, odor, thickness, density, the presence of gas, blood, a chemical marker or a biological marker or combinations thereof.


One or more parts or portions of the sensor system may be removably integrated with the absorbent article and/or an auxiliary article (designed to fit over at least a portion of the absorbent article) with hook and loops fasteners, adhesives, thermal bonds, mating fasteners like snaps or buttons, or may be disposed in pockets, recesses or void spaces built into the absorbent article, or combinations thereof. Many of these integration means enable removal of and/or attachment of the sensor from or to the absorbent article. The absorbent article may further comprise graphics for the purpose of properly locating the sensor. In addition, in cases where an auxiliary article is present, the auxiliary article may be joined to the absorbent article by similar integration means.



FIG. 1A illustrates an outside perspective view of a front 101 and a side 103 of a pant-type absorbent article 100A formed for wearing. The pant-type absorbent article 100A may include a waist opening 107, a leg opening 108, an exterior surface (garment-facing) 106 formed by a garment-facing layer 150A sometimes referred to as the garment-facing surface, and an interior surface (wearer-facing) 109 formed by a wearer-facing layer 152A sometimes referred to as the wearer-facing surface. The absorbent article 100A may include a longitudinally oriented sensor 131 disposed in the front 101.


The wearer-facing layer 152A may be a layer of one or more materials that forms at least a portion of the inside of the front-fastenable wearable absorbent article and faces a wearer when the absorbent article 100A is worn by the wearer. In FIG. 1A, a portion of the wearer-facing layer 152A is illustrated as broken-away, in order to show the garment-facing layer 150A. A wearer-facing layer is sometimes referred to as a topsheet. The wearer-facing layer 152A is configured to be liquid permeable, such that bodily fluids received by the absorbent article 100A can pass through the wearer-facing layer 152A to the absorbent material 154A. In various embodiments, a wearer-facing layer can include a nonwoven material and/or other materials as long as the materials are liquid permeable over all or part of the wearer-facing layer.


The absorbent material 154A may be disposed subjacent to the wearer-facing layer 152A and superjacent to the garment-facing layer 150A, in at least a portion of the absorbent article 100A. In some embodiments, an absorbent material of an absorbent article is part of a structure referred to as an absorbent core. The absorbent material 154A may be configured to be liquid absorbent, such that the absorbent material 154A can absorb bodily fluids received by the absorbent article 100A. In various embodiments, an absorbent material can include cellulosic fibers (e.g., wood pulp fibers), other natural fibers, synthetic fibers, woven or nonwoven sheets, scrim netting or other stabilizing structures, superabsorbent material, foams, binder materials, adhesives, surfactants, selected hydrophobic materials, pigments, lotions, odor control agents or the like, as well as combinations thereof. The absorbent structure may comprise one or more storage layers and one or more surge management layers. A pair of containment flaps, elasticated leg cuffs, may form a portion of the interior surface of the absorbent assembly for inhibiting the lateral flow of body exudates. One or more of the layers of the absorbent structure may comprise apertures or openings therein. One such embodiment would be one or more apertures or openings in the crotch region in the region of the absorbent article wherein BM is deposited. The opening will provide a more direct means of measurement by a sensor when BM is present or may provide a more direct means for the sensor to monitor the environment inside the article.


The garment-facing layer 150A may be a layer formed of one or more materials that form at least a portion of an outside of the wearable absorbent article and may face a wearer's garments when the absorbent article 100A is worn by the wearer. A garment-facing layer is sometimes referred to as a backsheet. The garment-facing layer 150A may be configured to be liquid impermeable, such that bodily fluids received by the absorbent article 100A cannot pass through the garment-facing layer 150A. In various embodiments, a garment-facing layer can include a nonporous film, a porous film, a woven material, a non-woven fibrous material or combinations thereof. The outer cover may also be stretchable, extensible, and in some embodiments it may be elastically extensible or elastomeric. The garment-facing layer 150A may also be vapor permeable and yet liquid impervious.


Throughout the present disclosure, a reference to a pant-type absorbent article can refer to an embodiment that is side-fastenable or to an embodiment without fasteners. A reference to a pant-type absorbent article refers to an article having preformed waist and/or leg openings. Thus, each embodiment of an absorbent article of the present disclosure that is described as pant-type can be configured in any of these ways, as will be understood by one of ordinary skill in the art.



FIG. 1B illustrates an outside perspective view of a side 103 and a back 105 of a pant-type absorbent article 100B formed for wearing. The pant-type absorbent article 100B may include a waist opening 107 and a leg opening 108. Absorbent article 100B may include a longitudinally oriented sensor 135 in the back 105.



FIG. 1C illustrates an outside plan view of a pant-type absorbent article 100C laid out flat. The absorbent article 100C may include a front 101 and a back 105, separated by a lateral centerline 116.


In FIG. 1C, a longitudinal centerline 113 and the lateral centerline 116 provide lines of reference for referring to relative locations of the absorbent article 100C. When a first location 112 is nearer to the longitudinal centerline 113 than a second location 111, the first location 112 can be considered laterally inboard to the second location 111. Similarly, the second location 111 can be considered laterally outboard from the first location 112. When a third location 115 is nearer to the lateral centerline 116 than a fourth location 114, the third location 115 can be considered longitudinally inboard to the fourth location 114. Also, the fourth location 114 can be considered longitudinally outboard from the third location 115.


A reference to an inboard location, without a lateral or longitudinal limitation, refers to a location of the absorbent article 100C that is laterally inboard and/or longitudinally inboard to another location. In the same way, a reference to an outboard location, without a lateral or longitudinal limitation, refers to a location of the absorbent article 100C that is laterally outboard and/or longitudinally outboard from another location.


Inboard and outboard can also be understood with reference to a center of an absorbent article. The longitudinal centerline 113 and the lateral centerline 116 cross at a center 119 of the absorbent article 100C. When one location is nearer to the center 119 than another location, the one location can be considered inboard to the other location. The one location can be inboard laterally, or longitudinally, or both laterally and longitudinally. The other location can be considered outboard from the one location. The other location can be outboard laterally, or longitudinally, or both laterally and longitudinally.



FIG. 1C includes arrows indicating relative directions for laterally outboard 111 relative to 112, laterally inboard 112 relative to 111, longitudinally outboard 114 relative to 115, and longitudinally inboard 115 relative to 114, each with respect to the absorbent article 100C. Throughout the present disclosure, a reference to a longitudinal dimension, measurement, line, or direction refers to a dimension, measurement, line, or direction that is substantially or completely parallel to the longitudinal centerline 113 and a reference to a lateral dimension, measurement, line, or direction refers to a dimension, measurement, line, or direction that is substantially or completely parallel to the lateral centerline 116. The terminology for describing relative locations, as discussed above, is used for absorbent articles throughout the present disclosure. This terminology can also be similarly applied to various other absorbent articles, as will be understood by one of ordinary skill in the art.


The absorbent article 100C may include a number of sensors in various exemplary locations and orientations. The absorbent article 100C may include a longitudinally oriented sensor such as sensor 131 and 135, along the longitudinal centerline 113 in the front 101 and/or back 105. The front 101 and/or back 105 may include at least one angled sensor such as sensors 132, 134, 136 and 138 oriented at an angle between the longitudinal centerline 113 and the lateral centerline 116. The absorbent article 100C may include one or more laterally oriented sensors such as sensors 133 and 137 along the lateral centerline 116.


In the absorbent article 100C, the sensors may be oriented substantially radially out from the center 119. However, in addition to the locations and orientations illustrated in FIG. 1C, a sensor of the present disclosure can be disposed in various alternate locations and orientations relative to an absorbent article. As an example, a sensor can be disposed in a pant-type absorbent article at a location relative to a pee point for a wearer of the absorbent article.


The absorbent article or an auxiliary article of the present disclosure may comprise (1) materials, (2) construction (e.g., may comprise pockets, be in taped or pant form), as described by U.S. application Ser. No. 13/483,456 (Publication No. 2012-0310190), filed on May 30, 2012 (hereinafter, “the '456 App.”) and U.S. application Ser. No. 13/483,463 (Publication No. 2012-0310191), filed on May 30, 2012 (hereinafter, “the '463 App.) and may be refastenable as described by U.S. application Ser. No. 13/010,040 (Publication No. US 2011-0178485), filed on Jan. 20, 2011 (hereinafter, “the '040 App.”), U.S. application Ser. No. 13/010,052 (Publication No. US 2011-0173796), filed on Jan. 20, 2011 (hereinafter, “the '052 App.”), U.S. application Ser. No. 13/010,062 (Publication No. US 2011-0178486), filed on Jan. 20, 2011 (hereinafter, “the '062 App.”), U.S. application Ser. No. 13/010,072 (Publication No. US 2011-0174432), filed on Jan. 20, 2011 (hereinafter, “the '072 App.”), and U.S. application Ser. No. 13/010,083 (Publication No.—US 2011-0178490), filed on Jan. 20, 2011 (hereinafter, “the '083 App.”). As shown in FIG. 4, the absorbent article or an auxiliary article of the present disclosure may also comprise multiple strands (see FIG. 4, 490) between layers of the front and back regions, and as disclosed in U.S. Application No. 61/804,271, filed on Mar. 22, 2013 (hereinafter, “the '271 App.”) and U.S. Application No. 61/804,276, filed on Mar. 22, 2013 (hereinafter, “the '276 App.”) (US docket Nos. 12819 and 12820).



FIG. 3 illustrates an outside plan view of a portion 308 of an absorbent article 300 laid out flat. In various embodiments, the absorbent article 300 can be an absorbent article, such as a pant-type absorbent article or a fastenable absorbent article. In FIG. 3, outside edges of the portion 308 are broken lines, since the portion 308 is illustrated as separate from the rest of the absorbent article 300. For reference, FIG. 3 illustrates a center 319 of the absorbent article 300 and arrows indicating relative directions for outboard 317 and inboard 318 for the absorbent article 300.


The portion 308 of the absorbent article 300 may include a sensor 320. The sensor 320 may be disposed offset from the center 319. In various embodiments, one or more parts of a sensor can be disposed near, at, or overlapping a center of an absorbent article. For example, a single sensing area can extend from a front of an absorbent article, through the center of the absorbent article, to the back of the absorbent article. In such an embodiment, a farthest inboard point along the sensing area can be considered an inboard end of two sensors.


The sensor 320 may include an inboard end 322 and an outboard end 323. The sensor 320 has an overall sensor length 321, measured along the sensor 320 from the inboard end 322 to the outboard end 323. The sensor 320 may have an overall shape that is substantially elongated and substantially rectangular. The sensor 320 may have a substantially uniform width along the entire overall sensor length 321. It may be desirable that the sensor, or a portion of the sensor, has a bending stiffness of less than about 1000 N/m, 600 N/m, or 400 N/m (as determined by ASTM D 790-03) to keep it from irritating the wearer. It may alternatively or additionally be desirable to design the sensor, or a portion of the sensor, to have a bending modulus (N/m2) of less than 2.0E+09, 1.0E+08, or 1.0E+06.


In various embodiments a sensor can have an overall shape that is more or less elongated. In some embodiments, all or part of a sensor may be linear, curved, angled, segmented, or any regular or irregular geometric shape (such as a circle, square, rectangle, triangle, trapezoid, octagon, hexagon, star, half circle, a quarter circle, a half oval, a quarter oval, a radial pattern, etc.), a recognizable image (such as a letter, number, word, character, face of an animal, face of a person, etc.), or another recognizable image (such as a plant, a car, etc.), another shape, or combinations of any of these shapes. Also, in various embodiments, an indicator can have varying widths over all or part of its length.


The sensor 320 may include one or more sensing areas for example, a first sensing area 340 and a second sensing area 360. In various embodiments, a sensor can include three or more sensing areas.


The first sensing area 340 may include a first area inboard end 342, a first area outboard end 343, and a first area overall length 341 measured along the first sensing area 340 from the first area inboard end 342 to the first area outboard end 343. The first sensing area 340 may have an overall shape that is substantially elongated and substantially rectangular. The first sensing area 340 may have a substantially uniform width along the entire first area overall length 341. However, in some embodiments, a sensing area can have various shapes and various widths over all or part of its length, as described above in connection with the sensor.


In addition to the first sensing area 340, the sensor 320 may include a second sensing area 360. In the embodiment of FIG. 3, the second sensing area 360 is outboard 317 from the first sensing area 340. The second sensing area 360 may include a second area inboard end 362, a second area outboard end 363, and a second area overall length 361 measured along the second sensing area 360 from the second area inboard end 362 to the second area outboard end 363. In the embodiment of FIG. 3, the second area overall length 361 is less than the first area overall length 341. In some embodiments, a second area overall length can be equal to a first area overall length or greater than a first area overall length.


The second sensing area 360 may have an overall shape that is substantially elongated and substantially rectangular. The second sensing area 360 may have a substantially uniform width along the entire second area overall length 361.


Sensor Structure


As used in this application, the term “sensor” (e.g., 435) refers not only to the elements (e.g., 470, 471, and 472) responsible for detecting a stimulus and/or change in status of the article and signaling such detection (via impulse), but also may include the housing or carrier layer or substrate (e.g., 473) around such element(s). A “sensor” may include a carrier layer (e.g., 473) with multiple elements (e.g., 470, 471, and 472) capable of detecting one or more stimuli; and, the multiple elements may create multiple locations capable of detecting one or more stimuli. The sensors of the present disclosure may form a part of a sensor system capable of monitoring urine and/or fecal insults. The system may take on a variety of configurations, which are determined by the means in which the presence of urine and/or feces is detected. After detection of urine and/or feces, the system may inform a caregiver and/or a child by generating a notification. The notification may be and auditory signal, an olfactory signal, a tactile signal or a visual signal. It is understood that the system may comprise a device for sending a wireless signal to a remote receiver which may in turn result in an auditory signal, visual signal, tactile signal or other sensory signal and/or combinations thereof.


Various sensors may be used, including inductive, capacitive, ultra sonic, optical, moisture, humidity (e.g., MVTR), pH, biological, chemical, mechanical, temperature, electromagnetic and combinations thereof, as described and illustrated (see FIGS. 5A-7C) in the '463 and '456 Apps.


The sensor system may include one or more transmitters. A transmitter is a device that sends electromagnetic waves carrying messages or signals, for instance, one or more of the sensor elements (e.g., 470, 471, or 472) may comprise a transmitter. Alternatively, a transmitter may be removably fixed to the absorbent article or to an auxiliary article such that it is in contact or in communication with the sensor elements, as described in the '463 and '456 Apps., and as illustrated in FIG. 2.


Regarding the safety concerns associated with transmitters, proposed safety guidelines for exposure to non-ionizing radiation include thresholds for power density, electric field strength, and Electromagnetic Field (EMF) exposure. Under some hypotheses, EMF exposure is particularly relevant with respect to Ultra High Frequency (UHF, 300 MHz to 3 GHz) and Super High Frequency (SHF, 3 GHz to 30 GHz) radio frequencies. Each of these measures can be calculated to provide a reasonable approximation of the exposure generated by transmitters as described herein, based on the power of the outgoing signals and the distance from the transmitter to the target (e.g., the sensor(s) or the mobile device(s)). Watts are the units used to describe the amount of power generated by a transmitter. Microvolts per meter (μV/m) are the units used to describe the strength of an electric field created by the operation of a transmitter. A particular transmitter that generates a constant level of power (Watts) can produce electric fields of different strengths (μV/m) depending on, among other things, the type of transmission line and antenna connected to it. Because it is the electric field that causes interference to authorized radio communications, and because particular electric field strengths do not directly correspond to a particular level of transmitter power, the emission limits of, for example, short range devices and broadcasting transmitters, are specified by field strength.


Although the precise relationship between power and field strength can depend on a number of additional factors, the relationship can be approximated based on the following formula:







PG

4


d
2



=


E
2

120






where P is transmitter power in Watts, G is the numerical gain of the transmitting antennae relative to an isotropic source, d is the distance of the measuring point from the electrical center of the antenna in meters, and E is the field strength in Volts/meter. As to the denominators, 4d2 is the surface area of the sphere centered at the radiating source whose surface is d meters from the radiating source, and 120 is the characteristic impedance of free space in Ohms. Using this equation, and assuming a unity gain antenna (G=1) and a measurement distance of 3 meters (d=3), a formula for determining power given field strength can be developed:

P=0.3E2

where P is the transmitter power (EIRP) in Watts and E is the field strength in Volts/meter. The following expression relates power flux-density in dB(W/m2) with field strength in dB(μV/m):

E=S+145.8

where E is field strength in dB(μV/m) and S is power flux-density in dB(W/m2).


The maximum safe level of exposure is a matter of ongoing investigation. Extremely high exposure to electromagnetic radiation is known to cause heating, and the thermal effects in turn can influence biological tissues in undesirable ways. However, it is unclear whether exposures unassociated with thermal effects are themselves harmful, and if so, at what levels.


Based on the information available today, for continuous monitoring, it may be desirable to limit the average maximum power density of any transmitter on the wearer to less than 10 mW/cm2 (milliwatts per square centimeter). This limit is based on studies on healthy adult humans, and so different limits may be desirable for infants, children, or adults. Thus, it may be desirable to limit the average maximum power density of the transmitter on the wearer to no more than 500 μW/cm2 (microwatts per square centimeter), or no more than 50 μW/cm2, or even no more than 20 μW/cm2. It may be desirable to limit the average maximum energy density of the transmitter on the wearer to no more than 1 mW hr/cm2 (milliwatt-hour per square centimeter) for interrupted or modulated electromagnetic radiation. Each of these averages is taken over any possible six minute (0.1 hour) period.


In the embodiment illustrated by FIG. 2, the transmitter 250 may not send any signals to a remote device until a sensor 235 is triggers it or until a sensor changes status. This can be referred to as a sensor gate. The transmitter may comprise a monitoring function wherein the transmitter assesses the state of the sensor either continuously or intermittently. Once the transmitter determines a change in state the transmitter becomes active and transmits a signal to a receiver. The transmitter may operate at two or more distinct power levels, a first lower power level during the assessment operation and a second higher power level during the transmission operation. It should be understood that in either operation it may be desirable to minimize the duration of the power on cycle in order to minimize exposure of the wearer to electromagnetic exposure.


Alternatively, transmitter 250, which may be located in the font or the back, may send a low energy signal (an average maximum energy density less than 1 mW hr/cm2) periodically to check the status of a first sensor 235A and will not transmit a higher energy signal (an average maximum energy density greater than 1 mW hr/cm2) to a remote device (e.g., a phone, a monitor, etc.) until the sensor status changes from a first status to a second status. For instance, transmitter 250 may check the status of sensor 235A every 1, 5, 15, 30, 150 or 300 seconds. If after the first check of sensor 235A, the status is A (e.g., moisture or temperature threshold not exceeded), the transmitter will check again in the programmed amount of time. In this situation, the sensor gate of 235A is closed. If the status of sensor 235 is status B (e.g., moisture or temperature threshold is exceeded, or presence of a certain chemical is detected—like a byproduct of urine), then the transmitter may send a signal to the mobile device. In this situation, the sensor gate of 235A is open.


Before the transmitter 250 sends a signal to the mobile device, it may first check the status of second sensor 235B. If the second sensor 235B has changed from status C to status D, transmitter 250 may send a signal to the mobile device.


Transmitter 250 may activate periodically in order to check the status of sensor 235 and will not transmit a signal to a remote device (e.g., a phone, a monitor, etc.) until the sensor status changes. For instance, transmitter 250 may check the status of sensor 235 every 1, 5, 15, 30, 150 or 300 seconds. If after the first check of sensor 235, the status is status unchanged from previous, the transmitter will check again in the programmed amount of time. If the status of sensor 235 is status has changed from previous, then the transmitter can send a signal to the receiver or mobile device.


Sensors A, B, and C may be placed longitudinally inward of one another such that they are disposed in zones of that may indicative of how wet the absorbent article is. For instance, sensor A may be placed at the common initial pee point, but sensor B may be placed in a zone outside of the zone of an initial gush, but may be disposed in a zone commonly wetted by a second gush. Sensor C may be disposed in a zone outside of a the zone of the initial or second gush, but may be placed in a zone commonly wetted by a third gush and may signify that the absorbent article is out of capacity or is near the end of capacity.


As illustrated in FIG. 4, sensors 433 and 437 may be disposed proximate to the leg cuffs 480. The sensors 433 and 437 may alternatively be placed on or between the layers of the leg cuff. Examples of acceptable cuffs 480 are disclosed in U.S. Ser. No. 13/457,521, filed Apr. 27, 2012, including the configurations disclosed by FIGS. 8a-t of the '521 App. The leg cuffs may be a two-piece cuff. And, the cuff may be joined to the backsheet with a no leak bead that runs along the entire longitudinal length of the cuff and/or the backsheet film.


To keep the emissions of energy as low as possible, the transmitter may not check the status of the second or third sensors 235B or C until the status of the first sensor changes from status A to status B.


The transmitter may check the sensor(s) more periodically after a certain period of time passes. For instance, in a system that monitors for a wet diaper, the transmitter may check the sensor every 15 seconds until a change in status then it may check the sensor at a longer interval for a set period of time for example every minute for 90 minutes and then every 30 seconds for another 90 minutes and then every 15 seconds until another change in status is perceived. The transmitter may also alter its checking frequency based on the wearer's event history (e.g., the transmitter may take into consideration the time of day, the day of the week, and the wearer's previous urination events). The user may also manually override the periodic sensor polling by opening an application on the remote device such as a mobile phone. The override could come in the form of opening the application to automatically check the status or by pressing a button on the remote device or the transmitter in order to check the current status. The application interface may also provide information such as: time of last diaper change, calendar showing frequency of changes, baby development characteristics (e.g., time between loading events), time of last application check, and/or recommendations on diaper sizes, supporting products, etc.


The transmitter as illustrated in FIG. 2 may only emit enough energy (from 20 to 500 μW/cm2) to get a signal to a remote device (that has a second transmitter) that is one or several rooms away in a residence (e.g., an area of from about 50 to about 1000 feet). The transmitter may only emit this energy for a short time (e.g., less than a second, for 2, 3, 4, 5, 10, or 15 seconds). The remote device may then send (via the second transmitter) a stronger (an average maximum energy density greater than 1 mW hr/cm2) signal to a cell tower or other means of service.


Transmitters on or in absorbent articles of the present disclosure may be programmed to emit no more than an average maximum power density of 20 μW/cm2 per hour and no more than an average maximum power density of 500 μW/cm2 per day.


In another embodiment, illustrated in FIG. 5, the sensor 535 may comprise a first lead 535A and a second lead 535B. The leads 535A and B may detect the same stimulus (e.g., moisture) or different stimuli. In one embodiment, the first lead 535A detects moisture and the second lead 535B detects urea. Sensor 535 may comprise 3, 4, 5, 10, or 20 leads.


The leads 535A and B may be disposed at different longitudinal positions. One advantage of such positioning, when each of the leads detects moisture, is to have a means of sensing different capacities of the core and/or sensing the number of insults in the article. Such information may be helpful for utilizing the fullest capacity of the article, thus decreasing waste by changing the absorbent article earlier than needed or waiting too long to change the article. Sensor placement could also help differentiate between bowel movements (“BM”) and fullness of the article. For example, a BM sensor could be placed in a pre-determined position in the back of the diaper and a fullness sensor could be placed in a pre-determined position in the front of the diaper. Additionally, this information may be helpful for training toddlers and also for decreasing bed sores of incontinent adults that are being cared for by others (e.g., a nursing home institution). The information of what is happening in the absorbent article can become more sophisticated with the use of more leads and/or more sensors.


The transmitter 550 may check the status of sensor 535 every 1, 5, 15, 30, 150 or 300 seconds. If after the first check of sensor 535, the status is A-A (i.e., both leads have not detected their stimuli), the transmitter will check again in the programmed amount of time. If the status of sensor 535 is status A-B or B-A or B-B (e.g., moisture or temperature threshold is exceeded by one or both of the leads), then the transmitter may send a signal to the remote or mobile device.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”


Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests, or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present disclosure have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. A sensor system for detecting a property of or within an absorbent article, comprising: an absorbent article comprising a front region, a back region, and a crotch region, a transverse axis and a longitudinal axis; the absorbent article further comprising an elongate housing comprising a first sensor and a second sensor;a first transmitter;wherein the elongate housing is disposed such that each of the first and second sensors are disposed forward of the transverse axis of the absorbent article;wherein no sensor of the sensor system and no portion of the housing is disposed rearward of the transverse axis;wherein at least one of the first and second sensors overlaps with the longitudinal axis;wherein the elongate housing is disposed along a longitudinal axis of the absorbent article, and wherein the elongate carrier layer is disposed on a garment-facing, exterior surface of the absorbent article, and wherein the elongate housing comprises at least one of hooks and loops;wherein the first sensor has a first status and is capable of changing to a second status;wherein the second sensor has a third status and is capable of changing to a fourth status;wherein at least one of the first and second sensors are capable of sensing a color change through the garment-facing, exterior surface of the absorbent article;wherein the first transmitter is capable of transmitting a signal when a change in status of the first sensor from the first status to the second status has occurred;wherein the first transmitter is capable of transmitting a signal when a change in status of the second sensor from the third status to the fourth status has occurred;wherein the first transmitter is capable of operating at a first power level during an assessment operation and a second power level, higher than the first power level, during a transmission operation.
  • 2. The sensor system of claim 1, wherein the sensor system comprises a second transmitter.
  • 3. The sensor system of claim 2, wherein the first transmitter is capable of sending a signal to a remote device that comprises the second transmitter.
  • 4. The sensor system of claim 3, wherein the first transmitter is programmed to send the signal to the remote device after the first sensor has the second status.
  • 5. The sensor system of claim 2, wherein the first transmitter is programmed to send the signal to the remote device after the second sensor has the fourth status.
  • 6. The sensor system of claim 1, wherein the first transmitter is capable of being manually overridden by the user with a mobile application interface either from an application opening or by manually pressing a button on an application graphical user interface (“GUI”) to check a current status of the first and/or second sensors.
  • 7. The sensor system of claim 1, wherein the first sensor is disposed in the front region.
  • 8. The sensor system of claim 5, wherein the second sensor is disposed in the front region, laterally outboard of the first sensor.
  • 9. The sensor system of claim 1, further comprising a graphic for properly placing the first and second sensors.
  • 10. The sensor system of claim 1, wherein the second and fourth status occur due to different stimuli.
  • 11. The sensor system of claim 10, wherein at least one of the different stimuli is vapor.
  • 12. The sensor system of claim 10, wherein at least one of the different stimuli is temperature.
  • 13. The sensor system of claim 10, wherein at least one of the different stimuli is mechanical.
  • 14. The sensor system of claim 13, where in the mechanical stimulus is selected from one or a combination of strain, stress, and mechanical failure.
  • 15. The sensor system of claim 10, wherein at least one of the different stimuli is acidity/basicity (“pH”).
  • 16. The sensor system of claim 10, wherein at least one of the different stimuli is a biological element.
  • 17. The sensor system of claim 16, wherein the biological element is blood, biomarkers, and proteins.
  • 18. The sensor system of claim 10, wherein at least one of the different stimuli is a chemical.
  • 19. The sensor system of claim 13, wherein the chemical/analyte is selected from one or a combination of ammonia, urea, chloride, sodium, potassium, sugar, and creatinine.
  • 20. A sensor system for detecting a property of or within an absorbent article, comprising: an absorbent article comprising a front region, a back region, and a crotch region, a transverse axis and a longitudinal axis; the absorbent article further comprising an elongate housing comprising a first sensor and a second sensor;a first transmitter;wherein the elongate housing is disposed such that each of the first and second sensors are disposed forward of the transverse axis of the absorbent article;wherein the elongate housing is disposed along a longitudinal axis of the absorbent article, and wherein the elongate housing is disposed on a garment-facing, exterior surface of the absorbent article, and wherein the elongate housing comprises at least one of hooks and loops;wherein at least one of the first and second sensors are capable of sensing a color change through the garment-facing, exterior surface of the absorbent article;wherein the first transmitter is capable of transmitting a signal when the at least one of the first and second sensors senses a color change through the garment-facing, exterior surface of the absorbent article;wherein the first transmitter is capable of operating at a first power level during a n assessment operation and a second power level, higher than the first power level, during a transmission operation; anda graphic for properly placing the elongate housing on the garment-facing, exterior surface of the absorbent article, such that neither the elongate housing nor the first and second sensors are in direct contact with the wearer.
  • 21. The sensor system of claim 1, wherein the first transmitter emits for less than 10 seconds when signaling to a remote device.
  • 22. The sensor system of claim 1, wherein the first transmitter emits for less than 5 seconds when signaling to a remote device.
  • 23. The sensor system of claim 1, wherein the first transmitter emits for less than 2 seconds when signaling to a remote device.
  • 24. The sensor system of claim 1, wherein the first transmitter emits an average of less than 500 μW/cm2 per hour.
  • 25. The sensor system of claim 1, wherein the first transmitter emits an average of less than 50 μW/cm2 per hour.
  • 26. The sensor system of claim 1, wherein the first transmitter emits an average of less than 20 μW/cm2 per hour.
  • 27. A sensor system for detecting a property of or within an absorbent article, comprising: an absorbent article comprising a front region, a back region, and a crotch region, a transverse axis and a longitudinal axis; the absorbent article further comprising an elongate housing comprising a first sensor and a second sensor;a first transmitter;wherein the elongate housing is disposed such that each of the first and second sensors are disposed forward of the transverse axis of the absorbent article;wherein no sensor of the sensor system and no portion of the housing is disposed rearward of the transverse axis;wherein at least one of the first and second sensors overlaps with the longitudinal axis;wherein the elongate housing is disposed along a longitudinal axis of the absorbent article, and wherein the elongate carrier layer is disposed on a garment-facing, exterior surface of the absorbent article, and wherein the elongate housing comprises at least one of hooks and loops;wherein the first sensor has a first status and is capable of changing to a second status;wherein the second sensor has a third status and is capable of changing to a fourth status;wherein at least one of the first and second sensors are capable of sensing a color change through the garment-facing, exterior surface of the absorbent article;wherein the first transmitter is capable of transmitting a signal when a change in status of the first sensor from the first status to the second status has occurred;wherein the first transmitter is capable of transmitting a signal when a change in status of the second sensor from the third status to the fourth status has occurred;wherein the first transmitter emits non-continuously when signaling to a remote device; andwherein the first transmitter is capable of operating at a first power level during an assessment operation and a second power level, higher than the first power level, during a transmission operation.
  • 28. A sensor system for detecting a property of or within an absorbent article, comprising: an absorbent article comprising a front region, a back region, and a crotch region, a transverse axis and a longitudinal axis; the absorbent article further comprising an elongate housing comprising a first sensor and a second sensor;a first transmitter;wherein the elongate housing is disposed such that each of the first and second sensors are disposed forward of the transverse axis of the absorbent article;wherein no sensor of the sensor system and no portion of the housing is disposed rearward of the transverse axis;wherein the elongate housing is disposed along a longitudinal axis of the absorbent article, and wherein the elongate carrier layer is disposed on a garment-facing, exterior surface of the absorbent article;wherein the first sensor has a first status and is capable of changing to a second status;wherein the second sensor has a third status and is capable of changing to a fourth status;wherein at least one of the first and second sensors are capable of sensing a color change through the garment-facing, exterior surface of the absorbent article;wherein the first transmitter is capable of transmitting a signal when a change in status of the first sensor from the first status to the second status has occurred;wherein the first transmitter is capable of transmitting a signal when a change in status of the second sensor from the third status to the fourth status has occurred;wherein the first transmitter is capable of operating at a first power level during an assessment operation and a second power level, higher than the first power level, during a transmission operation; andwherein the first transmitter is capable of being manually overridden by the user with a mobile application interface either from an application opening or by manually pressing a button on an application graphical user interface (“GUI”) to check a current status of the first and/or second sensors.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 14/455,088, filed on Aug. 8, 2014, which claims the benefit, under 35 USC § 119(e), of U.S. Provisional Patent Application Ser. No. 61/863,595 filed on Aug. 8, 2013, which is herein incorporated by reference in its entirety.

US Referenced Citations (322)
Number Name Date Kind
3848594 Buell Nov 1974 A
3860003 Buell Jan 1975 A
3911173 Sprague, Jr. Oct 1975 A
4022210 Glassman May 1977 A
4265245 Glassman May 1981 A
4286331 Anderson Aug 1981 A
4515595 Kievit et al. May 1985 A
4554662 Suzuki Nov 1985 A
4573986 Minetola et al. Mar 1986 A
4662875 Hirotsu et al. May 1987 A
4681793 Linman et al. Jul 1987 A
4695278 Lawson Sep 1987 A
4699622 Toussant et al. Oct 1987 A
4710189 Lash Dec 1987 A
4785996 Ziecker et al. Nov 1988 A
4795454 Dragoo Jan 1989 A
4808178 Aziz Feb 1989 A
4842666 Werenicz Jun 1989 A
4846815 Molloy Jul 1989 A
4894060 Nestegard Jan 1990 A
4909803 Aziz et al. Mar 1990 A
4940464 Van Gompel et al. Jul 1990 A
4946527 Battrell Aug 1990 A
4963140 Robertson et al. Oct 1990 A
5137537 Herron et al. Aug 1992 A
5151092 Buell et al. Sep 1992 A
5221274 Buell et al. Jun 1993 A
5242436 Weil et al. Sep 1993 A
5264830 Kline et al. Nov 1993 A
5354289 Mitchell et al. Oct 1994 A
5433715 Tanzer et al. Jul 1995 A
5469145 Johnson Nov 1995 A
5499978 Buell et al. Mar 1996 A
5507736 Clear et al. Apr 1996 A
5554145 Roe et al. Sep 1996 A
5569234 Buell et al. Oct 1996 A
5571096 Dobrin et al. Nov 1996 A
5580411 Nease et al. Dec 1996 A
5591152 Buell et al. Jan 1997 A
5607414 Richards et al. Mar 1997 A
5700254 McDowall et al. Dec 1997 A
5709222 Davallou Jan 1998 A
5714156 Schmidt et al. Feb 1998 A
5838240 Johnson Nov 1998 A
5865823 Curro Feb 1999 A
5902222 Wessman May 1999 A
5938648 LaVon et al. Aug 1999 A
5959535 Remsburg Sep 1999 A
6004306 Robles et al. Dec 1999 A
6160198 Roe et al. Mar 2000 A
6066774 Roe May 2000 A
6093869 Roe et al. Jul 2000 A
6121509 Ashraf et al. Sep 2000 A
6203496 Gael et al. Mar 2001 B1
6359190 Ter-Ovanesyan Mar 2002 B1
6372951 Ovanesyan et al. Apr 2002 B1
6384296 Roe et al. May 2002 B1
6432098 Kline et al. Aug 2002 B1
6501002 Roe et al. Dec 2002 B1
6534149 Daley et al. Mar 2003 B1
6603403 Jeutter et al. Aug 2003 B2
6609068 Cranley Aug 2003 B2
6617488 Springer Sep 2003 B1
6632504 Gillespie et al. Oct 2003 B1
6645190 Olson et al. Nov 2003 B1
6645569 Cramer et al. Nov 2003 B2
6863933 Cramer et al. Mar 2005 B2
6946585 London Brown Sep 2005 B2
6975230 Brilman Dec 2005 B1
7002054 Allen et al. Feb 2006 B2
7049969 Tamai May 2006 B2
7112621 Rohrbaugh et al. Sep 2006 B2
7174774 Pawar Feb 2007 B2
7241627 Wilhelm et al. Jul 2007 B2
7250547 Hofmeister et al. Jul 2007 B1
7295125 Gabriel Nov 2007 B2
7355090 Alex, III et al. Apr 2008 B2
7394391 Long Jul 2008 B2
7449614 Alex, III Nov 2008 B2
7477156 Long et al. Jan 2009 B2
7489252 Long et al. Feb 2009 B2
7498478 Long et al. Mar 2009 B2
7504550 Tippey et al. Mar 2009 B2
7524195 Ales et al. Apr 2009 B2
7537832 Carlucci et al. May 2009 B2
7595734 Long et al. Sep 2009 B2
7642396 Alex, III et al. Jan 2010 B2
7649125 Ales, III et al. Jan 2010 B2
7659815 Cohen et al. Feb 2010 B2
7667806 Ales et al. Feb 2010 B2
7700820 Tippey et al. Apr 2010 B2
7700821 Ales, III et al. Apr 2010 B2
7737322 Alex, III et al. Jun 2010 B2
7753691 Ales et al. Jul 2010 B2
7760101 Ales, III et al. Jul 2010 B2
7786341 Schneider et al. Aug 2010 B2
7789869 Berland et al. Sep 2010 B2
7803319 Yang et al. Sep 2010 B2
7812731 Bunza et al. Oct 2010 B2
7834235 Long et al. Nov 2010 B2
7835925 Roe et al. Nov 2010 B2
7846383 Song Dec 2010 B2
7850470 Ales et al. Dec 2010 B2
7855653 Rondoni et al. Dec 2010 B2
7879392 Wenzel et al. Feb 2011 B2
7956754 Long Apr 2011 B2
7946869 Ales et al. May 2011 B2
7973210 Long et al. Jul 2011 B2
8044258 Hietpas Oct 2011 B2
8053625 Nhan et al. Nov 2011 B2
8057454 Long et al. Nov 2011 B2
8058194 Nhan et al. Nov 2011 B2
8101813 Ales et al. Jan 2012 B2
8111165 Ortega et al. Feb 2012 B2
8115643 Wada et al. Feb 2012 B2
8172982 Ales et al. May 2012 B2
8173380 Yang et al. May 2012 B2
8183876 Wada et al. May 2012 B2
8196270 Mandzsu Jun 2012 B2
8196809 Thorstensson Jun 2012 B2
8207394 Feldkamp et al. Jun 2012 B2
8215973 Ales et al. Jul 2012 B2
8222476 Song et al. Jul 2012 B2
8237572 Clement et al. Aug 2012 B2
8248249 Clement et al. Aug 2012 B2
8264362 Ales et al. Sep 2012 B2
8274393 Ales et al. Sep 2012 B2
8299317 Tippey et al. Oct 2012 B2
8304598 Masbacher et al. Nov 2012 B2
8314284 Novello Nov 2012 B1
8334226 Nhan et al. Dec 2012 B2
8334425 Ales et al. Dec 2012 B2
8338659 Collins et al. Dec 2012 B2
8350694 Trundle Jan 2013 B1
8372242 Ales et al. Feb 2013 B2
8372766 Nhan et al. Feb 2013 B2
8378167 Allen et al. Feb 2013 B2
8381536 Nhan et al. Feb 2013 B2
8384378 Feldkamp et al. Feb 2013 B2
8395014 Helmer et al. Mar 2013 B2
8416088 Ortega et al. Apr 2013 B2
8431766 Lonero Apr 2013 B1
8440877 Collins et al. May 2013 B2
8452388 Feldkamp et al. May 2013 B2
8471715 Solazzo et al. Jun 2013 B2
8507746 Ong et al. Aug 2013 B2
8546639 Wada et al. Oct 2013 B2
8563801 Berland et al. Oct 2013 B2
8570175 Rahimi Oct 2013 B2
8604268 Cohen et al. Dec 2013 B2
8623292 Song et al. Jan 2014 B2
8628506 Ales, III et al. Jan 2014 B2
8882731 Suzuki et al. Jan 2014 B2
8642832 Ales et al. Feb 2014 B2
8697933 Ales, III et al. Apr 2014 B2
8697934 Nhan et al. Apr 2014 B2
8697935 Daanen Apr 2014 B2
8698641 Abraham et al. Apr 2014 B2
8742198 Wei et al. Jun 2014 B2
8773117 Feldkamp et al. Jul 2014 B2
8779785 Wada et al. Jul 2014 B2
8785716 Schaefer et al. Jul 2014 B2
8816149 Richardson et al. Aug 2014 B2
8866052 Nhan et al. Oct 2014 B2
8866624 Ales et al. Oct 2014 B2
8884769 Novak Nov 2014 B2
8889944 Abraham et al. Nov 2014 B2
8920731 Nhan et al. Dec 2014 B2
8933291 Wei et al. Jan 2015 B2
8933292 Abraham et al. Jan 2015 B2
8962909 Groosman et al. Feb 2015 B2
8975465 Hong et al. Mar 2015 B2
8978452 Johnson et al. Mar 2015 B2
8988231 Chen Mar 2015 B2
9018434 Ruman Apr 2015 B2
9034593 Martin et al. May 2015 B2
9070060 Forster Jun 2015 B2
9072634 Hundorf et al. Jul 2015 B2
9131893 Faybishenko Sep 2015 B2
9211218 Rinnert et al. Dec 2015 B2
9295593 Van Malderen Mar 2016 B2
9380977 Abir Jul 2016 B2
20020021220 Dreyer Feb 2002 A1
20020070864 Jeutter et al. Jun 2002 A1
20030105190 Diehl et al. Jun 2003 A1
20030148684 Cramer et al. Aug 2003 A1
20030208133 Mault Nov 2003 A1
20040064114 David Apr 2004 A1
20040106202 Zainiev et al. Jun 2004 A1
20040127867 Odorzynski et al. Jul 2004 A1
20040220538 Panopoulos Nov 2004 A1
20040236302 Wilhelm Nov 2004 A1
20040254549 Olson et al. Dec 2004 A1
20050008839 Cramer et al. Jan 2005 A1
20050033250 Collette Feb 2005 A1
20050065487 Graef et al. Mar 2005 A1
20050099294 Bogner May 2005 A1
20050124947 Fernfors Jun 2005 A1
20050137542 Underhill et al. Jun 2005 A1
20050195085 Cretu-Petra Sep 2005 A1
20060061477 Yeh Mar 2006 A1
20060069362 Odorzynski Mar 2006 A1
20060195068 Lawando Aug 2006 A1
20060222675 Sabnis et al. Oct 2006 A1
20060264861 LaVon Nov 2006 A1
20070044805 Wedler Mar 2007 A1
20070055210 Kao Mar 2007 A1
20070100666 Stivoric May 2007 A1
20070142797 Long et al. Jun 2007 A1
20070151885 Loyd Jul 2007 A1
20070156106 Klofta Jul 2007 A1
20070185467 Klofta et al. Aug 2007 A1
20070233027 Roe et al. Oct 2007 A1
20070252710 Long Nov 2007 A1
20070252713 Rondoni et al. Nov 2007 A1
20070255241 Weber et al. Nov 2007 A1
20070255242 Ales, III et al. Nov 2007 A1
20070270774 Bergman et al. Nov 2007 A1
20080001735 Tran Jan 2008 A1
20080021423 Klofta Jan 2008 A1
20080021428 Klofta et al. Jan 2008 A1
20080052030 Olson et al. Feb 2008 A1
20080054408 Tippey et al. Mar 2008 A1
20080057693 Tippey et al. Mar 2008 A1
20080058740 Sullivan et al. Mar 2008 A1
20080058741 Long et al. Mar 2008 A1
20080082062 Cohen et al. Apr 2008 A1
20080082063 Ales Apr 2008 A1
20080132859 Pires Jun 2008 A1
20080147031 Long et al. Jun 2008 A1
20080208155 LaVon Aug 2008 A1
20080234644 Hansson et al. Sep 2008 A1
20080266117 Song et al. Oct 2008 A1
20080266122 Ales et al. Oct 2008 A1
20080266123 Ales Oct 2008 A1
20080269707 Song Oct 2008 A1
20080300559 Gustafson Dec 2008 A1
20080312622 Hundorf et al. Dec 2008 A1
20090058072 Weber et al. Mar 2009 A1
20090062756 Long et al. Mar 2009 A1
20090124990 Feldkamp et al. May 2009 A1
20090155753 Ales et al. Jun 2009 A1
20090326409 Cohen et al. Dec 2009 A1
20100013778 Liu Jan 2010 A1
20100030173 Song et al. Feb 2010 A1
20100145294 Song et al. Jun 2010 A1
20100152688 Handwerker et al. Jun 2010 A1
20100159599 Song et al. Jun 2010 A1
20100159611 Song et al. Jun 2010 A1
20100160882 Lowe Jun 2010 A1
20100164733 Ales Jul 2010 A1
20100168694 Gakhar et al. Jul 2010 A1
20100168702 Ales et al. Jul 2010 A1
20100241094 Sherron Sep 2010 A1
20100277324 Yeh Nov 2010 A1
20110251038 LaVon Oct 2011 A1
20110298597 Kaihori Dec 2011 A1
20120061016 LaVon Mar 2012 A1
20120116337 Ales May 2012 A1
20120130330 Wilson et al. May 2012 A1
20120157947 Nhan et al. Jun 2012 A1
20120172824 Khaknazarov Jul 2012 A1
20120190956 Connolly Jul 2012 A1
20120206265 Solazzo Aug 2012 A1
20120215190 Kawashima Aug 2012 A1
20120225200 Mandzsu Sep 2012 A1
20120245541 Suzuki Sep 2012 A1
20120245542 Suzuki Sep 2012 A1
20120253303 Suzuki Oct 2012 A1
20120256750 Novak Oct 2012 A1
20120282681 Teixeira et al. Nov 2012 A1
20120299721 Jones Nov 2012 A1
20120310190 LaVon et al. Dec 2012 A1
20120310192 Suzuki et al. Dec 2012 A1
20120323194 Suzuki et al. Dec 2012 A1
20130012896 Suzuki et al. Jan 2013 A1
20130018340 Abraham et al. Jan 2013 A1
20130023786 Mani et al. Jan 2013 A1
20130041334 Prioleau Feb 2013 A1
20130076509 Ahn Mar 2013 A1
20130110061 Abraham et al. May 2013 A1
20130110063 Abraham May 2013 A1
20130131618 Abraham et al. May 2013 A1
20130151186 Feldkamp Jun 2013 A1
20130161380 Joyce et al. Jun 2013 A1
20130162402 Amann et al. Jun 2013 A1
20130162403 Stiemer et al. Jun 2013 A1
20130162404 Stiemer et al. Jun 2013 A1
20130165809 Abir Jun 2013 A1
20130261409 Pathak Oct 2013 A1
20130303867 Elfström et al. Nov 2013 A1
20130307570 Bosaeus et al. Nov 2013 A1
20130321007 Elfström et al. Dec 2013 A1
20130324955 Wong et al. Dec 2013 A1
20140014716 Joyce et al. Jan 2014 A1
20140015644 Amann et al. Jan 2014 A1
20140015645 Stiemer et al. Jan 2014 A1
20140022058 Stiemer et al. Jan 2014 A1
20140062663 Bourilkov et al. Mar 2014 A1
20140121487 Faybishenko et al. May 2014 A1
20140152442 Li Jun 2014 A1
20140155850 Shah et al. Jun 2014 A1
20140155851 Ales et al. Jun 2014 A1
20140163502 Arzti et al. Jun 2014 A1
20140188063 Nhan et al. Jul 2014 A1
20140198203 Vardi Jul 2014 A1
20140200538 Euliano et al. Jul 2014 A1
20140241954 Phillips et al. Aug 2014 A1
20140242613 Takeuchi et al. Aug 2014 A1
20140242715 Nhan et al. Aug 2014 A1
20140266736 Cretu-Petra Sep 2014 A1
20140329212 Ruman et al. Nov 2014 A1
20140329213 Ruman et al. Nov 2014 A1
20140363354 Phillips et al. Dec 2014 A1
20150025347 Song Jan 2015 A1
20150042489 LaVon Feb 2015 A1
20150112202 Abir Apr 2015 A1
20150130637 Sengstaken, Jr. May 2015 A1
20150150732 Abir Jun 2015 A1
20150157512 Abir Jun 2015 A1
20150317684 Abir Nov 2015 A1
20170156594 Stivoric Jun 2017 A1
Foreign Referenced Citations (59)
Number Date Country
0 149 880 May 1984 EP
149880 Jul 1985 EP
1 216 673 Oct 2005 EP
1 542 635 Apr 2012 EP
2679209 Jan 2014 EP
2740450 Jun 2014 EP
2 491 899 Jul 2014 EP
2002022687 Jan 2002 JP
2002143199 May 2002 JP
2003190209 Jul 2003 JP
2004230135 Aug 2004 JP
2006296566 Nov 2006 JP
WO 9510996 Apr 1995 WO
WO 9511652 May 1995 WO
WO 95016746 Jun 1995 WO
WO 99034841 Jul 1999 WO
WO 9934842 Jul 1999 WO
WO 200059430 Oct 2000 WO
WO 02064877 Aug 2002 WO
WO 02067809 Sep 2002 WO
WO 2007122524 Nov 2007 WO
WO 2008155699 Dec 2008 WO
WO 2010123364 Oct 2010 WO
WO 2010123425 Oct 2010 WO
WO 2011013874 Feb 2011 WO
WO 2012052172 Apr 2012 WO
WO 2012084925 Jun 2012 WO
WO 2012126507 Sep 2012 WO
WO 2012166765 Dec 2012 WO
WO 2013003905 Jan 2013 WO
WO 2013016765 Feb 2013 WO
WO 2013061963 May 2013 WO
WO 2013091707 Jun 2013 WO
WO 2013091728 Jun 2013 WO
WO 2013095222 Jun 2013 WO
WO 2013095226 Jun 2013 WO
WO 2013095230 Jun 2013 WO
WO 2013095231 Jun 2013 WO
WO 2013097899 Jul 2013 WO
WO 2013181436 Dec 2013 WO
WO 2013185419 Dec 2013 WO
WO 2013189284 Dec 2013 WO
WO 2014035302 Mar 2014 WO
WO 2014035340 Mar 2014 WO
WO 2014122169 Aug 2014 WO
WO 2014137671 Sep 2014 WO
WO 2014146693 Sep 2014 WO
WO 2014146694 Sep 2014 WO
WO 2014148957 Sep 2014 WO
WO 2014177200 Nov 2014 WO
WO 2014177203 Nov 2014 WO
WO 2014177204 Nov 2014 WO
WO 2014177205 Nov 2014 WO
WO 2014178763 Nov 2014 WO
WO 2014192978 Dec 2014 WO
WO 2015003712 Jan 2015 WO
WO 2015068124 May 2015 WO
WO 2015102084 Jul 2015 WO
WO 2015102085 Jul 2015 WO
Non-Patent Literature Citations (3)
Entry
Author: Federal Communication Commission; Title: Reassessment of Federal Communications Commission Radiofrequency Exposure Limits and Policies; Date: Mar. 29, 2013 (Year: 2013).
All Office Actions, U.S. Appl. No. 14/455,088.
International Search Report and Written Opinion, PCT/US2014/050083, dated Oct. 28, 2014.
Related Publications (1)
Number Date Country
20190208475 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
61863595 Aug 2013 US
Continuations (1)
Number Date Country
Parent 14455088 Aug 2014 US
Child 16296329 US