Exemplary embodiment(s) of the present invention will be described in detail based on the following figures, wherein:
The following is an explanation of exemplary embodiments of the present invention, with reference to the accompanying drawings.
A ferroelectric thin film 2 is formed on the surface of a substrate 1. An IDT (inter-digital transducer) 3, an antenna 4, a ground 5, a reflector 7, and a lump of wax (attachment) 8 are formed on the ferroelectric thin film 2. The IDT 3 includes two sets of comb-shaped electrodes that face each other. The antenna 4 is connected to one of those two sets of comb-shaped electrodes, and the ground 5 is connected to the other of those two sets of comb-shaped electrodes. A ground electrode 6 is formed on the rear side of the substrate 1, and the ground 5 is connected to this ground electrode 6 by a through hole (not shown in the drawings).
The ferroelectric thin film 2 is formed using LiTaO3, for example. From the viewpoint of the electromechanic coupling coefficient/piezoelectric coefficient of the IDT 3 and dielectric losses of the antenna 4, it is preferable that this ferroelectric thin film 2 is an epitaxial layer or has a single orientation. Moreover, it is also possible to form a III-V semiconductor such as GaAs, or carbon such as diamond, on the ferroelectric thin film 2. Thus, it is possible to increase, for example, the surface speed of surface acoustic waves, the coupling coefficient and the piezoelectric constant.
It should be noted that instead of the substrate 1 and the ferroelectric thin film 2, it is also possible to use a plate-shaped member that includes (or made of) a ferroelectric material as the substrate.
The IDT 3, the antenna 4 and the ground 5 are formed in an integrated manner by a conductive pattern. As the material for this conductive pattern, it is preferable to layer a single layer or a multi-layered structure of two or more layers of a metal such as Ti, Cr, Cu, W, Ni, Ta, Ga, In, Al, Pb, Pt, Au, Ag or the like or an alloy such as Ti—Al, Al—Cu, Ti—Ni, Ni—Cr or the like. It is particularly preferable to use Au, Ti, W, Al or Cu as the metal. Moreover, it is preferable that the thickness of the metal layer is at least 1 nm (nanometer) and less than 10 μm (micrometer).
The lump of wax 8 is formed in a predetermined shape in a region between the IDT 3 and the reflector 7 on the ferroelectric thin film 2 (that is, in a propagation path for surface acoustic waves). In this exemplary embodiment, it is provided with an elliptical shape when viewed from above and with a rectangular shape in the cross-section along A-A′, as shown in
A transmitter/receiver 201 has an antenna and transmits/receives radio signals to/from the sensor 101.
A signal processing section 202 generates signal having a predetermined amplitude and frequency and feeds this signal to the transmitter/receiver 201. The signal processing section 202 also subjects a received signal to a predetermined process to determine a physical quantity or a parameter (amplitude, phase velocity or the like) of the signal.
A table 203 includes information showing the correspondence between the physical quantity of the signal and the environment in which the sensor has been put.
A determining section 204 determines whether the temperature around the sensor 101 has reached the melting point of the wax, by comparing the physical quantity of the received signal with the content of the table 203. The content of the table 203 and processing that is carried out by the determining section 204 is explained in more detail later.
A display section 205 displays an image representing the result of the judgment performed by the determining section 204.
When a switch 206, which is for example a switch of the push button type, is pushed down, the transmitter/receiver 201 transmits radio signals to the sensor 101.
The following is an explanation of the operation of the sensor 101 and the querying device 200.
First, when the switch 206 is pushed down in Step A01, the transmitter/receiver 201 transmits a radio signal having a predetermined frequency and amplitude to the sensor 101.
In Step B01, the antenna 4 of the sensor 101 receives this radio signal. Having received the radio signal, the antenna 4 converts this radio signal into an electric signal and feeds this electric signal to the IDT 3.
In Step B02, the IDT 3 generates a surface acoustic wave at the surface of the ferroelectric thin film 2, in accordance with this electric signal. This surface acoustic wave propagates along the ferroelectric thin film 2 and reaches the reflector 7.
In Step B03, the reflector 7 reflects the surface acoustic wave that has reached it. The reflected surface acoustic wave is propagated along the ferroelectric thin film 2 and reaches the IDT 3.
In Step B04, the IDT 3 converts the surface acoustic wave into an electric signal and feeds it to the antenna 4. The antenna 4 converts this electric signal into a radio signal and transmits this radio signal.
In Step A02, the querying device 200 receives the radio signal sent by the sensor 101. The querying device 200 determines the physical quantity (amplitude, phase velocity or the like) of the received signal. Then, by looking up the table 203, the determining section 204 determines whether the temperature around the sensor 101 has reached the melting point.
The following is an explanation of the propagation of the surface acoustic waves. As the surface acoustic waves generated by the IDT 3 propagate along the ferroelectric thin film 2, their propagation characteristics depend on the material, shape, temperature and the like of the ferroelectric thin film 2, the substrate 1 and the lump of wax 8. In the event that the temperature around the sensor 101 reaches the melting point of the wax, the wax spreads thinly over the ferroelectric thin film 2. And in the event that the temperature drops below the melting point after this, the wax solidifies but its shape does not return to its original shape. Thus, the propagation characteristics of the surface acoustic waves on the ferroelectric thin film 2 change, and as a result, the physical quantity (amplitude, phase velocity or the like) of the surface acoustic waves change. Consequently, by experimentally determining beforehand the physical quantity of the output signal for the case that the temperature around the sensor 101 has reached the melting point of the wax, storing it in the table 203 and comparing the stored content with the physical quantity of the actual output signal, it is possible to determine whether the temperature around the sensor 101 has reached the melting point of the wax.
In this manner, the determining section 204 determines whether the temperature around the sensor 101 has reached the melting point of the wax.
In the event that it is determined that the temperature around the sensor 101 has reached the melting point of the wax, for example the message “melting point has been reached” is displayed on the display section 205.
It should be noted that the table 203 may also store a range of a physical quantity of the output signal for the event that the temperature around the sensor 101 has not reached the melting point of the wax, that is, the event that lump of wax 8 has not melted. In this case, it is also possible to determine whether the temperature around the sensor 101 has reached the melting point of the wax by letting the determining section 204 compare the stored content with the physical quantity of the actual output signal.
There is no limitation to the above-described exemplary embodiment, and the invention can be embodied in various forms. For example, exemplary embodiments in which the above-described exemplary embodiment is modified as explained below are also possible.
It is also possible to modify the above-described exemplary embodiment as follows. For example, a substance that produces an antibody in the event that an antigen, such as a microbe, has intruded can be placed into a container as the attachment and this container can be attached on the ferroelectric thin film 2. If the antigen then intrudes into the container, an antigen-antibody reaction takes place, the mechanical properties of the substance inside the container change, and do not return to the original mechanical properties. Accordingly, as in the above-described exemplary embodiment, the physical quantity of the output signal changes compared to prior to the antigen-antibody reaction, so that it is possible to determine based on the physical quantity of the output signal whether an antigen has intruded into the sensor.
It is also possible to modify the above-described exemplary embodiment as follows. For example, a reducing agent such as metallic sodium can be placed into a container as the attachment and this container can be attached on the ferroelectric thin film 2. If oxygen then intrudes into the container, a redox reaction takes place, the mechanical properties of the substance inside the container change, and do not return to the original mechanical properties. Accordingly, as in the above-described exemplary embodiment, the physical quantity of the output signal changes compared to prior to the redox reaction, so that it is possible to determine based on the physical quantity of the output signal whether an oxygen has intruded into the sensor. It is also possible to use an oxidizing agent instead of a reducing agent. That is to say, the attachment may be a substance that undergoes a chemical reaction with a predetermined substance.
It is also possible to modify the above-described exemplary embodiment as follows.
In the event that a magnetic force acts on the sensor 104, the following action takes place. In the event that the S-pole of another permanent magnet 90 is brought close to the S-pole of the permanent magnet 83 as shown for example in
It should be noted that the shape of the permanent magnet 83 is not limited to that of a rectangular solid, and it may be of any shape. Moreover, it is also possible to provide a permanent magnet, a magnetic body, an adhesive or the like on the ferroelectric thin film 2 in order to hold the permanent magnet 83 that has escaped from the fastener 84.
It is also possible to modify the above-described exemplary embodiment as follows.
In the event that an inertial force acts on the sensor 105, the following action takes place. In the event that an inertial force exceeding a predetermined strength acts in the direction to the left in
It should be noted that the attachment in this modified example is not limited to a sphere and it is possible to use any shape. Moreover, it is also possible to provide a permanent magnet (in case that the sphere 86 is magnetic), an adhesive or the like on the ferroelectric thin film 2 in order to hold the sphere 86 that has escaped from the fastener 84.
It is also possible to modify the above-described exemplary embodiment as follows.
In the above embodiments, the surface acoustic waves that propagates surface of material are described as an example of acoustic waves. The acoustic waves are not restricted to the surface acoustic waves. Acoustic waves that propagates bulk of material may be used as the acoustic wave. In this case, the attachment may be attached to a propagation path of the acoustic waves.
Number | Date | Country | Kind |
---|---|---|---|
2006-163949 | Jun 2006 | JP | national |