This disclosure relates to a sheet feed apparatus for use inside a document reproduction machine.
A sheet feeding apparatus is used in scanners, copiers, printers and the like. A sheet feeding apparatus contained inside a reproduction machine may include a feed box, elevator tray, stack height sensor and a feed device.
The feed box may include a lead side and a trail edge. The trail edge may be adjustable and allows for different size sheets. The sheets are positioned on an elevator that moves vertically inside the feed box to carry the sheets to the feed device. A stack height finger is located at or near the top of the feed box. When the elevator has reached the stack height finger, a sensor attached to the stack height finger instructs the elevator to stop moving. The feed device is then actuated to receive the sheet for feeding into the document reproduction device.
Feeding problems occur when using media made of various paper materials, Mylar paper, laminated paper, Xerox DocuCards, and medical forms. Some media stack in a manner such that the sheets are not substantially flat. The curvature of a topmost sheet may result in the sheet being improperly fed into the feed device.
It would be advantageous to provide an apparatus, method and system of feeding paper into a feed device so as to ensure that a sheet fed to a feed device is substantially flat so as to accommodate proper feeding.
To address or accomplish these advantages, as described below, and/or other advantages, exemplary embodiments may include a sheet feeding apparatus. Exemplary embodiments may include a feed box, which may be contained within a document reproduction machine, an elevator tray within the feed box that can move vertically to carry sheets to an upper portion of the feedbox, a plurality of sensors located in the upper portion of the feed box, a data processing device located within the document reproduction machine, an actuating device located below the elevator tray, a plurality of plungers, and a feed device for receiving sheets.
The sheet feeding apparatus may include a feed box, which may be contained within a document reproduction machine, an elevator tray within the feed box that can move vertically, a plurality of sensors located in the upper portion of the feed box, a data processing device located within the document reproduction machine, an actuating device located below the elevator tray, a plurality of plungers, and a feed device. More specifically, exemplary embodiments may include multiple plungers that can be actuated to adjust the height of a sheet so that the lead edge, trail edge, front edge, and rear edge of the sheet are the same height when being fed into the feed device.
The sheet feeding apparatus may include a feed box, which may be contained within a document reproduction machine, an elevator tray within the feed box that can move vertically to carry sheets to an upper portion of the feedbox, a plurality of sensors located in the upper portion of the feed box, a data processing device located within the document reproduction machine, an actuating device located below the elevator tray, a plurality of plungers, and a feed device for receiving sheets. More specifically, an exemplary embodiment may include a plate that can be actuated to adjust the height of a sheet so that the lead edge, trail edge, front edge, and rear edge of the sheet are the same height when being fed into the feed device.
Exemplary embodiments are described herein with respect to architectures for document reproduction machines. However, it is envisioned that any imaging device that may incorporate the features of the document reproduction machine described herein are encompassed by the scope of the spirit of the exemplary embodiments.
The exemplary embodiments are intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the devices, methods and systems as defined herein.
For an understanding of the apparatus, method and system for sheet feeding, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate similar or identical elements. The drawings depict various embodiments of illustrative sheet feed machines incorporating the features of the exemplary embodiments therein. As shown, the drawings schematically depict the various components of a sheet feeding machine that has the various features. In as much as the art of sheet feeding in a document reproduction machine is well known, the various parts employed in the sheet feeding apparatus will be schematically shown herein and their operation described with reference thereto.
Referring to
The trail edge guide 102a of feed box 100 may be an adjustable side of the feed box 100, which may accommodate a sheet 106 of different sizes. A sheet 106 may be various print media sheets, of various sizes and weights. Sheets 106 may be thin, flexible or even flimsy paper and sometimes even plastic, such as overhead transparencies. The trail edge guide 102a may be used to maintain the sheet 106 in proper orientation for feeding sheet 106 into the feed device 101 (not shown).
The feed device 101 may be located above the feed box 100. Alternatively, the feed device 101 may be located above the upper portion 100b of the feed box 100. The feed device 101 may be a vacuum feed device, roller system or any known or later developed device that can receive a sheet 106. The feed device 101 may take the sheet to be processed within the document reproduction machine. The feed device 101 may utilize positive air flow over a top sheet of a plurality of sheets 106, and air flow between the sheets 106, to separate the top sheet 106 from the underlying sheets 106, whereby, only the top sheet 106 is captured for feeding. In an exemplary embodiment, a plenum may define an opening that is substantially parallel to the bottom; the plenum may accommodate retrieval of the top sheet 106.
The stack height finger 103 may be attached to the upper portion 100b of the inner side of the feed box 100. The stack height finger 103 may provide a downward pressure, even if only slight, to the trail edge 106a of the sheet 106 to permit air to be injected between the sheets. The stack height finger 103 controls the elevator 108 in the feed box 100 to properly position a sheet 106 for capture by the feed device 101. The stack height finger 103 senses the height of the sheet 106 by engaging the top surface near the trailing edge of the top sheet 106. The stack height finger 103 causes activation of the elevator 108 to position the top sheet 106 near the feed device 101.
The plurality of sensors 104 may be located in the upper portion 100b of the feed box 100. The sensors 104 may be located below the stack height finger 103. Each sensor 104 must be of the same height from the bottom 100a of the feed box 100. The sensors 104 may be optical or any known or later developed device that can sense a sheet used in a document reproduction machine. The sensor 104 may include photo-detectors, semiconductor device such as photocells, photo-diodes, photo-transistors, LCDs, and image sensors. A short path optical interception device may be used as a sensor 104. Also, a laser detection system may be used as a sensor 104. One or more sensors 104 may be used to determine if a sheet is substantially flat. The determination information may then be transmitted to a data processing device 111.
One or more sheets 106 may be located inside the feed box 100. The sheets 106 are placed on top of an elevator 108. A sheet 106 has a trail edge 106a and a lead edge 106b, a front edge 106c, and a rear edge 106d. The elevator 108 is located inside the feed box 100. The elevator 108 may be arranged to move vertically within the feed box 100. The elevator 108 may be cast from a metallic, plastic or other now known or later developed material. The elevator 108 may be actuated by a motor that receives information from a data processing device that may be the same as the data processing device 111 or another data processing device. The elevator 108 may move vertically towards the upper portion 100b of feedbox 100 according to the amount of sheets 106 in the elevator 108, so as to supply sheets 106 to feed device 101. Each time a sheet 106 is fed into the feed device 101, the amount of sheets 106 decreases, and the elevator 108 may be actuated to move upwards. When the feed box 100 has no sheets 106 remaining, then the elevator 108 may be arranged to return to its lowest position in the lower portion 100c of the feed box 100.
In one embodiment, the elevator 108 may define one or more apertures 109. The apertures 109 may be of any shape. For example, the apertures 109 may be of any shape including circular, oval, square, triangular, or irregular shape. The apertures 109 may be adjustable in size. In another embodiment, the elevator 108 may include internal sliding parts that increase or decrease the size of the aperture 109. For example, the internal sliding parts may close an aperture 109, when the elevator 108 does not contain any sheets 106. When the elevator 108 returns to its lowest position in the lower portion 100d of the feedbox 100, there should be sufficient space for the actuating device 110, plungers 112, and possibly the data processing device 111 connections thereto.
As a portion of the sheet 106 passes a sensor 104, a sensor 104 will send information, e.g., the presence of the sheet or irregular position of the sheet, to a data processing device 111. The data processing device 111 processes and transmits information to an actuating device 110. The data processing device 111 may be a computer system, or constitute any known or later-developed device that can process and transmit information from a sensor. The data processing device 111 may include an input portion, a processing portion, storage portion and an output portion. The data processing device 111 may be hardware located inside or outside the document reproduction machine. Another alternative embodiment may include a data processing device having a software code compiler in combination with a computer hardware device.
The data processing device 111, according to information received from the sensors 104, determines how the actuating device 110 will function so that a sheet 106 is maintained in a substantially flat arrangement. The actuating device 110 will substantially reduce the height difference, Δh, between either the trail edge of sheet 106a, the lead edge of sheet 106b, the front edge of sheet 106c, or the rear edge of sheet 106d. For example, if the sensors 104 indicate that the sheet is substantially flat, the data processing device 111 will provide information to the actuating device 110 directing the actuating device 110 not to act. Alternatively, the data processing device may be configured to send no output to the actuating device 111, thereby passively preventing the actuating device 110 from acting.
The data processing device 111 may be configured in a system architecture as one or more computers, database computers, and interfaces. A computer may include at least one processor and memory coupled to a bus. The bus may be one or more of any suitable bus structures, including a memory bus or memory controller, peripheral bus, and a processor or local bus using any of a variety of bus protocols. The memory may include RAM, ROM, Flash, optical, DVD, magneto-optical. A network interface may be coupled to the bus to provide an interface to the data communication network for exchange of data among various devices. Also, the data processing device 111 may be of varying memory size and computing speed. The data processing device 111 may be located inside the document reproduction machine.
The actuating device 110 may be located between the elevator 108 and the bottom of the feed box 100. The actuating device 110 may be a rotary cam or motor device or any known or later designed device that can actuate a plunger 112. The actuating device 110 receives information from the data processing device 111. The information received by the actuating device 110 determines how one or more plungers 112 will function. For example, the information may indicate that a topmost sheet 106 is not substantially flat so as to accommodate proper receipt by feed device 101. If so, the actuating device 110 may then act on plungers 112 to effect application of pressure at varying points of the stack of sheets 106 so as to cause the topmost sheet 106 to be substantially flat thereby causing Δh to equal about zero. The actuating device 110 and the plungers 112 may be connected to the elevator 108. As the elevator 108 moves vertically in a direction, the actuating device 110 and the plungers 112 may also be arranged to move with the elevator 108 in the same direction.
The actuating device 110 may be a device that rotates in varying increments according to information received from the data processing device 111. The rotation may occur by a shaft or other means. In an exemplary embodiment, the actuating device may have cams attached to the shaft for different plungers 112. Alternatively, the actuating device 110 may have one shaft for one cam system that operates a plunger 112. The actuating device may be a part of the plunger 112. Each actuating device may receive information from a data processing device 111, and act upon sheets 106 accordingly. The actuating device may receive information directly from the sensors 104. The sensors 104 may send information directly to the actuating device 110, where the actuating device 110 may also include a device for processing information from the sensors 104.
In yet another exemplary embodiment, the actuating device may also be a stepper motor apparatus. The stepper motor may involve open looped or closed looped communication, bipolar or unipolar. The stepper motor may be a L/R drive circuit or a chopper drive circuit. Alternatively, the actuating device may be a hydraulic or pneumatic apparatus. The actuating device 110 may be a plurality of elevators that may vertically move a plunger 112.
Referring to
Once the sheet 106 is substantially flat, one or more sensors 104 will send this information to the data processing device 111, whereupon the data processing device 111 will send information to the actuating device 109 to stop directing the plungers 112 to act on sheets 106, or to stop moving the plungers. The feed device 101 may then be activated to receive a sheet 106 into the document reproduction machine. In one exemplary embodiment, an electronic communication network enables communication between the sensors 104, data processing device 111, and actuating device 110. The network may include any format of electrical or optical communications, including wireless and wired networks.
As shown in
If the sheet 106 to be fed into the feed device 101 is flat, then the sensors 104 will provide this information to the data processing device 111 passively or actively. The data processing device 111 may then instruct the actuating device 109 to desist from actuating any of the plungers 112. When the feedbox 100 contains no more sheets 106, the elevator 108 may be arranged to move back to its lowest position within the feedbox 100. Also, each plunger 112 may reposition itself so that the head surface of each plunger may reposition themselves, before or after the elevator 108 returns to its lowest position within the feedbox 100.
In
For purposes of explanation and the above description, numerous specific details were set forth in order to provide a thorough understanding of a sheet feed apparatus contained in a document reproduction machine. It will be apparent, however, to one skilled in the art that feeding a sheet as described above can be practiced without the specific details. In other instances, well known structures and devices are shown in block diagram form in order to avoid obscuring the apparatus described.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also, various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, and are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1685799 | Baker | Oct 1928 | A |
2886314 | Phelan | May 1959 | A |
3768805 | Kuksa | Oct 1973 | A |
5346203 | Stemmle | Sep 1994 | A |
5459548 | Matsuda et al. | Oct 1995 | A |
6260842 | Nelson et al. | Jul 2001 | B1 |
6283469 | Weber | Sep 2001 | B1 |
6845977 | Leveto et al. | Jan 2005 | B2 |
6848688 | Ruthenberg et al. | Feb 2005 | B1 |
7464925 | Dobbertin et al. | Dec 2008 | B2 |
7669846 | Hoover et al. | Mar 2010 | B1 |
20030102623 | Hirai et al. | Jun 2003 | A1 |
20060244199 | Marasco | Nov 2006 | A1 |
20060284366 | Van Dungen et al. | Dec 2006 | A1 |
20070013121 | Kang et al. | Jan 2007 | A1 |
20070257419 | Wilcox et al. | Nov 2007 | A1 |
20070280768 | Allwright | Dec 2007 | A1 |
20090072470 | Marasco | Mar 2009 | A1 |
20090115122 | Roth et al. | May 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100038843 A1 | Feb 2010 | US |