Sensor with integrated living hinge and spring

Information

  • Patent Grant
  • 8897850
  • Patent Number
    8,897,850
  • Date Filed
    Monday, December 29, 2008
    16 years ago
  • Date Issued
    Tuesday, November 25, 2014
    10 years ago
Abstract
Embodiments of the present disclosure relate generally to a sensor assembly. In various embodiments the sensor assembly includes a body having a first segment, a second segment, and a living hinge. The living hinge has a pivot axis and mechanically couples the first segment and the second segment. Further, the living hinge facilitates the first segment and the second segment to pivoting relative to one another about the pivot axis. Embodiments may also relate to a method of manufacturing a sensor frame. The method may include forming an integral sensor body having a first frame segment, a second frame segment, and a living hinge. The first frame segment and the second frame segment are configured to pivot relative to one another about a pivot axis of the living hinge. The method may also include coupling one or more biasing mechanisms to the first frame segment and the second frame segment. The biasing mechanism is configured to generate a moment about the pivot axis of the living hinge. The moment biases the first segment and second segment into a closed position.
Description
BACKGROUND

The present disclosure relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring physiological characteristics. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.


One such monitoring technique is commonly referred to as pulse oximetry. Pulse oximetry may be used to measure various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin in arterial blood and/or the rate of blood pulsations corresponding to each heartbeat of a patient.


The devices based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximeters typically utilize a non-invasive sensor that is placed on or against a patient's tissue that is well perfused with blood, such as a patient's finger, toe, forehead or earlobe. The pulse oximeter sensor emits light and photoelectrically senses the absorption and/or scattering of the light after passage through the perfused tissue. The data collected by the sensor may then be used to calculate one or more of the above physiological characteristics based upon the absorption or scattering of the light. More specifically, the emitted light is typically selected to be of one or more wavelengths that are absorbed or scattered in an amount related to the presence of oxygenated versus deoxygenated hemoglobin in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of the oxygen in the tissue using various algorithms.


During use, the performance of a pulse oximetry sensor may rely on there being substantial contact between the surface of the patient's tissue (i.e., skin or nail bed) and the light emitting and detecting sensors. Good contact between the sensor and the tissue helps prevent light from scattering before being detected by the detecting sensor and helps to prevent additional light, i.e., ambient light or other light not emitted by the sensor, from reaching the detector. For example, a sensor may be clipped about a patients finger tip with the emitter placed on the finger nail, and the detector placed on the under side of the finger tip. In this configuration, the sensor should clip about the finger with enough force to eliminate or reduce the gap between the emitter and the finger nail, as well as eliminate the gap between the detector and the underside of the finger tip. By providing a sufficiently tight fit, the emitted light may travel directly through the tissue of the finger and be detected without additional light being introduced or the emitted light being scattered. Further, the sufficiently tight fit may reduce the likelihood of the pulse oximetry sensor moving relative to the patient's tissue and/or falling off of the patient. However, in practice, anatomic variation between individuals may make achieving such a tight fit with good contact difficult using standardized sensor sizes.


SUMMARY

Certain aspects commensurate in scope with the disclosure are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the disclosure might take and that these aspects are not intended to limit the scope of the disclosure. Indeed, the disclosure may encompass a variety of aspects that may not be set forth below.


In accordance with an embodiment, there is provided a sensor assembly. The sensor assembly includes a body having a first segment, a second segment, and a living hinge. The living hinge has a pivot axis and mechanically couples the first segment and the second segment. Further, the living hinge facilitates the first segment and the second segment to pivoting relative to one another about the pivot axis.


In accordance with an embodiment, there is provided a sensor system. The sensor system includes a sensor assembly having a sensor, a sensor frame, and a living hinge. The sensor has a first sensor portion and a second sensor portion. The sensor frame is configured to support the sensor and includes a first body portion and a second body portion. The living hinge mechanically couples the first body portion and the second body portion, such that the first body portion and the second body portion are configured to pivot relative to one another about a pivot axis of the living hinge. The sensor system also includes at least one member configured to generate a moment about the pivot axis of the living hinge and bias a first end of the first body portion and a first end of the second body portion toward one another.


In accordance with an embodiment, there is provided a method of manufacturing a sensor frame. The method includes forming an integral sensor body having a first frame segment, a second frame segment, and a living hinge. The first frame segment and the second frame segment are configured to pivot relative to one another about a pivot axis of the living hinge. The method also includes coupling one or more biasing mechanisms to the first frame segment and the second frame segment. The biasing mechanism is configured to generate a moment about the pivot axis of the living hinge. The moment biases the first segment and second segment into a closed position.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the disclosure may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 illustrates a patient monitoring system coupled to a multi-parameter patient monitor and a sensor, in accordance with an embodiment;



FIG. 2 is a side view of a first embodiment of the sensor having a living hinge, in accordance with an embodiment;



FIG. 3 is a perspective view of the first embodiment of the sensor having a living hinge, in accordance with an embodiment;



FIG. 4 is a perspective view of a second embodiment of the sensor having a living hinge, in accordance with an embodiment;



FIG. 5 is a perspective view of a third embodiment of the sensor having a living hinge, in accordance with an embodiment;



FIG. 6 is a perspective view of a fourth embodiment of the sensor having a living hinge, in accordance with an embodiment;



FIG. 7 is a perspective view of a fifth embodiment of the sensor having a living hinge, in accordance with an embodiment;



FIG. 8 is a flowchart that depicts a method for manufacturing a sensor having a living hinge, in accordance with an embodiment; and



FIG. 9 is a flowchart that depicts a method for operating a sensor having a living hinge, in accordance with an embodiment.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

One or more embodiments will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


As described herein, various embodiments of sensors are provided which are believed to provide good contact and fit for a range of patient anatomies. In general, examples of these sensors, as described herein, include a living hinge. Prior to discussing such sensors in detail, it should be appreciated that such sensors are typically designed for use with a patient monitoring system.


Referring now to FIG. 1, a sensor 10 according to an embodiment may be used in conjunction with a patient monitor 12. In the depicted embodiment, a cable 14 connects the sensor 10 to the patient monitor 12. As will be appreciated, the sensor 10 and/or the cable 14 may include or incorporate one or more integrated circuit devices or electrical devices, such as a memory, processor chip, or resistor, that may facilitate or enhance communication between the sensor 10 and the patient monitor 12. Likewise the cable 14 may be an adaptor cable, with or without an integrated circuit or electrical device, for facilitating communication between the sensor 10 and various types of monitors, including older or newer versions of the patient monitor 12 or other physiological monitors.


In other embodiments, the sensor 10 and the patient monitor 12 may communicate via wireless means, such as using radio, infrared, or optical signals. In such embodiments, a transmission device (not shown) may be connected to the sensor 10 to facilitate wireless transmission between the sensor 10 and the patient monitor 12. As will be appreciated by those of ordinary skill in the art, the cable 14 (or a corresponding wireless transmission) may be used to transmit control or timing signals from the monitor 12 to the sensor 10 and/or to transmit acquired data from the sensor 10 to the monitor 12. In some embodiments, the cable 14 may be an optical fiber that enables optical signals to be conducted between the patient monitor 12 and the sensor 10.


In an embodiment, the patient monitor 12 may be a suitable pulse oximeter, such as those available from Nellcor Puritan Bennett LLC. In other embodiments, the patient monitor 12 may be a monitor suitable for measuring tissue water fractions, or other body fluid related metrics, using spectrophotometric or other techniques. Furthermore, the patient monitor 12 may be a multi-purpose monitor suitable for performing pulse oximetry and measurement of tissue water fraction, or other combinations of physiological and/or biochemical monitoring processes, using data acquired via the sensor 10. Furthermore, to upgrade conventional monitoring functions provided by the monitor 12 and to provide additional functions, the patient monitor 12 may be coupled to a multi-parameter patient monitor 16 via a cable 18 connected to a sensor input port and/or a cable 20 connected to a digital communication port.


In an embodiment, the sensor 10, as depicted in FIG. 1, is a clip-style sensor that is overmolded to provide a unitary or enclosed assembly. The sensor 10 may include an emitter 22 and a detector 24 which may be of any suitable type. For example the emitter 22 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light, such as in the red to infrared range, and the detector 24 may be a photodetector, such as a silicon photodiode package, selected to receive light in the range emitted from the emitter 22. In the depicted embodiment, the sensor 10 is coupled to a cable 14 that is responsible for transmitting electrical and/or optical signals to and from the emitter 22 and the detector 24 of the sensor 10. The cable 14 may be permanently coupled to the sensor 10, or it may be removably coupled to the sensor 10—the latter alternative being more useful and cost efficient in situations where the sensor 10 is disposable.


In an embodiment, the sensor 10 discussed herein may be configured for either transmission or reflectance type sensing, for example. Furthermore, the sensor 10 may include various structural and functional features designed to facilitate its use. An example of such a sensor and its use and construction may be found in U.S. application Ser. No. 11/199,524 titled “Medical Sensor and Technique for Using the Same” and filed on Aug. 8, 2005, which is hereby incorporated by reference in its entirety for all purposes. As will be appreciated by those of ordinary skill in the art, however, such discussion is merely an example and is not intended to limit the scope of the present technique.


As discussed in greater detail below with regards to FIGS. 2-9, to provide a sufficiently tight fit of the emitter 22 and the detector 24 against the tissue of the patient, certain embodiments of the sensor 10 may include a biasing mechanism, such as a spring, that provides a biasing force to close the distance between the emitter 22 and the detector 24. The spring may also maintain or increase the biasing force as the emitter 22 and detector 24 are spread farther apart from one another. For example, the sensor 10 may include a frame with a top portion that contains the emitter 22 and bottom portion that includes a detector 24, and the frame may take the form of a clip that allows a practitioner to squeeze tabs to separate the emitter 22 and detector 24. The sensor 10 can be opened by a sufficient amount such that the sensor 10 can be clipped to a patient's finger, or to another location on the patient's body. Once attached to the patient, the biasing force may provide resistance to secure and maintain the sensor 10 in contact with the patient's tissue.


Turning now to FIG. 2, an embodiment of the sensor 10 is illustrated. In the embodiment, the sensor 10 includes a body (e.g., frame) 25 including a first segment 26, a second segment 28, a living hinge 30, and a biasing mechanism 32. The first segment 26 may be coupled to the second segment 28 via the living hinge 30 such that the first segment 26 and the second segment 28 can rotate relative to one another and about a pivot axis 34 of the living hinge 30. In the illustrated embodiment, the sensor 10 may also include a cable connection 36 that couples the cable 14 to the first segment 26 of the sensor 10. The cable connection 36 may include a strain relief, a permanent cabled connection, a quick disconnect mechanism, an overmolded portion of the cable, or the like. Further, the sensor 10 may include overmolding 37. In the illustrated embodiment, the overmolding 37 may encapsulate entirety of the sensor 10. In other embodiments, the overmolding 37 may be affixed to only a portion of the sensor 10.


In an embodiment, the first segment 26 includes a first end 38 and a second end 40. The first end 38 of the first segment 26 may include a first sensing device that is disposed internal to the first segment 26. For example, the emitter 22 of the sensor 10 may be disposed internal to the first end 38 of the first segment 26. The emitter 22 may be mechanically affixed in position via an interference fit, an adhesive, plastic welding, overmolding, or other technique that couples, adheres or holds the emitter 22 to the first segment 26.


In an embodiment, the second segment 28 may include a first end 44 and a second end 46. The first end 44 of the second segment 28 may include a second sensing device that is disposed internal to the second segment 28. For example, the detector 24 of the sensor 10 may be disposed internal to the first end 44 of the second segment 28 and in optical alignment with an emitter 22 disposed in the first segment 26. The detector 24 may be mechanically affixed in position via an interference fit, an adhesive, plastic welding, overmolding, or other technique that couples, attaches or holds the detector 24 to the second segment 28.


The second ends 40 and 46 of the first segment 26 and the second segment 28 may include extensions or tabs that facilitate handling of the sensor 10. For example, in the illustrated embodiment, the second ends 40 and 46 of the sensor 10 include respective protrusions 47 and 48 that extend outward from a location where the living hinge 30 is coupled to the second segment 28. Accordingly, applying squeezing force to the protrusions 47 and 48 to move them toward one another may create a moment about the pivot axis 34 of the living hinge 30. In other words, the protrusions 47 and 48 may act as levers to enable rotation of the first segment 26 and the second segment 28 about the pivot axis 34 of the living hinge 30.


In an embodiment, the first segment 26 and the second segment 28 may be coupled to one another via the living hinge 30. To promote flexure and rotation of the first segment 26 and second segment 28 relative to one another and about the pivot axis 34, the living hinge 30 may, in some embodiments, have a greater tendency to flex than other portions (e.g., the first segment 26 and the second segment 28) of the sensor 10. In certain embodiments, the living hinge 30 includes a necked portion 50 that has a cross-sectional width 52 that is less than the cross-sectional widths 54 and 55 of the components immediately coupled to and adjacent the living hinge 30. In certain embodiments, the first segment 26 and the second segment 28 may include regions proximate the living hinge 30 that have cross sectional widths 54 and 55 that are greater than the cross-sectional width 52 of the living hinge 30. Accordingly, where the living hinge 30, the first segment 26, and the second segment 28 are of similar properties (e.g., mechanical properties), a force applied to the second end 40 of the first segment 26 and/or the second end 46 of the second segment 28 may promote pivoting of the first segment 26 and the second segment 28 about the pivot axis 34. In other words, the living hinge 30 may bend or flex at or near the pivot axis 34 due to the living hinge 30 being a suitable cross sectional width 52 relative to adjacent or nearly adjacent regions.


In an embodiment, applying a force in the direction of arrows 56 to squeeze the second ends 40 and 46 of the first and second segments 26 and 28 together may bend or flex the living hinge 30, enabling the first and second segments 26 and 28 to rotate about the pivot axis 34. In turn, the rotation causes the first ends 38 and 44 to open in the direction of arrows 58, enlarging the gap 60 between the first ends 38 and 44. For example, a medical practitioner may squeeze the second ends 40 and 46 of the sensor 10 to enlarge the gap 60 so that the sensor 10 is in an open position where the first ends 38 and 44 of the sensor 10 can be clipped about a patient's finger, or other location.


In the illustrated embodiment, the pivot axis 34 of the living hinge 30 is offset from a centerline 62 of the sensor 10 by an offset distance 63. The centerline 62 may include a line, axis, or plane that is approximately the same distance from the first segment 26 and the second segment 28 at a referenced location or orientation of the sensor 10. For example, in the illustrated embodiment, the centerline 62 includes a plane that passes through a midpoint 64 of a segment 65 that extends between the first body portion 26 and the second body portion 28. In another embodiment, the centerline 62 may be defined by other features and orientations. For example, in one embodiment, the centerline 62 may be defined by a plane that bisects an angle 66 formed between interior faces 67 of the first end 38 of the first segment 26 and the first end 38 of the second segment 28 when the sensor 10 is closed. In another embodiment, the centerline 62 may include a plane that is approximately equal distance between the interior faces 67 when the sensor 10 is opened such that the faces 67 are parallel to one another.


In an embodiment, offsetting the pivot axis 34 of the living hinge 30 may facilitate manipulating the size and location of the gap 60. For example, increasing the offset distance 63 of the pivot axis 34 may increase the opening angle between the first and second segments 26 and 28 and increase the size of the gap 60 relative to the distance the second ends 40 and 46 are moved (i.e., squeezed) toward one another.


In an embodiment, the recovery of the living hinge 30 may cause the living hinge 30 to have a tendency to return to its unflexed state and, therefore, may provide a restoring (e.g., biasing force) that urges the first segment 26 and the second segment 28 to an unbiased position, such as the opened or closed position. The recovery of the living hinge 30 may be characterized by several mechanical properties, including, but not limited to, the elasticity, stiffness, and/or strength of the material used to form the living hinge 30. In the illustrated embodiment, when the second ends 40 and 46 of the first and second segments 26 and 28 are squeezed to open the sensor 10 (i.e., increase the size of the gap 60), the living hinge 30 may generate a restoring force that resist the bending or flexing of the living hinge 30. Accordingly, when the force applied to open the first and second segments 26 and 28 is reduced, the living hinge 30 may urge the first and second segments 26 and 28 into the closed position (i.e., a position where the size of the gap 60 is reduced). Such a restoring force may enable the sensor 10 to clip and grip to the finger of a patient.


Although the restoring force provided by the living hinge 30 may be sufficient to provide a tight fit with good contact against the patient's tissue, other embodiments may include the addition of a biasing mechanism to provide or increase the restoring force. For example, in the illustrated embodiment, the sensor 10 includes a biasing mechanism 32 disposed between the first segment 26 and the second segment 28. The biasing mechanism 32 may provide a biasing force to cause the first segment 26 and the second segment 28 to rotate relative to one another and reduce the size of the gap 60.


For example, in the illustrated embodiment, the biasing mechanism 32 includes a torsion spring 68 that provides a biasing force in a direction opposite from the direction of the force employed to squeeze the second ends 40 and 46 of the first and second segments 26 and 28 (e.g., a force in the direction of arrows 69). Thus, the biasing mechanism 32 may provide a biasing moment acting on the first and second segments 26 and 28 that urges the sensor 10 to the closed position. As is discussed in further detail below, the biasing mechanism 32 can take a variety of forms, including but not limited to the torsion spring 68, a double torsion spring, a flat spring, a compression spring, a conical compression spring, or combinations thereof. Other embodiments may include one or more of the biasing mechanism 32 coupled to the sensor 10. For example, two biasing mechanisms 32 may be disposed coaxially (i.e., coincident) and abutting one another.


Further, the axis of the biasing mechanism 32 may be coaxial with the pivot axis 34 of the living hinge 30. For example, in the illustrated embodiment, the longitudinal axis of the torsion spring and the pivot axis 34 are coaxial. Locating the axis of the biasing mechanism 32 and the pivot axis 34 coaxial to one another may promote bending and flexing of the living hinge 30 about the pivot axis 34. The axis of the biasing mechanism 32 and the pivot axis 34 may both be offset from the centerline 62 of the sensor 10. For example, as illustrated and discussed above, the axis of the biasing mechanism 32 and the pivot axis 34 may be offset by the offset distance 63 from the centerline 62.


Turning now to FIG. 3, a perspective of an embodiment of the sensor 10 including the biasing mechanism 32 is illustrated. The biasing mechanism 32 may include the torsion spring 68 disposed in a slot 70. The slot 70 may include a region void of material, such as a cutout, in a central portion in of the living hinge 30. In such an embodiment, the living hinge 30 is formed from first living hinge portion 72 on one side of the slot 70 and a second living hinge portion 73 on the other side of the slot 70. Further, in the depicted embodiment, the sensor 10 includes indentations that are conducive to the placement and retention of the biasing mechanism 32. For example, a first indentation 74 and a first retaining hole 76 may be formed into the second segment 28. A first leg 78 of the torsion spring 68 may be disposed in the indentation 74 and the retaining hole 76. Similarly, a second indentation 80 may be formed into the first segment 26. A second leg 82 of the torsion spring 68 may be disposed in the second indentation 80. Disposing the first leg 78 into the first indentation 74 and the retaining hole 76 and/or disposing the second leg 82 into the second indentation 80 may facilitate alignment and retention of the torsion spring 68 relative to the living hinge 30.


Turning now to FIG. 4, a perspective view of an embodiment of the sensor 10 including the biasing mechanism 32 is illustrated. In this embodiment, the biasing mechanism 32 includes the torsion spring 68 disposed in the slot 70 and about a mandrel 84. In the illustrated embodiment, the mandrel 84 includes a portion of material of the sensor 10 extending from the periphery of the slot 70 through the center of the torsion spring 68. The mandrel 84 may extend coaxial with the pivot axis 34 and the axis of the torsion spring 68. The mandrel 84 may facilitate alignment and retention of the biasing mechanism 32 relative to the living hinge 30 during assembly and operation.


In an embodiment, the mandrel 84 may also include features that facilitate assembly of the biasing mechanism 32 to the sensor 10. For example, the mandrel 84 may extend only a portion of the distance across the slot 70 such that the biasing mechanism 32 may be threaded onto the mandrel 84. Further, in the illustrated embodiment, the mandrel 84 includes a first mandrel portion 86 and a second mandrel portion 88 that each extend from opposite sides of the slot 70. In such an embodiment, the sensor 10 may comprise a first sensor portion 90 and a second sensor portion 92 that are assembled to one another to form the sensor 10. The first sensor portion 90 and the second sensor portion 92 can be assembled around the biasing mechanism 32, such that the first mandrel portion 86 and the second mandrel portion 88 extend through the center of the biasing mechanism 32. In the illustrated embodiment, the mandrel 84 includes at least a portion of the living hinge 30. In other embodiments, the mandrel 84 may include a portion of the first segment 26, the second segment 28, or a combination of the first segment 26, the second segment 28 and/or the living hinge 30.


Turning now to FIG. 5, a perspective view of an embodiment of the sensor 10 including the biasing mechanism 32 is illustrated. In the depicted embodiment, the biasing mechanism 32 includes a flat spring 93 coupled to the sensor 10. For example, in the illustrated embodiment, the biasing mechanism 32, including the flat spring 93, is disposed in a first indentation 94 in the first segment 26 and a second indentation 96 in the second segment 28. The indentations 94 and 96 may facilitate alignment and retention of the biasing mechanism 32 relative to the living hinge 30.


Further, in certain embodiments, the biasing mechanism 32, including the flat spring 93, may include features conducive to flexing of the flat spring at or near the pivot axis 34. For example, in the illustrated embodiment, the flat spring 93 includes a cutout 98 proximate the pivot axis 34. The cutout 98 may encourage flexing and bending of the flat spring 93 at or near the pivot axis 34 and, thus, encourage the first segment 26 and the second segment 28 to pivot about the pivot axis 34 relative to one another. Further, the geometry and material of the flat spring 93 may be varied to accommodate various designs. For example, the flat spring 93 may include a metal (e.g., steel or aluminum), polymeric composition (e.g., polypropylene), or a similar material. Further, the size, shape, and number of cutouts 98 may be varied to influence the stiffness of the flat spring 93 and the resulting biasing force. For example, the size, number, and location of cutouts 98 may be increased or decreased to vary the force applied to open the sensor 10.


Turning now to FIG. 6, a perspective view of an embodiment of the sensor 10 including the biasing mechanism 32 is illustrated. In the depicted embodiment, the biasing mechanism 32 includes a compression spring 99 coupled to the sensor 10. For example, in the illustrated embodiment, the biasing mechanism 32 includes the compression spring 99 disposed about a first protrusion 100 on a face of the first segment 26 and about a second protrusion 102 on a face of the second segment 28. Accordingly, when an opening force is applied in the direction of the arrows 56 to squeeze the sensor 10 to the open position, the biasing mechanism 32 including a compression spring may generate a biasing force in the opposite direction (e.g., in the direction of arrows 101). The biasing force biases the sensor 10 to the closed position as discussed previously.


In an embodiment, the protrusions 100 and 102 are disposed along a protrusion axis 104. In one embodiment, the protrusion axis 104 is not parallel to the pivot axis 34. For example, in the illustrated embodiment, the protrusion axis 104 is generally perpendicular to and offset from the pivot axis 34. Each of the protrusions 100 and 102 may have axes that are coaxial or not coaxial. Further, the protrusions 100 and 102 may have a height 106 of approximately 0.1 inches, 0.2 inches, 0.4 inches, 0.5 inches or more. In operation and assembly, the protrusions 100 and 102 can facilitate alignment and retention of the biasing mechanism 32 relative to the living hinge 30.


In various embodiments, the protrusions 100 and 102 may be replaced or used in combination with indentations in the first segment 26 and/or the second segment 28. For example, the first and second segments 26 and 28 may include recesses 105 proximate the intersection of the protrusions 100 and 102 and the segments 26 and 28. In other words, the segments 26 and 28 may include a channel that surrounds the base of the protrusions 100 and 102, and that accepts at least a portion of the biasing mechanism 32. Further, an embodiment may include recesses 105 without employing a protrusion 100 or 102, i.e., the recesses 105 alone hold the biasing mechanism 32 in place. The recesses 105 may further promote alignment and retention of the biasing mechanism 32.


Turning now to FIG. 7, an embodiment of the sensor 10 including a plurality of biasing mechanisms 32 is illustrated. In the depicted embodiment, the sensor 10 includes two biasing mechanisms 32. A first biasing mechanism 32 may be disposed about a first axis 108, and a second biasing mechanism 32 may be disposed about a second axis 112. In the depicted embodiment, each of the first and second biasing mechanisms 32 and 110 include a double torsion spring 113. The first axis 108 and the second axis 110 may be parallel and offset from the pivot axis 34 of the living hinge 30. Each of the double torsion springs 113 may include a first end 114 having a coil disposed in a first indentation 116 and a second end 118 having a coil disposed in a second indentation 120. The first end 114 and the second end 116 may be coupled to one another via a leg 122 disposed in a channel 124 of the living hinge 30. The channels 124 may run parallel to the first axis 108 and the second axis 112. A second leg 126 may be disposed in an indentation 128 in the first and second segments 26 and 28. During assembly of the sensor 10, the biasing mechanisms 106 and 110 may be snapped into the indentations 116 and 120, the channels 124 and the indentation 128. Accordingly, in the depicted embodiment, the indentations 116, 120 and 128 and channels 124 may facilitate alignment and retention of the double torsion springs 113 relative to the living hinge 30.


In accordance with the previously discussed embodiments, the sensor 10 may be formed from various materials and by various processes. For example, the sensor 10 may be formed from a single type material or a combination of material types. In one embodiment, the first segment 26, the second segment 28 and the living hinge 30 may be formed from the same or similar material, such as polypropylene or other elastomers. In such an embodiment, these three components can be formed in a single-shot molding process that integrates each of the components into a single body that includes the first segment 26, the second segment 28 and the living hinge 30, and includes other features discussed previously. Alternately, the components can be formed separately, such as by independent molding processes, and subsequently coupled to one another, such as by an adhesive, a plastic weld, or other form of assembly.


In an embodiment, the first segment 26, the second segment 28 and the living hinge 30 may not be formed from the same material. For example, in one embodiment, the first segment 26 and the second segment 28 may be formed from a first material, such as polypropylene, and the living hinge 30 may be formed from a second material, such as a rubber thermoplastic elastomer (TPE). In such an embodiment, these three components can be formed in a two-shot molding process (i.e., a process that includes molding the components formed from the first material, followed by molding the components formed from the second material) that integrates each of the components in to a single body (e.g., body 25) that including the first segment 26, the second segment 28 and the living hinge 30, and any of the features discussed previously.


Further, forming the sensor 10 may include overmolding the sensor 10 with an additional material, such as a conformable or soft material (e.g., a material having a durometer below 40 Shore A). Overmolding may include disposing a material about the sensor that encapsulates or coats at least a portion of the segments 26 and 28, the living hinge 30, and/or other components of the sensor 10, such as the biasing mechanism 32, the emitter 22, the detector 24, and the cable 14. Overmolding may increase the durability of the sensor 10 by providing a flexible covering, and may enhance the overall appearance and ergonomics of the sensor 10.


Turning now to FIG. 8, an embodiment of a method 130 for manufacturing the sensor 10 is depicted. The depicted method 130 may include forming the sensor body, as illustrated at block 132. Forming the sensor body (block 132) may include molding the first segment 26, the second segment 28, the living hinge 30, and other features as discussed above. In certain embodiments, forming the sensor body (block 132) may include a one-shot molding, a two-shot molding, overmolding and/or similar processes. However, in some embodiments, overmolding may be performed at a later stage in the manufacturing process.


The method 130 may also include assembling the biasing mechanism, as illustrated at block 134. Assembling the biasing mechanism (block 134) may generally include snapping, or otherwise positioning, the biasing mechanism 32 into place relative to the first segment 26, the second segment 28 and the living hinge 30. For example, a spring may be snapped into the slot 70, in the indentations 74, 80, 94, 96, 116, 118 and 128, around protrusions 100 and 102, in the hole 76, around the mandrel 84, in the channels 124, and the like, as discussed in the preceding embodiments.


The method 130 may also include assembling the emitter and the detector to the sensor 10, as illustrated at block 136. As discussed above, embodiments may include employing an adhesive, an interference fit, or other attachment technique to couple the emitter 22 and the detector 24 to the first segment 26 and the second segment 28, respectively. Further, the emitter 22 and detector 24 may be assembled prior to or after the sensor 10 is overmolded.


The method 130 may also include assembling the cable to the sensor, as illustrated at block 138. Assembling the cable 14 to the sensor 10 (block 138) may include making electrical connections between the cable and the sensing devices (e.g., the emitter 22 and the detector 24). For example, ends of the cable 14 may be soldered to complementary electrical leads, a strain relief snapped into place, or the like. It should be noted that in some embodiments, the cable 14 may be formed integrally with the sensor 10, and assembling the cable to 14 to the sensor 10 (block 138) may be performed prior to or integral with forming the sensor body (block 132). For example, the cable 14 may be coupled to the sensor 10 and/or the emitter 22, and molded as an integral component of the first segment 26, or integral to the overmolding of the sensor 10. As will be appreciated, the method 130 may include additional steps, and/or accomplish the method steps in various orders to achieve the desired result.


Turning now to FIG. 9, an embodiment of a method 140 of operating the sensor 10 is illustrated. The method may include applying an opening force to the sensor, as illustrated at block 142. Applying an opening force (block 142) may include applying force in the direction of arrows 56 to increase the size of the gap 60 to bias the sensor 10 to the open position. The method 140 also includes affixing the sensor to the patient, as illustrated at block 144. For example, the first ends 38 and 44 of the sensor 10 may be disposed about the finger tip or other tissue of a patient, and the opening force removed, as illustrated at block 146. Removing the opening force may enable the sensor 10 to return to the closed position and be secured to the patient. As discussed previously, when the opening force is removed, the living hinge 30 and/or the biasing mechanism 32 may provide a sufficient biasing force to return the sensor 10 to the closed position and ensure the sensor 10 remains in contact with and attached to the patient. Accordingly, with the sensor 10 secured to the patient, the sensor 10 may be employed to acquire patient information, as illustrated at block 148. In other words, signals may be transmitted between the monitor 12 and the sensor 10 to acquire information relating to the patient. As will be appreciated, the method 140 may include additional steps, and/or accomplish the method steps in various orders to achieve the desired result.


While the medical sensors 10 discussed herein are some examples of integrally molded medical devices, other such devices are also contemplated and fall within the scope of the present disclosure. For example, other medical sensors and/or contacts applied externally to a patient may be advantageously applied using a sensor 10 having an integral living hinge 30. For example, devices for measuring tissue water fraction or other body fluid related metrics may utilize a sensor as described herein. Likewise, other spectrophotometric applications where a probe is attached to a patient may utilize a sensor as described herein.


While the disclosure may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the following appended claims.

Claims
  • 1. A medical sensor assembly, comprising: a sensor body comprising: a first segment having a first protrusion;a second segment having a second protrusion;at least one sensing element disposed internally within the first segment or the second segment;a living hinge comprising a pivot axis, wherein the living hinge mechanically couples the first segment and the second segment, and is configured to enable the first segment and the second segment to pivot relative to one another generally about the pivot axis when a compression force is applied to the first protrusion and the second protrusion to move the first and second protrusions generally toward one another, and wherein the living hinge is configured to apply a first biasing force in the absence of the compression force to move ends of the first and second segments distal from the first and second protrusions generally toward one another; anda biasing member configured to generate a moment about the pivot axis of the living hinge, wherein the biasing member generates a second biasing force that moves the ends of the first and second segments generally toward one another.
  • 2. The medical sensor assembly of claim 1, wherein the pivot axis is offset from a centerline of the sensor body.
  • 3. The medical sensor assembly of claim 1, wherein the living hinge comprises a cross-sectional width that is generally less than the cross-sectional width of portions of the first segment and the second segment that are proximate the living hinge.
  • 4. The medical sensor assembly of claim 1, wherein the biasing member comprises a torsion spring, a double torsion spring, a flat spring, a compression spring, a conical compression spring, or combinations thereof.
  • 5. The medical sensor assembly of claim 1, wherein an axis of the biasing member is generally coaxial with the pivot axis of the living hinge.
  • 6. The medical sensor assembly of claim 1, wherein an axis of the biasing member is generally not parallel to the pivot axis of the living hinge.
  • 7. The medical sensor assembly of claim 1, comprising a mandrel configured to be disposed generally internal to a biasing member.
  • 8. The medical sensor assembly of claim 1, wherein the body comprises a cutout that is configured to accept a biasing member.
  • 9. The medical sensor assembly of claim 1, wherein the sensor body is formed from polypropylene.
  • 10. The medical sensor assembly of claim 1, wherein the sensor body is formed from a first material and the living hinge is formed from a second material, and wherein the first material is different from the second material.
  • 11. The medical sensor assembly of claim 10, wherein the first material comprises polypropylene and the second material comprises a thermoplastic elastomer.
  • 12. The medical sensor assembly of claim 1, wherein the medical sensor assembly is configured for use in a pulse oximetry sensor.
  • 13. The medical sensor assembly of claim 1, comprising an output cable coupled to a first end of the first segment, wherein the first end is configured to contact a patient.
  • 14. The medical sensor assembly of claim 1, wherein the sensing element is an optical emitter configured to emit light in a red to infrared range or an optical detector configured to receive light in the red to infrared range.
  • 15. The medical sensor assembly of claim 1, wherein the first and second protrusions extend outward from a location where the living hinge mechanically couples the first segment and the second segment.
  • 16. The medical sensor assembly of claim 1, wherein the pivot axis of the living hinge is generally perpendicular to a longitudinal axis of the sensor body.
  • 17. The medical sensor assembly of claim 1, wherein the at least one sensing element is disposed internally within an end of the first segment or the second segment, and the living hinge couples the first segment and the second segment at a location distal from the end.
  • 18. A sensor system, comprising: a sensor assembly comprising: a sensor comprising a first sensing element and a second sensing element;a sensor frame configured to support the sensor, comprising:a first body portion configured to support the first sensing element internally within the first body portion, wherein the first body portion comprises a first protrusion;a second body portion configured to support the second sensing element internally within the second body portion, wherein the second body portion comprises a second protrusion; anda living hinge mechanically coupling the first body portion and the second body portion, wherein the first body portion and the second body portion are configured to pivot relative to one another generally about a pivot axis of the living hinge when a compression force is applied to the first protrusion and the second protrusion to move the first and second protrusions generally toward one another, wherein the pivot axis of the living hinge is generally perpendicular to a longitudinal axis of the sensor frame, and wherein the living hinge is configured to apply a first biasing force in the absence of the compression force to move the first body portion and the second body portion toward one another; andat least one member configured to generate a moment about the pivot axis of the living hinge and generally bias a first end of the first body portion and a second end of the second body portion toward one another.
  • 19. The sensor system of claim 18, wherein the member comprises a torsion spring, a double torsion spring, a flat spring, a compression spring, or a conical compression spring.
  • 20. The sensor system of claim 18, wherein an axis of the member is generally coincident with the pivot axis of the living hinge.
  • 21. The sensor system of claim 18, wherein the sensor frame is overmolded to enclose the first body portion, the second body portion, and the living hinge.
  • 22. The sensor system of claim 18, comprising a monitor coupled to the sensor assembly.
  • 23. The sensor system of claim 18, wherein the first and second sensing elements are optical emitters configured to emit light in a red to infrared range or optical detectors configured to receive light in the red to infrared range.
  • 24. The sensor system of claim 18, wherein the first and second body portions are configured to support the first and second sensing elements internally within an end of the sensor frame, and wherein the living hinge mechanically couples the first and second body portions at a location of the sensor frame distal from the end of the sensor frame.
  • 25. The sensor system of claim 18, wherein the living hinge comprises a first living hinge portion disposed on a first side of the at least one member, and a second living hinge portion disposed on a second side of the at least one member.
  • 26. A method of manufacturing a sensor frame, comprising: forming an integral sensor body having a first frame segment having a first protrusion, a second frame segment having a second protrusion, at least one sensing element disposed internally within the first frame segment or second frame segment, and a living hinge, wherein the first frame segment and the second frame segment are configured to pivot relative to one another generally about a pivot axis of the living hinge; andcoupling at least one biasing mechanism to the first frame segment and the second frame segment, wherein the at least one biasing mechanism is configured to generate a moment about the pivot axis of the living hinge, and wherein the moment generally biases the first frame segment and second frame segment into a closed position, and wherein applying a compression force to the first protrusion and the second protrusion enables the first and second frame segments to pivot relative to each other into an open position, and wherein in the absence of the compression force the living hinge is configured to generate a biasing force configured to bias the first frame segment and the second frame segment into the closed position.
  • 27. The method of claim 26, wherein the pivot axis of the living hinge is generally perpendicular to a longitudinal axis of the integral sensor body.
  • 28. The method of claim 26, wherein the at least one sensing element is disposed within an end of the first frame segment or the second frame segment, and the living hinge couples the first frame segment and the second frame segment at a location of the integral sensor body distal from the end.
  • 29. The method of claim 26, wherein the integral sensor body is overmolded to enclose the first frame segment, the second frame segment, and the living hinge.
RELATED APPLICATION

This application claims priority from U.S. Patent Application No. 61/009,709 which was filed Dec. 31, 2007 and is incorporated herein by reference in its entirety.

US Referenced Citations (863)
Number Name Date Kind
3721813 Condon et al. Mar 1973 A
4506416 Ohminato et al. Mar 1985 A
4586513 Hamaguri May 1986 A
4603700 Nichols et al. Aug 1986 A
4621643 New, Jr. et al. Nov 1986 A
4653498 New, Jr. et al. Mar 1987 A
4681109 Arroyo Jul 1987 A
4685464 Goldberger et al. Aug 1987 A
4694833 Hamaguri Sep 1987 A
4697593 Evans et al. Oct 1987 A
4700708 New, Jr. et al. Oct 1987 A
4714080 Edgar, Jr. et al. Dec 1987 A
4714341 Hamaguri et al. Dec 1987 A
4759369 Taylor Jul 1988 A
4770179 New, Jr. et al. Sep 1988 A
4773422 Isaacson et al. Sep 1988 A
4776339 Schreiber Oct 1988 A
4781195 Martin Nov 1988 A
4796636 Branstetter et al. Jan 1989 A
4800495 Smith Jan 1989 A
4800885 Johnson Jan 1989 A
4802486 Goodman et al. Feb 1989 A
4805623 Jöbsis Feb 1989 A
4807630 Malinouskas Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4819646 Cheung et al. Apr 1989 A
4819752 Zelin Apr 1989 A
4824242 Frick et al. Apr 1989 A
4825872 Tan et al. May 1989 A
4825879 Tan et al. May 1989 A
4830014 Goodman et al. May 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4848901 Hood, Jr. Jul 1989 A
4854699 Edgar, Jr. Aug 1989 A
4859056 Prosser et al. Aug 1989 A
4859057 Taylor et al. Aug 1989 A
4863265 Flower et al. Sep 1989 A
4865038 Rich et al. Sep 1989 A
4867557 Takatani et al. Sep 1989 A
4869253 Craig, Jr. et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4880304 Jaeb et al. Nov 1989 A
4883055 Merrick Nov 1989 A
4883353 Hansmann et al. Nov 1989 A
4890619 Hatschek Jan 1990 A
4892101 Cheung et al. Jan 1990 A
4901238 Suzuki et al. Feb 1990 A
4908762 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4926867 Kanda et al. May 1990 A
4927264 Shiga et al. May 1990 A
4928692 Goodman et al. May 1990 A
4934372 Corenman et al. Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4942877 Sakai et al. Jul 1990 A
4948248 Lehman Aug 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4971062 Hasebe et al. Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5007423 Branstetter et al. Apr 1991 A
5025791 Niwa Jun 1991 A
RE33643 Isaacson et al. Jul 1991 E
5028787 Rosenthal et al. Jul 1991 A
5040039 Hattori et al. Aug 1991 A
5054488 Muz Oct 1991 A
5055671 Jones Oct 1991 A
5058588 Kaestle Oct 1991 A
5065749 Hasebe et al. Nov 1991 A
5066859 Karkar et al. Nov 1991 A
5069213 Polczynski Dec 1991 A
5078136 Stone et al. Jan 1992 A
5084327 Stengel Jan 1992 A
5088493 Giannini et al. Feb 1992 A
5090410 Saper et al. Feb 1992 A
5094239 Jaeb et al. Mar 1992 A
5094240 Muz Mar 1992 A
5099841 Heinonen et al. Mar 1992 A
5099842 Mannheimer et al. Mar 1992 A
H0001039 Tripp et al. Apr 1992 H
5104623 Miller Apr 1992 A
5109849 Goodman et al. May 1992 A
5111817 Clark et al. May 1992 A
5113861 Rother May 1992 A
5125403 Culp Jun 1992 A
5127406 Yamaguchi Jul 1992 A
5131391 Sakai et al. Jul 1992 A
5140989 Lewis et al. Aug 1992 A
5152296 Simons Oct 1992 A
5154175 Gunther Oct 1992 A
5158082 Jones Oct 1992 A
5170786 Thomas et al. Dec 1992 A
5188108 Secker et al. Feb 1993 A
5190038 Polson et al. Mar 1993 A
5193542 Missanelli et al. Mar 1993 A
5193543 Yelderman Mar 1993 A
5203329 Takatani et al. Apr 1993 A
5209230 Swedlow et al. May 1993 A
5213099 Tripp et al. May 1993 A
5216598 Branstetter et al. Jun 1993 A
5217012 Young et al. Jun 1993 A
5217013 Lewis et al. Jun 1993 A
5218962 Mannheimer et al. Jun 1993 A
5224478 Sakai et al. Jul 1993 A
5226417 Swedlow et al. Jul 1993 A
5228440 Chung et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5239185 Ito et al. Aug 1993 A
5246002 Prosser Sep 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5247932 Chung et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5253645 Freidman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5259381 Cheung et al. Nov 1993 A
5259761 Schnettler et al. Nov 1993 A
5263244 Centa et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5273036 Kronberg et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5279295 Martens et al. Jan 1994 A
5285783 Secker Feb 1994 A
5285784 Seeker Feb 1994 A
5287853 Vester et al. Feb 1994 A
5291884 Heinemann et al. Mar 1994 A
5297548 Pologe Mar 1994 A
5299120 Kaestle Mar 1994 A
5299570 Hatschek Apr 1994 A
5309908 Freidman et al. May 1994 A
5311865 Mayeux May 1994 A
5313940 Fuse et al. May 1994 A
5323776 Blakeley et al. Jun 1994 A
5329922 Atlee, III Jul 1994 A
5337744 Branigan Aug 1994 A
5339810 Ivers et al. Aug 1994 A
5343818 McCarthy et al. Sep 1994 A
5343869 Pross et al. Sep 1994 A
5348003 Caro Sep 1994 A
5348004 Hollub et al. Sep 1994 A
5349519 Kaestle Sep 1994 A
5349952 McCarthy et al. Sep 1994 A
5349953 McCarthy et al. Sep 1994 A
5351685 Potratz Oct 1994 A
5353799 Chance Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5365066 Krueger, Jr. et al. Nov 1994 A
5368025 Young et al. Nov 1994 A
5368026 Swedlow et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5372136 Steuer et al. Dec 1994 A
5377675 Ruskewicz et al. Jan 1995 A
5385143 Aoyagi Jan 1995 A
5387122 Goldberger et al. Feb 1995 A
5390670 Centa et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5398680 Polson et al. Mar 1995 A
5402777 Warring et al. Apr 1995 A
5411023 Morris, Sr. et al. May 1995 A
5411024 Thomas et al. May 1995 A
5413099 Schmidt et al. May 1995 A
5413100 Barthelemy et al. May 1995 A
5413101 Sugiura May 1995 A
5413102 Schmidt et al. May 1995 A
5417207 Young et al. May 1995 A
5421329 Casciani et al. Jun 1995 A
5425360 Nelson Jun 1995 A
5425362 Siker et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5429129 Lovejoy et al. Jul 1995 A
5431159 Baker et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5437275 Amundsen et al. Aug 1995 A
5438986 Disch et al. Aug 1995 A
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
5465714 Scheuing Nov 1995 A
5469845 DeLonzor et al. Nov 1995 A
RE35122 Corenman et al. Dec 1995 E
5482034 Lewis et al. Jan 1996 A
5482036 Diab et al. Jan 1996 A
5483646 Uchikoga Jan 1996 A
5485847 Baker, Jr. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5491299 Naylor et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5497771 Rosenheimer Mar 1996 A
5499627 Steuer et al. Mar 1996 A
5503148 Pologe et al. Apr 1996 A
5505199 Kim Apr 1996 A
5507286 Solenberger Apr 1996 A
5511546 Hon Apr 1996 A
5517988 Gerhard May 1996 A
5520177 Ogawa et al. May 1996 A
5521851 Wei et al. May 1996 A
5522388 Ishikawa et al. Jun 1996 A
5524617 Mannheimer Jun 1996 A
5529064 Rall et al. Jun 1996 A
5533507 Potratz et al. Jul 1996 A
5551423 Sugiura Sep 1996 A
5551424 Morrison et al. Sep 1996 A
5553614 Chance Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5558096 Palatnik Sep 1996 A
5560355 Merchant et al. Oct 1996 A
5564417 Chance Oct 1996 A
5575284 Athan et al. Nov 1996 A
5575285 Takanashi et al. Nov 1996 A
5577500 Potratz Nov 1996 A
5582169 Oda et al. Dec 1996 A
5584296 Cui et al. Dec 1996 A
5588425 Sackner et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596986 Goldfarb Jan 1997 A
5611337 Bukta Mar 1997 A
5617852 MacGregor Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5632273 Suzuki May 1997 A
5634459 Gardosi Jun 1997 A
5638593 Gerhardt et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645060 Yorkey et al. Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662105 Tien Sep 1997 A
5662106 Swedlow et al. Sep 1997 A
5666952 Fuse et al. Sep 1997 A
5671529 Nelson Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5673693 Solenberger Oct 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5680857 Pelikan et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5692505 Fouts Dec 1997 A
5709205 Bukta Jan 1998 A
5713355 Richardson et al. Feb 1998 A
5724967 Venkatachalam Mar 1998 A
5727547 Levinson et al. Mar 1998 A
5731582 West Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743260 Chung et al. Apr 1998 A
5743263 Baker, Jr. Apr 1998 A
5746206 Mannheimer May 1998 A
5746697 Swedlow et al. May 1998 A
5752914 DeLonzor et al. May 1998 A
5755226 Carim et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5766125 Aoyagi et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772587 Gratton et al. Jun 1998 A
5774213 Trebino et al. Jun 1998 A
5776058 Levinson et al. Jul 1998 A
5776059 Kaestle Jul 1998 A
5779630 Fein et al. Jul 1998 A
5779631 Chance Jul 1998 A
5782237 Casciani et al. Jul 1998 A
5782756 Mannheimer Jul 1998 A
5782757 Diab et al. Jul 1998 A
5782758 Ausec et al. Jul 1998 A
5786592 Hök Jul 1998 A
5790729 Pologe et al. Aug 1998 A
5792052 Isaacson et al. Aug 1998 A
5795292 Lewis et al. Aug 1998 A
5797841 DeLonzor et al. Aug 1998 A
5800348 Kaestle Sep 1998 A
5800349 Isaacson et al. Sep 1998 A
5803910 Potratz Sep 1998 A
5807246 Sakaguchi et al. Sep 1998 A
5807247 Merchant et al. Sep 1998 A
5807248 Mills Sep 1998 A
5810723 Aldrich Sep 1998 A
5810724 Gronvall Sep 1998 A
5813980 Levinson et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5817009 Rosenheimer et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5820550 Polson et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5830135 Bosque et al. Nov 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830137 Scharf Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5842979 Jarman et al. Dec 1998 A
5842981 Larsen et al. Dec 1998 A
5842982 Mannheimer Dec 1998 A
5846190 Woehrle Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5871442 Madarasz et al. Feb 1999 A
5879294 Anderson et al. Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891021 Dillon et al. Apr 1999 A
5891022 Pologe Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5891025 Buschmann et al. Apr 1999 A
5891026 Wang et al. Apr 1999 A
5902235 Lewis et al. May 1999 A
5910108 Solenberger Jun 1999 A
5911690 Rall Jun 1999 A
5912656 Tham et al. Jun 1999 A
5913819 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916155 Levinson et al. Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5922607 Bernreuter Jul 1999 A
5924979 Swedlow et al. Jul 1999 A
5924980 Coetzee Jul 1999 A
5924982 Chin Jul 1999 A
5924985 Jones Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5960610 Levinson et al. Oct 1999 A
5961450 Merchant et al. Oct 1999 A
5961452 Chung et al. Oct 1999 A
5964701 Asada et al. Oct 1999 A
5971930 Elghazzawi Oct 1999 A
5978691 Mills Nov 1999 A
5978693 Hamilton et al. Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995858 Kinast Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6006120 Levin Dec 1999 A
6011985 Athan et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014576 Raley et al. Jan 2000 A
6018673 Chin et al. Jan 2000 A
6018674 Aronow Jan 2000 A
6022321 Amano et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6026314 Amerov et al. Feb 2000 A
6031603 Fine et al. Feb 2000 A
6035223 Baker, Jr. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6041247 Weckstrom et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6047201 Jackson, III Apr 2000 A
6061584 Lovejoy et al. May 2000 A
6064898 Aldrich May 2000 A
6064899 Fein et al. May 2000 A
6067462 Diab et al. May 2000 A
6073038 Wang et al. Jun 2000 A
6078833 Hueber Jun 2000 A
6081735 Diab et al. Jun 2000 A
6081742 Amano et al. Jun 2000 A
6083157 Noller Jul 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6104938 Huiku et al. Aug 2000 A
6112107 Hannula Aug 2000 A
6113541 Dias et al. Sep 2000 A
6115621 Chin Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6133994 Mathews et al. Oct 2000 A
6135952 Coetzee Oct 2000 A
6144444 Haworth et al. Nov 2000 A
6144867 Walker et al. Nov 2000 A
6144868 Parker Nov 2000 A
6149481 Wang et al. Nov 2000 A
6150951 Olejniczak Nov 2000 A
6151107 Schöllermann et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6173196 Delonzor et al. Jan 2001 B1
6178343 Bindszus et al. Jan 2001 B1
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllermann et al. Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6188470 Grace Feb 2001 B1
6192260 Chance Feb 2001 B1
6195575 Levinson Feb 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6206830 Diab et al. Mar 2001 B1
6213952 Finarov et al. Apr 2001 B1
6217523 Amano et al. Apr 2001 B1
6222189 Misner et al. Apr 2001 B1
6226539 Potratz May 2001 B1
6226540 Bernreuter et al. May 2001 B1
6229856 Diab et al. May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6233470 Tsuchiya May 2001 B1
6236871 Tsuchiya May 2001 B1
6236872 Diab et al. May 2001 B1
6240305 Tsuchiya May 2001 B1
6253097 Aronow et al. Jun 2001 B1
6253098 Walker et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6256524 Walker et al. Jul 2001 B1
6261236 Grimblatov Jul 2001 B1
6263221 Chance et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6263223 Shepherd et al. Jul 2001 B1
6266546 Steuer et al. Jul 2001 B1
6266547 Walker et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285894 Oppelt et al. Sep 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler et al. Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6308089 Von der Ruhr et al. Oct 2001 B1
6321100 Parker Nov 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6339715 Bahr et al. Jan 2002 B1
6343223 Chin et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6353750 Kimura et al. Mar 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360113 Dettling Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6361501 Amano et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
6370408 Merchant et al. Apr 2002 B1
6370409 Chung et al. Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6377829 Al-Ali et al. Apr 2002 B1
6381479 Norris Apr 2002 B1
6381480 Stoddart et al. Apr 2002 B1
6385471 Mortz May 2002 B1
6385821 Modgil et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6393310 Kuenstner May 2002 B1
6397091 Diab et al. May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6400971 Finarov et al. Jun 2002 B1
6400972 Fine Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411832 Guthermann Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6419671 Lemberg Jul 2002 B1
6421549 Jacques Jul 2002 B1
6430423 DeLonzor et al. Aug 2002 B2
6430513 Wang et al. Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6434408 Heckel et al. Aug 2002 B1
6438399 Kurth Aug 2002 B1
6449501 Reuss Sep 2002 B1
6453183 Walker Sep 2002 B1
6453184 Hyogo et al. Sep 2002 B1
6456862 Benni Sep 2002 B2
6461305 Schnall Oct 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6466808 Chin et al. Oct 2002 B1
6466809 Riley Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470200 Walker et al. Oct 2002 B2
6480729 Stone Nov 2002 B2
6490466 Fein et al. Dec 2002 B1
6496711 Athan et al. Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6505060 Norris Jan 2003 B1
6505061 Larson Jan 2003 B2
6505133 Hanna et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6510331 Williams et al. Jan 2003 B1
6512937 Blank et al. Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519484 Lovejoy et al. Feb 2003 B1
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6546267 Sugiura et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553242 Sarussi Apr 2003 B1
6553243 Gurley Apr 2003 B2
6556852 Schulze et al. Apr 2003 B1
6560470 Pologe May 2003 B1
6564077 Mortara May 2003 B2
6564088 Soller et al. May 2003 B1
6571113 Fein et al. May 2003 B1
6571114 Koike et al. May 2003 B1
6574491 Elghazzawi Jun 2003 B2
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587703 Cheng et al. Jul 2003 B2
6587704 Fine et al. Jul 2003 B1
6589172 Williams et al. Jul 2003 B2
6591122 Schmitt Jul 2003 B2
6591123 Fein et al. Jul 2003 B2
6594511 Stone et al. Jul 2003 B2
6594512 Huang Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6597931 Cheng et al. Jul 2003 B1
6597933 Kiani et al. Jul 2003 B2
6600940 Fein et al. Jul 2003 B1
6606510 Swedlow et al. Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6606512 Muz et al. Aug 2003 B2
6615064 Aldrich Sep 2003 B1
6615065 Barrett et al. Sep 2003 B1
6618602 Levin et al. Sep 2003 B2
6622034 Gorski et al. Sep 2003 B1
6628975 Fein et al. Sep 2003 B1
6631281 Kästle Oct 2003 B1
6643530 Diab et al. Nov 2003 B2
6643531 Katarow Nov 2003 B1
6647279 Pologe Nov 2003 B2
6647280 Bahr et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6650918 Terry Nov 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654622 Eberhard et al. Nov 2003 B1
6654623 Kästle Nov 2003 B1
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6658277 Wasserman Dec 2003 B2
6662033 Casciani et al. Dec 2003 B2
6665551 Suzuki Dec 2003 B1
6668182 Hubelbank Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6671530 Chung et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6671532 Fudge et al. Dec 2003 B1
6675031 Porges et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6681128 Steuer et al. Jan 2004 B2
6681454 Modgil et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694160 Chin Feb 2004 B2
6697653 Hanna Feb 2004 B2
6697655 Sueppel et al. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6699199 Asada et al. Mar 2004 B2
6701170 Stetson Mar 2004 B2
6702752 Dekker Mar 2004 B2
6707257 Norris Mar 2004 B2
6708049 Berson et al. Mar 2004 B1
6709402 Dekker Mar 2004 B2
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6714803 Mortz Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
6714805 Jeon et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719686 Coakley et al. Apr 2004 B2
6719705 Mills Apr 2004 B2
6720734 Norris Apr 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725074 Kästle Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6731963 Finarov et al. May 2004 B2
6731967 Turcott May 2004 B1
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748253 Norris et al. Jun 2004 B2
6748254 O'Neill et al. Jun 2004 B2
6754515 Pologe Jun 2004 B1
6754516 Mannheimer Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6760609 Jacques Jul 2004 B2
6760610 Tscupp et al. Jul 2004 B2
6763255 DeLonzor et al. Jul 2004 B2
6763256 Kimball et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773397 Kelly Aug 2004 B2
6778923 Norris et al. Aug 2004 B2
6780158 Yarita Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6793654 Lemberg Sep 2004 B2
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6801802 Sitzman et al. Oct 2004 B2
6802812 Walker et al. Oct 2004 B1
6805673 Dekker Oct 2004 B2
6810277 Edgar, Jr. et al. Oct 2004 B2
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6825619 Norris Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830711 Mills et al. Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6839579 Chin Jan 2005 B1
6839580 Zonios et al. Jan 2005 B2
6839582 Heckel Jan 2005 B2
6839659 Tarassenko et al. Jan 2005 B2
6842635 Parker Jan 2005 B1
6845256 Chin et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6850789 Schweitzer, Jr. et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6863652 Huang et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6879850 Kimball Apr 2005 B2
6882874 Huiku Apr 2005 B2
6889153 Dietiker May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6909912 Melker et al. Jun 2005 B2
6912413 Rantala et al. Jun 2005 B2
6916289 Schnall Jul 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931269 Terry Aug 2005 B2
6934570 Kiani et al. Aug 2005 B2
6939307 Dunlop Sep 2005 B1
6941162 Fudge et al. Sep 2005 B2
6947781 Asada et al. Sep 2005 B2
6950687 Al-Ali Sep 2005 B2
6963767 Rantala et al. Nov 2005 B2
6971580 Zhu et al. Dec 2005 B2
6983178 Fine et al. Jan 2006 B2
6985763 Boas et al. Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6990426 Yoon et al. Jan 2006 B2
6992751 Okita et al. Jan 2006 B2
6992772 Block et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6993372 Fine et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006855 Sarussi Feb 2006 B1
7006856 Baker, Jr. et al. Feb 2006 B2
7016715 Stetson Mar 2006 B2
7020507 Scharf et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7024235 Melker et al. Apr 2006 B2
7025728 Ito et al. Apr 2006 B2
7027849 Al-Ali et al. Apr 2006 B2
7027850 Wasserman Apr 2006 B2
7035697 Brown Apr 2006 B1
7039449 Al-Ali May 2006 B2
7043289 Fine et al. May 2006 B2
7047055 Boaz et al. May 2006 B2
7047056 Hannula et al. May 2006 B2
7060035 Wasserman et al. Jun 2006 B2
7062307 Norris et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7072701 Chen et al. Jul 2006 B2
7072702 Edgar, Jr. et al. Jul 2006 B2
7079880 Stetson Jul 2006 B2
7085597 Fein et al. Aug 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7107088 Aceti Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7123950 Mannheimer Oct 2006 B2
7127278 Melker et al. Oct 2006 B2
7130671 Baker, Jr. et al. Oct 2006 B2
7132641 Schulz et al. Nov 2006 B2
7133711 Chernoguz et al. Nov 2006 B2
7139599 Terry Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7162288 Nordstrom et al. Jan 2007 B2
7190987 Lindekugel et al. Mar 2007 B2
7198778 Mannheimer et al. Apr 2007 B2
7209775 Bae et al. Apr 2007 B2
7215984 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7236811 Schmitt Jun 2007 B2
7248910 Li et al. Jul 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7257438 Kinast Aug 2007 B2
7263395 Chan et al. Aug 2007 B2
7272426 Scmid Sep 2007 B2
7280858 Al-Ali et al. Oct 2007 B2
7295866 Al-Ali et al. Nov 2007 B2
7305262 Brodnick et al. Dec 2007 B2
7315753 Baker, Jr. et al. Jan 2008 B2
20010021803 Blank et al. Sep 2001 A1
20010051767 Williams et al. Dec 2001 A1
20020026109 Diab et al. Feb 2002 A1
20020028990 Shepherd et al. Mar 2002 A1
20020038078 Ito Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020068859 Knopp Jun 2002 A1
20020128544 Diab et al. Sep 2002 A1
20020133067 Jackson, III Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020173706 Takatani Nov 2002 A1
20020173709 Fine et al. Nov 2002 A1
20020190863 Lynn Dec 2002 A1
20020198442 Rantala et al. Dec 2002 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030036690 Geddes et al. Feb 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030073889 Keilbach et al. Apr 2003 A1
20030073890 Hanna Apr 2003 A1
20030100840 Sugiura et al. May 2003 A1
20030132495 Mills et al. Jul 2003 A1
20030135099 Al-Ali Jul 2003 A1
20030162414 Schulz et al. Aug 2003 A1
20030171662 O'Connor et al. Sep 2003 A1
20030176776 Huiku Sep 2003 A1
20030181799 Lindekugel et al. Sep 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030195402 Fein et al. Oct 2003 A1
20030197679 Ali et al. Oct 2003 A1
20030212316 Leiden et al. Nov 2003 A1
20030225323 Kiani et al. Dec 2003 A1
20030225337 Scharf et al. Dec 2003 A1
20030236452 Melker et al. Dec 2003 A1
20030236647 Yoon et al. Dec 2003 A1
20040006261 Swedlow et al. Jan 2004 A1
20040010188 Wasserman et al. Jan 2004 A1
20040024297 Chen et al. Feb 2004 A1
20040024326 Yeo et al. Feb 2004 A1
20040034293 Kimball Feb 2004 A1
20040039272 Abdul-Hafiz et al. Feb 2004 A1
20040039273 Terry Feb 2004 A1
20040054269 Rantala et al. Mar 2004 A1
20040054291 Schulz et al. Mar 2004 A1
20040059209 Al-Ali et al. Mar 2004 A1
20040059210 Stetson Mar 2004 A1
20040064020 Diab et al. Apr 2004 A1
20040068164 Diab et al. Apr 2004 A1
20040087846 Wasserman May 2004 A1
20040092805 Yarita May 2004 A1
20040097797 Porges et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040107065 Al-Ali Jun 2004 A1
20040116788 Chernoguz et al. Jun 2004 A1
20040116789 Boaz et al. Jun 2004 A1
20040117891 Hannula et al. Jun 2004 A1
20040122300 Boas et al. Jun 2004 A1
20040122302 Mason et al. Jun 2004 A1
20040133087 Ali et al. Jul 2004 A1
20040133088 Al-Ali Jul 2004 A1
20040138538 Stetson Jul 2004 A1
20040138540 Baker, Jr. et al. Jul 2004 A1
20040143172 Fudge et al. Jul 2004 A1
20040147821 Al-Ali et al. Jul 2004 A1
20040147822 Al-Ali et al. Jul 2004 A1
20040147823 Kiani et al. Jul 2004 A1
20040147824 Diab et al. Jul 2004 A1
20040152965 Diab et al. Aug 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040158135 Baker, Jr. et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040171920 Mannheimer et al. Sep 2004 A1
20040171948 Terry Sep 2004 A1
20040176671 Fine et al. Sep 2004 A1
20040181133 Al-Ali Sep 2004 A1
20040181134 Baker, Jr. et al. Sep 2004 A1
20040186358 Chernow et al. Sep 2004 A1
20040199063 O'Neil et al. Oct 2004 A1
20040204636 Diab et al. Oct 2004 A1
20040204637 Diab et al. Oct 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040204865 Lee et al. Oct 2004 A1
20040210146 Diab et al. Oct 2004 A1
20040215069 Mannheimer Oct 2004 A1
20040230107 Asada et al. Nov 2004 A1
20040230108 Melker et al. Nov 2004 A1
20040236196 Diab et al. Nov 2004 A1
20040242980 Kiani et al. Dec 2004 A1
20040249252 Fine et al. Dec 2004 A1
20040257557 Block et al. Dec 2004 A1
20040260161 Melker et al. Dec 2004 A1
20040267103 Li et al. Dec 2004 A1
20040267104 Hannula et al. Dec 2004 A1
20040267140 Ito et al. Dec 2004 A1
20050004479 Townsend et al. Jan 2005 A1
20050010092 Weber et al. Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050020894 Norris et al. Jan 2005 A1
20050033128 Ali et al. Feb 2005 A1
20050033129 Edgar, Jr. et al. Feb 2005 A1
20050043599 O'Mara Feb 2005 A1
20050043600 Diab et al. Feb 2005 A1
20050049470 Terry Mar 2005 A1
20050049471 Aceti Mar 2005 A1
20050075550 Lindekugel Apr 2005 A1
20050113651 Wood et al. May 2005 A1
20050177034 Beaumont Aug 2005 A1
20050197548 Dietiker Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050277819 Kiani et al. Dec 2005 A1
20050283059 Iyer et al. Dec 2005 A1
20060058594 Ishizuka et al. Mar 2006 A1
20060084852 Mason et al. Apr 2006 A1
20060089547 Sarussi Apr 2006 A1
20060106294 Maser et al. May 2006 A1
20060195028 Hannula et al. Aug 2006 A1
20060224058 Mannheimer Oct 2006 A1
20060247501 Ali Nov 2006 A1
20060258921 Addison et al. Nov 2006 A1
20070027376 Todokoro et al. Feb 2007 A1
20070032709 Coakley et al. Feb 2007 A1
20070032710 Raridan et al. Feb 2007 A1
20070032712 Raridan et al. Feb 2007 A1
20070032715 Eghbal et al. Feb 2007 A1
20070073126 Raridan, Jr. Mar 2007 A1
20070078309 Matlock Apr 2007 A1
20070078315 Kling et al. Apr 2007 A1
Foreign Referenced Citations (33)
Number Date Country
3516338 Nov 1986 DE
3703458 Aug 1988 DE
19632361 Feb 1997 DE
0127947 Dec 1984 EP
0204259 Dec 1986 EP
0531631 Mar 1993 EP
0724860 Jul 1996 EP
1945099 Jul 2008 EP
2685865 Jul 1993 FR
7001273 Nov 1987 JP
2111343 Apr 1990 JP
3116260 Dec 1991 JP
6014906 Jan 1994 JP
6269430 Sep 1994 JP
5049625 Mar 1995 JP
3116259 Jun 1995 JP
7236625 Sep 1995 JP
2000237170 Sep 2000 JP
2003275192 Sep 2003 JP
2004089546 Mar 2004 JP
2004329406 Nov 2004 JP
2004337605 Dec 2004 JP
2004344367 Dec 2004 JP
2004351107 Dec 2004 JP
WO8909566 Oct 1989 WO
WO9111137 Aug 1991 WO
WO9502358 Jan 1995 WO
WO9736536 Oct 1997 WO
WO9857577 Dec 1998 WO
WO9947039 Sep 1999 WO
WO0059374 Oct 2000 WO
WO2005010567 Feb 2005 WO
WO2005010568 Feb 2005 WO
Non-Patent Literature Citations (28)
Entry
Faisst, Karin, et al.; “Intrapartum Reflectance Pulse Oximetry: Effects of Sensor Location and Fixation Duration on Oxygen Saturation Readings,” Journal of Clinical Monitoring, vol. 13, pp. 299-302 (1997).
Izumi, Akio, et al.; “Accuracy and Utility of a New Reflectance Pulse Oximeter for Fetal Monitoring During Labor,” Journal of Clinical Monitoring, vol. 13, pp. 103-108 (1997).
“Smaller Product, Tighter Tolerances Pose Dispensing Challenges for Medical Device Manufacturer,” Adhesives Age, pp. 40-41 (Oct. 1997).
Crilly, Paul B., et al.; “An Integrated Pulse Oximeter System for Telemedicine Applications,” IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada; May 19-21, 1997; pp. 102-104.
DeKock, Marc; “Pulse Oximetry Probe Adhesive Disks: a Potential for Infant Aspiration,” Anesthesiology, vol. 89, pp. 1603-1604 (1998).
Rhee, Sokwoo, et al.; “The Ring Sensor: a New Ambulatory Wearable Sensor for Twenty-Four Hour Patient Monitoring,” Proceedings of the 20th annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998, vol. 20, No. 4, pp. 1906-1919.
Yang, Boo-Ho, et al.; “A Twenty-Four Hour Tele-Nursing System Using a Ring Sensor,” Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leaven, Belgium, May 1998; pp. 387-392.
Ferrell, T.L., et al.; “Medical Telesensors,” SPIE, vol. 3253, pp. 193-198 (1998).
Yang, Boo-Ho, et al.; “Development of the ring sensor for healthcare automation,” Robotics and Autonomous Systems, vol. 30, pp. 273-281 (2000).
Rhee, Sokwoo, et al.; “Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor—Part I: Design and Analysis,” Proceedings of the 22nd Annual EMBS International Conference, Chicago, Illinois; Jul. 23-28, 2000; pp. 2792-2795.
Rhee, Sokwoo, et al.; “Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor—Part II: Prototyping and Benchmarking,” Proceedings of the 22nd Annual EMBS International Conference, Chicago, Illinois; Jul. 23-28, 2000; pp. 2796.
Nijland, Mark J.M., et al.; “Assessment of fetal scalp oxygen saturation determination in the sheep by transmission pulse oximetry,” Am. J. Obstet Gynecol., vol. 183, No. 6, pp. 1549-1553 (Dec. 2000).
Schulz, Christian Eric; “Design of a Pulse Oximetry Sensor Housing Assembly,” California State University Master's Thesis, UMI Dissertation Services, UMI No. 1401306, (May 2000) 63 pages.
Yokota, Nakaura, Takahashi, et al.; “Pilot Model of a Reflectance-Type Pulse Oximeter for Pre-hospital Evaluation,” Journal of the Japanese Society of Emergency Medicine, Kanto Region, vol. 21, pp. 26-27 (2000) (Article in Japanese—contains English summ.
Gisiger, P.A., et al.; “OxiCarbo®, a single sensor for the non-invasive measurement of arterial oxygen saturation and CO2 partial pressure at the ear lobe,” Sensor and Actuators, vol. B-76, pp. 527-530 (2001).
Rhee, Sokwoo, et al.; “Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 7, pp. 795-805 (Jul. 2001).
Lopez-Silva, Sonnia Maria Lopez, et al.; “NIR transmittance pulse oximetry system with laser diodes,” Clinical Diagnostic Systems, Proceedings of SPIE, vol. 4255, pp. 80-87 (2001).
Maletras, Francois-Xavier, et al.; “Construction and calibration of a new design of Fiber Optic Respiratory Plethysmograph (FORP),” Optomechanical Design and Engineering, Proceedings of SPIE, vol. 4444, pp. 285-293 (2001).
Earthrowl-Gould, T., et al.; “Chest and abdominal surface motion measurement for continuous monitoring of respiratory function,” Proc. Instn Mech Engrs, V215, Part H; pp. 515-520 (2001).
Kyriacou, Panayiotis A., et al.; “Esophageal Pulse Oximetry Utilizing Reflectance Photoplethysmography,” IEEE Transactions on Biomedical Engineering, vol. 49, No. 11, pp. 1360-1368 (Nov. 2002).
Irie, A., et al.; “Respiration Monitors—Pulse Oximeters,” Neonatal Care, vol. 15, No. 12, pp. 78-83 (2002) (Article in Japanese—contains English summary of article).
Shaltis, Phillip, et al.; “Implementation and Validation of a Power-Efficient, High-Speed Modulation Design for Wireless Oxygen Saturation Measurement Systems,” IEEE, pp. 193-194 (2002).
Warren, Steve, et al.; “Wearable Sensors and Component-Based Design for Home Health Care,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas; Oct. 23-26, 2002; pp. 1871-1872.
Matsui, A., et al.; “Pulse Oximeter,” Neonatal Care, vol. 16, No. 3, pp. 38-45 (2003) (Article in Japanese—contains English summary of article).
Nakagawa, M., et al.; “Oxygen Saturation Monitor,” Neonatal Monitoring, vol. 26, No. 5, pp. 536-539 (2003) (Article in Japanese—contains English summary of article).
Lopez-Silva, S.M., et al.; “Transmittance Photoplethysmography and Pulse Oximetry With Near Infrared Laser Diodes,” IMTC 2004—Instrumentation and Measurement Technology Conference, Como, Italy, May 18-20, 2004; pp. 718-723.
Urquhart, C., et al.; “Ear probe pulse oximeters and neonates,” Anaesthesia, vol. 60, p. 294 (2005).
Bentley, David J. et al.; “Measure Pressure with Thin Film”; Paper Film & Foil Converter; May 1, 2003.
Related Publications (1)
Number Date Country
20090171224 A1 Jul 2009 US
Provisional Applications (1)
Number Date Country
61009709 Dec 2007 US