This application is directed to a catheter pump for mechanical circulatory support of a heart, and related components, systems and methods. In particular, this application is directed to sensors used in catheter pumps.
Heart disease is a major health problem that has high mortality rate. Physicians increasingly use mechanical circulatory support systems for treating heart failure. The treatment of acute heart failure requires a device that can provide support to the patient quickly. Physicians desire treatment options that can be deployed quickly and minimally-invasively.
Intra-aortic balloon pumps (IABP) are currently the most common type of circulatory support devices for treating acute heart failure. IABPs are commonly used to treat heart failure, such as to stabilize a patient after cardiogenic shock, during treatment of acute myocardial infarction (MI) or decompensated heart failure, or to support a patient during high risk percutaneous coronary intervention (PCI). Circulatory support systems may be used alone or with pharmacological treatment.
In a conventional approach, an IABP is positioned in the aorta and actuated in a counterpulsation fashion to provide partial support to the circulatory system. More recently minimally-invasive rotary blood pump have been developed in an attempt to increase the level of potential support (i.e. higher flow). Rotary pumps have become more common recently for treating heart failure. A rotary blood pump is typically inserted into the body and connected to the cardiovascular system, for example, to the left ventricle and the ascending aorta to assist the pumping function of the heart. Other known applications include pumping venous blood from the right ventricle to the pulmonary artery for support of the right side of the heart. An aim of acute circulatory support devices is to reduce the load on the heart muscle for a period of time, to stabilize the patient prior to heart transplant or for continuing support. Rotary blood pumps generally utilize an electric motor which drives an impeller pump at relatively high speeds. In the case where the pump is remote from the motor, for example where the impeller is in the body and the motor is outside the body, there is a need for a robust and reliable connection between the motor and the impeller. There may also be the need for forming a flexible connection between the motor shaft and the impeller to allow free movement of various pump components during use and when pushing through the vasculature to the treatment location. There is also the continuing need to provide these system components in a compact, efficient form factor to allow for percutaneous approaches.
There is a need for improved mechanical circulatory support devices for treating acute heart failure. Fixed cross-section ventricular assist devices designed to provide partial or near full heart flow rate are either too large to be advanced percutaneously (e.g., through the femoral artery without a cutdown) or provide insufficient flow.
An aspect of at least one of the embodiments disclosed herein is the realization that the connection of a flexible proximal body to a more rigid distal segment of a catheter assembly can be better secured with an robust mechanical interface between one or more features of these components. For example, a distal end of the flexible proximal body can be fitted with a device or structure providing an interface that mechanically engages the flexible proximal body and that can be directly joined, e.g. welded, to a structure to which a load is applied.
In one embodiment, a catheter assembly is disclosed. The catheter assembly can include a catheter and a cannula coupled to a distal portion of the catheter. The cannula can have a proximal port for permitting the flow of blood therethrough. The catheter assembly can include a sensor to be disposed near the proximal port. A processing unit can be programmed to process a signal detected by the sensor, the processing unit comprising a computer-readable set of rules to evaluate the signal to determine a position of the cannula relative to a cardiac valve of a patient during a treatment procedure.
In another embodiment, a catheter assembly is disclosed. The catheter assembly can include a catheter and a cannula coupled to a distal portion of the catheter. The cannula can have a proximal port and a distal port for permitting the flow of blood therethrough. The catheter assembly can include a sensor assembly. The sensor assembly can comprise at least one of: (a) a proximal sensor coupled with the catheter body and having a distal portion near the proximal port, and (b) a distal sensor coupled with the cannula and having a distal portion near the distal port.
In another embodiment, a method of pumping blood through a patient is disclosed. The method can include inserting a catheter pump into the patient, the catheter pump comprising a catheter body, a cannula coupled with the catheter body, an impeller within the cannula, a sensor assembly near the impeller, and a sheath disposed about the catheter body. The method can include providing relative motion between the sheath and the sensor assembly to expose the sensor assembly to the blood. The method can include rotating the impeller. The method can include measuring a pressure of the blood with the sensor assembly. In some embodiments, providing relative motion can comprise sliding the sheath proximally relative to the cannula and the sensor assembly. In some embodiments, the cannula and impeller expand to deployed configurations upon sliding the sheath proximally. In some embodiments, the sensor assembly is disposed proximal the impeller, the method comprising sliding the sheath until a sensor element is exposed through a window of the catheter pump. In some embodiments, the sensor assembly is disposed on a wall of the cannula, the method comprising sliding the sheath until a sensor element is exposed to the blood. In some embodiments, the sensor assembly is disposed in a central lumen of the catheter pump that extends distal the impeller, the method comprising sliding the sheath until a sensor element is exposed through an opening or window in the central lumen.
In yet another embodiment, a computer-implemented method for determining a position of a cannula relative to an anatomy of a patient is disclosed. The method can comprise receiving a signal from a sensor disposed near a proximal port of the cannula. The method can also include processing the signal to determine a fluid signature related to a property of the fluid flowing through the proximal port. The method can comprise comparing the determined fluid signature with a baseline signature, the baseline signature associated with a proper position of the cannula during a treatment procedure. The method can include determining the position of the cannula based at least in part on the comparison of the determined fluid signature with the baseline signature.
In another embodiment, a non-transitory computer-readable medium having instructions stored thereon is disclosed. The instructions, when executed by a processor, perform a method comprising receiving a signal from a sensor disposed near a proximal port of the cannula. The method can include processing the signal to determine a fluid signature related to a property of the fluid flowing through the proximal port. The method can also comprise comparing the determined fluid signature with a baseline signature, the baseline signature associated with a proper position of the cannula during a treatment procedure. The method can include determining the position of the cannula based at least in part on the comparison of the determined fluid signature with the baseline signature.
In yet another embodiment, a method of manufacturing a catheter assembly is disclosed. The method can include coupling a sensor assembly to a cannula disposed about an impeller, the cannula coupled to a distal portion of the catheter assembly. The sensor assembly can be configured to measure a property of blood flowing through the cannula.
In another embodiment, a method of pumping blood through a patient is disclosed. The method can include advancing an impeller assembly through a vascular system of the patient to a left ventricle of the patient. The impeller assembly can comprise an impeller and a sensor near one or more inlets of the impeller assembly. The sensor can be configured to measure a pressure of blood flowing through the inlet(s). The method can include activating the impeller to pump blood through an aorta of the patient at a flow rate of at least about 2 liters per minute (Lpm). The method can further comprise maintaining an average pressure of less than about 15 mmHg in the left ventricle of the patient.
In another embodiment, a catheter pump is disclosed. The catheter pump can include an impeller assembly comprising an impeller and a sensor near one or more inlets of the impeller assembly. The sensor can be configured to measure a pressure of blood flowing through the inlet(s). The impeller assembly an be configured such that the inlet(s) are positioned in a left ventricle of the patient during a treatment procedure. The impeller assembly can be configured to pump blood through an aorta of the patient at a flow rate of at least about 2 liters per minute (Lpm) and to maintain a pressure of less than about 15 mmHg in the left ventricle of the patient.
In another embodiment, a method of pumping blood through a patient is disclosed. The method can include advancing an impeller assembly through a vascular system of the patient to a left ventricle of the patient, the impeller assembly comprising an impeller and a sensor near one or more inlets of the impeller assembly, the sensor configured to measure a pressure of blood flowing through the inlet(s). The method can include activating the impeller to pump blood through an aorta of the patient at a flow rate of at least about 2 liters per minute (Lpm). The method can include maintaining an average pressure in the left ventricle of the patient of less than about 135% of the normal human average ventricular pressure.
In one embodiment, a catheter pump assembly is provided that includes an elongate polymeric catheter body, a cannula, and a tubular interface. The elongate polymeric catheter body has a proximal end and a distal end. The cannula has an expandable portion disposed distally of the elongate polymeric catheter body. The cannula can also have another tubular portion that is proximal to the distal portion. The tubular interface has an outer surface configured to be joined to the tubular portion of the cannula and an inner surface. The inner surface is disposed over the distal end of the elongate polymeric catheter body. The tubular interface has a plurality of transverse channels extending outward from the inner surface of the tubular interface. An outer surface of the elongate polymeric catheter body projects into the transverse channels to mechanically integrate the elongate polymeric catheter body with the tubular interface.
In another embodiment, a catheter pump assembly is provided that includes an elongate polymeric catheter body, a tubular member, and a mechanical interface. The elongate polymeric catheter body has a proximal end and a distal end. At least a portion of the tubular member is disposed distally of the elongate polymeric catheter body. The mechanical interface is disposed between a portion of the elongate polymeric catheter body and the tubular member. The mechanical interface is configured to mechanically integrate with a surface of the elongate polymeric catheter body.
In another embodiment, a catheter pump assembly is provided that includes an elongate catheter body, a metallic tubular member, and first and second mechanical interfaces. The elongate catheter body has a proximal portion and a distal portion. The metallic tubular member is disposed at least partially distally of the elongate catheter body. The first mechanical interface has a first portion joined to the distal portion of the elongate catheter body and a second portion welded to the metallic tubular member. The second mechanical interface is disposed on an outside surface of the catheter pump assembly. The second mechanical interface has a deflectable member configured to be disposed adjacent to the outside surface of the catheter pump assembly in a first configuration. The deflectable member is configured to be disposed inward of the outside surface of the catheter pump assembly in a second configuration. When in the second configuration, the deflectable member mechanically and securely engages the outside surface of the catheter pump assembly with a structure disposed inward of the second mechanical interface.
In another embodiment, a method is provided for coupling components of a catheter pump assembly together. An elongate polymeric tubular body is provided that has a proximal end and a distal end. A metallic tubular body is provided that has a proximal portion and a distal portion. A mechanical interface having a first interface zone and a second interface zone is positioned such that the first interface zone is disposed over a portion of the elongate polymeric tubular body adjacent to the distal end thereof. The polymer is then caused to flow into the first interface zone, whereby the elongate polymeric tubular body becomes joined with the first interface zone of the mechanical interface. The metallic tubular body is coupled with the second interface zone of the mechanical interface.
In one approach, the polymer is caused to flow by heating the elongate polymeric tubular body to cause at least a portion of elongate polymeric tubular body adjacent to the distal end thereof to transition to a state with low resistance to deformation.
In another embodiment, a catheter pump assembly is provided that includes a proximal portion, a distal portion, and a catheter body having a lumen extending therebetween along a longitudinal axis. The catheter pump assembly also includes a torque assembly that has a first portion disposed in the lumen of the catheter body and a second portion disposed distal of the first portion. The second portion coupled with an impeller. The torque assembly causes the impeller to rotate upon rotation of the first portion of the torque assembly. The catheter pump assembly also includes a thrust bearing and a thrust bearing brace. The thrust bearing is disposed within the catheter pump assembly adjacent to the distal end of the catheter body. The thrust bearing resists movement of the torque assembly along the longitudinal axis. The thrust bearing brace is disposed on the outside surface of the torque assembly. The thrust bearing brace has a distal face that is directly adjacent to a proximal face of the thrust bearing.
In another embodiment, a catheter assembly is provided that includes an elongate flexible body, a torque assembly, a bearing assembly, and a sleeve. The elongate flexible body is disposed along a proximal portion of the catheter assembly and has a proximal infusate channel formed therein. The torque assembly extends through the elongate flexible body. The bearing assembly comprises a housing having an outer surface and a bearing surface disposed within the housing. The bearing surface provides for rotation of the torque assembly within the bearing housing. The sleeve comprises and an inner surface configured to be disposed over the outer surface of the housing of the bearing assembly and a fluid communication structure that extends through the walls of the sleeve. The catheter assembly also includes a distal infusate channel in fluid communication with the proximal infusate channel, the distal infusate channel disposed over the outer surface of the bearing housing and through side walls of the slot.
In another embodiment, a catheter pump assembly is provided that includes a proximal portion, a distal portion, and a catheter body having a lumen extending along a longitudinal axis between the proximal and distal portions. The catheter pump assembly also includes an impeller disposed at the distal portion and a stator disposed distal of the impeller to straighten flow downstream from the impeller. The stator is collapsible from a deployed configuration to a collapsed configuration.
In another embodiment, a catheter system is provided that includes an elongate polymeric catheter body, a cannula, and at least one expandable component disposed within the cannula. The elongate polymeric catheter body has a proximal end and a distal end. The cannula has an expandable portion disposed distally of the elongate polymeric catheter body. The catheter system also includes an elongate sheath body that has a retracted position in which the elongate sheath body is proximal of the expandable portion of the cannula and the at least one expandable component and a forward position in which the elongate sheath body is disposed over the expandable portion of the cannula and the at least one expandable component. A first segment of the elongate sheath body disposed over the expandable portion of the cannula and the at least one expandable component is configured to resist kinking to a greater extent than a second segment of the elongate sheath body disposed adjacent to the first segment.
A more complete appreciation of the subject matter of this application and the various advantages thereof can be realized by reference to the following detailed description, in which reference is made to the accompanying drawings in which:
More detailed descriptions of various embodiments of components for heart pumps, such as heart pumps for heart failure patients, are set forth below.
A high performance catheter pump is desired to provide sufficient output to approach and in some cases exceed natural heart output. Performance of this nature can be achieved with inventive components disclosed herein.
In some embodiments, the impeller assembly 92 includes a self-expanding material that facilitates expansion. The catheter body 84 on the other hand preferably is a polymeric body that has high flexibility. When the impeller assembly 92 is collapsed, as discussed above, high forces are applied to the impeller assembly 92. These forces are concentrated at a connection zone, where the impeller assembly 92 and the catheter body 84 are coupled together. These high forces, if not carefully managed can result in damage to the catheter assembly 80 and in some cases render the impeller within the impeller assembly 92 inoperable. A reliable mechanical interface is provided to assure high performance. While this interface is extremely beneficial for an assembly with an expandable impeller disposed in an expandable cannula, it also applies to assemblies including a fixed diameter impeller, which may be disposed in an expandable cannula or even in a non-expandable portion in fluid communication with an expandable cannula. In one variation, the impeller is disposed proximal of an expandable cannula in a rigid segment (e.g., a pump ring) and an expandable cannula is provided. The mechanical interfaces and inner and outer sheath assemblies facilitate the collapse of the cannula in such embodiments. A further design permits the impeller to be withdrawn into a rigid structure, e.g., a pump ring, to collapse the impeller before the cannula is collapsed.
The mechanical components rotatably supporting the impeller within the impeller assembly 92 permit high rotational speeds while controlling heat and particle generation that can come with high speeds. The impeller may be rotated as speeds above 6000 RPM, above 9000 RPM, above 10,000 RPM, above 15,000 RPM, above 20,000 RPM, above 25,000 RPM, or above 30,000 RPM. The infusion system 26 delivers a cooling and lubricating solution to the distal portion of the catheter system 100 for these purposes. However, the space for delivery of this fluid is extremely limited. Some of the space is also used for return of the infusate. Providing secure connection and reliable routing of infusate into and out of the catheter assembly 80 is critical and challenging in view of the small profile of the catheter body 84.
Various aspects of the pump and associated components are similar to those disclosed in U.S. Pat. Nos. 7,393,181; 8,376,707; 7,841,976; 7,022,100; and 7,998,054, and in U.S. Pub. Nos. 2011/0004046; 2012/0178986; 2012/0172655; 2012/0178985; and 2012/0004495, the entire contents of each of which are incorporated herein for all purposes by reference. In addition, this application incorporates by reference in its entirety and for all purposes the subject matter disclosed in each of the following concurrently filed applications: application Ser. No. 13/802,556, entitled “DISTAL BEARING SUPPORT,” filed Mar. 13, 2013; Application No. 61/780,656, entitled “FLUID HANDLING SYSTEM,” filed on Mar. 13, 2013; application Ser. No. 13/801,833, entitled “SHEATH SYSTEM FOR CATHETER PUMP,” filed on Mar. 13, 2013; application Ser. No. 13/802,570, entitled “IMPELLER FOR CATHETER PUMP,” filed on Mar. 13, 2013; application Ser. No. 13/801,528, entitled “CATHETER PUMP,” filed on Mar. 13, 2013; and application Ser. No. 13/802,468, entitled “MOTOR ASSEMBLY FOR CATHETER PUMP,” filed on Mar. 13, 2013.
In some embodiments both the cannula 108 and the impeller 112 are actuatable from a first configuration for delivery through a patient to a working site to a second configuration for generating high flow at the working site. The first configuration may be a low profile configuration and the second configuration may be an expanded configuration. The low profile configuration preferably enables access via a femoral artery or other peripheral blood vessel without excessive obstruction of blood flow in the vessel, as discussed further below.
The catheter body 104 preferably has a plurality of lumens, including a first lumen 140 adapted for housing a drive shaft 144, a second lumen 140B for conveying a medical fluid distally within the catheter body 104, and a third lumen 140C for anchoring a bearing housing 146 to the catheter body 104. The drive shaft 144 extends proximally within the catheter body 104 from the impeller 112. The drive shaft 144 couples with the motor at the proximal end and with the impeller 112 at the distal end thereof. The drive shaft 144 can be formed with any suitable structure, but should be sufficient flexible to traverse at least from a peripheral (e.g., femoral) artery to a heart chamber, such as the left ventricle, as well as sufficiently durable to rotate at a high speed for several hours, for several days, and in some cases, months. The drive shaft 144 can be coupled with an impeller assembly 112 including an expandable impeller 112A) disposed on a tubular body 112B
Any suitable material or combination of materials can be used for the catheter body 104 or catheter bodies 104A and 304 discussed below and provided in some embodiments. In one embodiment, the catheter body 104 has an inner layer 148 surrounding the lumen 140 that comprises high density polyethylene (HDPE). For example, Marlex 4903 HDPE can be disposed about the lumen 140. If a composite structure is used to form the catheter body 104, the inner layer 148 has a thickness that is sufficient to withstand wear caused by interaction with the drive shaft 144, which can be rotated at a very high speed in some applications, for example from 20,000-40,000 revolutions per minute. The inner layer can have a thickness of 0.003 inches.
The second lumen 140B extends from a proximal end in fluid communication with a source of infusate, which can be a medical fluid (e.g., saline), to a distal end adjacent to the impeller assembly 112. For example, the second lumen 140B can have an outlet disposed adjacent to a flow channel formed in or about the bearing housing 146. Examples of bearing housing flow channels are shown in
The third lumen 140C can be used to enhance the security of the connection between the catheter body 104, 104A and the bearing housing 146. For example, the third lumen 140C can be sized to receive a plurality of, e.g., two, pull wires 160. The pull wires 160 can take any suitable form, but preferably are sized to be easily received within the lumen 140C. In one embodiment, the lumen 140C is spaced apart from but about the same size as the second lumen 140B and the pull wires are generally rectangular in shape, e.g., having a thickness of about 0.005 inches and a width of about 0.010 inches. The pull wires 160 can be formed of any material that is sufficiently rigid in tension, e.g., of stainless steel with pull strength of at least about 300 ksi. In one arrangement, the pull wires 160 extend at least about three inches into the elongate body 104 in the third lumen 140C and extend out of the third lumen 140C to overlay the bearing housing 146 as shown in
Providing a plurality of pull wires provides redundancy in the connection between the catheter body 104, 104A and the bearing housing 146. In some cases, this redundancy is not needed and a single wire can be used. The redundancy is beneficial, however, because substantial tension force is applied at this connection point when the expandable cannula 108 is collapsed. In one technique relative motion is provided between the catheter body 104, 104A and an outer sheath disposed over the catheter body until the outer sheath slides over a proximal portion of the cannula 108. Further relative motion causes the cannula 108 to be compressed, but not without a substantial force being applied thereto. This force is born at several points, including at the junction between the catheter body 104, 104A and the bearing housing 146. Disconnection of the bearing housing 146 would be problematic, requiring complex procedures to extract the disconnected distal working end of the catheter assembly 100.
The pull wires 160 preferably are located close together on the same side of the catheter body 104, 104A. This arrangement enhances bending flexibility, which is beneficial if tortuous vasculature must be traversed to deliver the catheter assembly 100 to a treatment site, e.g., a heart chamber.
In some embodiments, placing a radiopaque marker on a distal portion of the catheter assembly 100 is advantageous to confirm the location of the working end, e.g., of the cannula 108 and/or impeller 112 prior to and/or after deployment.
Gross mechanical properties of the catheter body 104 can be varied along the length thereof to provide appropriate flexibility and maneuverability within the vasculature to facilitate delivery and operation of the catheter pump into which the catheter assembly 100 is incorporated. For example, in one embodiment, the catheter body 104 is stiffest near the distal end where the catheter body 104 is joined to the working end. In one embodiment, a distal section of the catheter body 104 comprises a material, such as Pebax, having a hardness of about 72 D. A proximal section of the catheter body 104 comprises a material, such as Vestamid having a hardness greater than about 72 D. Between these relatively hard sections ends, a middle section of the catheter body comprises a material having a lower hardness, e.g., MX1205 Pedbax. The low hardness section provides a softer structure in the vicinity of the aortic arch, where the catheter will be consistently resting on the vessel wall. One or more intermediate hardness sections can be provided between the distal, proximal and middle sections. These arrangements are also relevant to the other inner catheter bodies discussed herein, including bodies 104A, 304.
Alternatively, or in addition to these features, the catheter body 104 can have different diameters along its length to provide several important performance benefits. The diameter of a proximal portion of the catheter body 104 can be relatively large to enhance pushability and trackability of the catheter assembly 100. The diameter of a distal portion of the catheter body 104 can be relatively small to enhance flexibility of the distal tip and also to match the profile of the bearing housing 146 such that the lumens 140B align with flow channels at least partly defined by the bearing housing (e.g., the slots 220 discussed below). The enlarged diameter and enhanced hardness at the proximal end both contribute to the maneuverability of the catheter assembly 100. These arrangements are also relevant to the other inner catheter bodies discussed herein, including bodies 104A, 304 and the catheter assemblies 100A, 300, and 400 (discussed below).
In addition to the foregoing structures for varying the stiffness along the length of the catheter body 104, a separate stiffening component, such as a braid 188, can be disposed in the catheter body 104, 104A. In one embodiment, a 0.001 inch by 0.003 inch flat wire of 304V stainless steel is embedded in the catheter body 104, 104A and the braid includes a 70 ppi configuration. The braid 188 can be positioned in any suitable location, e.g., between an inner layer 148 and an outer layer, as shown in
As discussed above, the catheter assembly 100 preferably also includes an outer sheath or sheath assembly 88 provided over the elongate body 104, 104A to aid in delivering, deploying and/or removing the impeller 112. The outer sheath 88 can include an elongate body 96 comprising an inner surface surrounding a lumen disposed therein. The inner lumen can comprise a low friction material or layer. For example, a thickness of PTFE can be provided adjacent the inner lumen. In one embodiment, one or more separate materials can be provided at an outer surface of the elongate body 96.
The elongate body 96 preferably is connected at the proximal end with a proximal hub and/or a suitable connector, such as a Tuohy Borst connector. The proximal hub can include a luer fitting.
The outer sheath 88 also may have varied hardness or other gross mechanical properties along its length to provide appropriate flexibility and maneuverability within the vasculature to facilitate delivery and operation of the catheter pump into which the outer sheath is incorporated, and also to facilitate collapse of the cannula 108 after deployment thereof.
The elongate body of the sheath assembly 88A has a proximal portion “A” with a highest hardness. The proximal portion A can comprise vestamid or other similar material. A portion “B” distal of the proximal portion A and residing over a zone of the cannula in which the impeller I and the distal bearing support S (if present) are housed can have a hardness that is lower than that of the portion A. Portion B can comprise 55 D pebax. A portion “C” disposed distal of the portion B can comprise a material with the lowest hardness of the elongate body of the sheath assembly 88A, e.g., can comprise MX1205. A portion “D” at the distal end of the elongate body of the sheath assembly 88A can have a relatively high hardness, e.g., 72 D pebax. The sheath assembly 88A upon distal movement over the expanded cannula initially contacts the cannula with the relatively hard material of portion D. The relatively soft portion C may contact the vasculature as the catheter assembly 100 is advanced, and its relatively soft structure is biocompatible. Portion B has a hardness that is high enough to protect the zones I and S of the cannula, impeller, and support. Portion A is the hardest of the materials used in the sheath assembly 88A, to aid in maneuverability.
The elongate body of the sheath assembly 88B has a proximal portion and distal bearing zone portion “A” with a highest hardness. The proximal portion A can comprise vestamid or other similar material. A portion “B” between the proximal portion A and the distal bearing zone portion A. The portion B resides adjacent to the transition from the catheter body 104 to the cannula proximal portion 116 and can have a hardness that is lower than that of the portion A. Portion B can comprise 55 D pebax. Portions C and D in the sheath assembly 88B are the same as in the sheath assembly 88A. A portion E is disposed between the portions A and C, e.g., distal of the portion A disposed over the distal bearing support. Portion E can include a series of progressively softer lengths, e.g., a first length of 72 D pebax, a second length of 63 D pebax, and a third length of 55 D pebax. Other materials and hardnesses can be used that provide good resistance to kinking in the delivery of the catheter assembly 100 and/or in the process of re-sheathing the expanded cannula and impeller.
Catheter pumps incorporating the catheter assembly and variation thereof can be configured to deliver average flow rates of over 4 liters/minute for a treatment period. For example, a treatment period can be up to 10 days for acute needs, such as patient in cardiogenic shock. Catheter pumps incorporating the catheter assembly 100 or such modifications thereof can be used for shorter periods as well, e.g., for support during high risk catheter or surgical procedures.
Also, catheter pumps incorporating the catheter assembly 100 or modifications thereof can be used for left or right side heart support. Example modifications that could be used for right side support include providing delivery features and/or shaping a distal portion that is to be placed through at least one heart valve from the venous side, such as is discussed in U.S. Pat. Nos. 6,544,216; 7,070,555; and US 2012-0203056A1, all of which are hereby incorporated by reference herein in their entirety for all purposes. For example, the catheter assembly 100 or modifications thereof can be configured to be collapsed to be deliverable through a 13 French introducer sheath and can be expanded to up to 24 French when deployed. In one embodiment, the outer profile of the catheter assembly 100 or modifications thereof is approximately 12 French, but can be any size that is insertable into a femoral artery without requiring surgical cutdown. The catheter assembly 100 can be as large as 12.5 F to be inserted through a 13 French introducer sheath. One method involves deployment of the cannula 108, having an expandable nitinol structure, across the aortic valve. In this position, the impeller 112 can be disposed on the aorta side of the valve and a distal length of the cannula 108 within the ventricle.
In other embodiments, the outer profile of the catheter assembly 100 or modifications thereof is less than 12 French, e.g., about 10 French. The 10 French configuration can be useful for patients with lower flow needs, e.g., about 3 liters per minute or less at physiologic conditions. In another example, an 8 French configuration can be useful for patients with lower flow needs, e.g., about 2 liters per minute or less at physiologic conditions.
The cannula 308 includes a self-expanding structure enclosed in a polymeric film. The self-expanding structure can be a distal portion of a member having a non-expanding tubular portion 316 proximal of the self-expanding structure. The tubular portion 316 plays a role in anchoring the cannula 308 to the catheter body 304.
The apertures 344 can be arranged in multiple zones. In one embodiment a first zone is disposed distally of the second zone. The first zone can be disposed adjacent to the distal end of the ferrule 336 and the second zone is disposed proximal of the first zone. The first zone can include four apertures 344A spaced evenly about the periphery of the body of the ferrule. The second zone can include a plurality of (e.g., four) apertures 344B spaced evenly about the periphery of the body of the ferrule 336. A specific advantageous embodiment provides four apertures 344B in the second zone. The apertures 344B of the second zone can be spaced evenly about the body of the ferrule 336. Preferably the apertures 344 of the first and second zones are offset to provide a great deal of redundancy in the security of the connection of the catheter body 304 to the ferrule 336. For example, the apertures 344 in the first and second zones can be offset by one-half the circumferential distance between adjacent apertures 344.
The ferrule 336 also includes a proximal zone 348 disposed proximally of the aperture 344. The proximal zone 348 preferably is configured to provide an excellent fluid seal between the ferrule and the non-expandable tubular portion 316 of the cannula 308. In one embodiment, the proximal zone 348 includes a plurality of recesses 352 in the outer surface of the proximal portion 348. The recesses 352 can take any form consistent with good sealing, and in one embodiment the recesses are turns of a continuous helical groove in the outer surface of the ferrule 336. The helical groove is configured to receive a sealant that can bridge from the base of the grooves to the inner surface of the proximal portion 316 of the cannula 308. In one embodiment, the sealant includes an adhesive that can flow into the helical groove and be adhered to the inner surface of the proximal portion 316 of the cannula 308.
Although the weld and adhesive that can be formed or disposed between the ferrule 336 and the proximal portion 316 of the cannula 308 can provide excellent security between these components of the catheter assembly 300, a supplemental securement device 360 can be provided in some embodiments.
In one embodiment, a recess 364 is provided within the catheter assembly 300 to receive the securement device 360. The recesses 364 can be formed in an internal structure disposed within the proximal portion 316. In a first variation, a sleeve 368 is provided immediately within the non-expandable proximal portion 316 of the cannula 308. The sleeve 368 is provided and fills the volume between a bearing housing 372 and the proximal portion 316. The bearing housing 372 facilitates rotation of the impeller shaft and the flow of infusate. The sleeve 368 has slots and/or other fluid communication structures formed therein that direct flow from channels in the catheter body 308 to flow channels in the bearing housing 372. In one embodiment, the sleeve 368 has a plurality of small apertures that are disposed between flow slots. The apertures and slots can be similar is shape and form to the apertures 224 and slots 220 discussed above.
In other embodiment, apertures can be formed in the bearing housing 372. For example, the bearing housing 372 can have a plurality of channels aligned with flow passages in the catheter body 304. In such embodiment, apertures for receiving the securement device 360 can be provided directly in the bearing housing 372. In another variation, apertures are provided that extend through the sleeve 368 and into the bearing housing 372.
Modifications of catheter pumps incorporating the catheter assembly 300 can be used for right side support. For example, the elongate body 304 can be formed to have a deployed shape corresponding to the shape of the vasculature traversed between a peripheral vascular access point and the right ventricle.
Any suitable manufacturing method can be used to cause a portion of the catheter body 304 to be disposed in the apertures 344. For example, in one the catheter body 304 and the cannula 308 are to be joined. The cannula 308 has the tubular portion 316 which is to be disposed over the catheter body 304. The ferrule 336 is a metallic body that is an important part of one form of a mechanical interface. The ferrule 336 has an inner surface and apertures 344 that act as a first interface zone and an outer surface that acts as a second interface zone. The ferrule 336 is positioned such that the inner surface is disposed over the outer surface of short length of the catheter body 304 adjacent to the distal end thereof.
In one technique, the outer surface of the catheter body 304 is mechanically coupled to the ferrule 336 by a process that involves heating. The distal portion of the catheter body 304 and the ferrule 336 are heated sufficiently to cause at least a portion of the catheter body to transition to a state with low resistance to deformation. The low resistance state can be a fluid state or just a state in which the material of the catheter body 304 if more malleable. In the state having low resistance to deformation, the catheter body 304 flows through or protrudes into the apertures 344. Because the material is formed continuously from a location inside the inner surface of the ferrule to outside the inner surface, a strong mechanical coupling is provided between these components.
The tubular portion 316 of the cannula 308 can be coupled with the ferrule 336 by any suitable technique. In one embodiment, the tubular portion 316 and the ferrule 336 are indirectly coupled through sleeve 368 discussed more below. In particular, the distal end of the ferrule 336 can be welded to the proximal end of the sleeve 368 and a second connection can be provided between the portion 316 and the sleeve as discussed elsewhere herein. In another embodiment, the ferrule 336 can be directly connected by a suitable technique, such as welding if suitable materials are provided. These structures are also illustrated in
The foregoing technique of heating the catheter body 304 to cause the material thereof to be coupled with the proximal portion 160A of the pull wire(s) 160. Another technique for joining the pull wires 160 to the catheter body 304 is by an epoxy or other adhesive at the proximal end of the wires and/or catheter body 304. A distal section of the pull wires 160 within the catheter body 304 can be left un-adhered to the catheter body, such that this section of the pull wires 160 can move relative to the catheter body or “float” to enhance flexibility of the distal portion of the catheter body in some embodiments. The proximal portion 160A provides a first interface zone of a mechanical interface between the catheter body 104 and the bearing housing 146. The distal portion 160C provides a second interface zone that can be coupled with the bearing housing 146 by a suitable technique, such as welding. In another embodiment, the sleeve 216, 216A is formed of a material to which the pull wires can be welded or otherwise mechanically secured.
The stator blades 408 are configured to act on the fluid flow generated by the impeller 312 to provide a more optimal fluid flow regime downstream of the stator assembly 402. This fluid flow regime can correspond to a more optimal fluid flow regime out of the outlet of the catheter pump. The stator blades 408 preferably convert at least the radial component of flow generated by the impeller 312 to a flow that is substantially entirely axial. In some cases, the stator blades 408 are configured to reduce other inefficiencies of the flow generated by the impeller 312, e.g., minimize turbulent flow, flow eddies, etc. Removing the radial components of the flow can be achieved with blades that are oriented in an opposite direction to the orientation of the blades of the impeller 312, for example, clockwise versus counterclockwise oriented blade surface.
While the stator blades 408 act on the flow generated by the impeller 312, the fluids also act on the stator assembly 402. For example, the stator blade body 404 experiences a torque generated by the interaction of the blades 408 with the blood as it flows past the stator assembly 402. A robust mechanical interface 420 is provided between the central body 412 and a distal portion of the catheter assembly 400. A bearing housing 424 is provided that is similar to the bearing housing 372, except as described differently below. The bearing housing 424 includes an elongate portion 428 that projects into a lumen of the central body 412. The elongate portion 428 preferably has an outer periphery that is smaller than an outer periphery of a portion of the bearing housing 424 immediately proximal of the elongate portion 428.
This structure provides an interface 432 disposed between the elongate portion and the portion just distal thereto. The interface 432 can be a shoulder having a radial extent that is approximately equal to that of the central body 412. In some embodiments, a flush surface is provided between the outer surface of the central body 412 and a distal outer surface of the sleeve 368 such that the radial extent of the shoulder of the interface 432 is less than that of the central body 412 by an amount approximately equal to the thickness of the sleeve 368. The interface 432 can also or alternately includes an engagement feature between the inner surface of the lumen of the central body 412 and the outer surface of the elongate portion 428. In one embodiment, the outer surface of the elongate portion 428 has a helical projection or groove and the central body 412 has corresponding and mating helical grooves or projections. These features can be or can be analogous to screw threads. Preferably the helix portion is arranged such that the torque felt by the stator assembly 402 generates a tightening of the engagement between the elongate portion 428 and the central body 412. The projections or grooves in the central body 412 can be formed by molding the central body 412 over the elongate projection 428.
A small gap is provided between the stator assembly 402 and the impeller 312 such that no or minimal contact is provided between these components, but the flow between the blades of these structures smoothly transitions between the blades thereof. Such an arrangement is useful in that the impeller 312 rotates at more than 10,000 RPM while the stator assembly 412 is stationary.
While the robust mechanical interfaces between the catheter body 104 and the cannula 108 is important to the catheter assembly 300 the interface is even more important in certain embodiments of the catheter body 400 that are actuated to a collapsed state prior to being removed from the patient. In such embodiments, the deployed working end preferably is collapsed, including the cannula 308, the stator blade body 404, and the impeller 312. This can be done by providing distal relative motion of the sheath assembly 88. The forces applied by the sheath assembly 88 to the catheter body 400, stator blade body 404, and the impeller 312 and focused at the mechanical joints are enhanced due to the presence of the stator blade body 404.
One will appreciate from the description herein that the catheter assembly may be modified based on the respective anatomy to suit the desired vascular approach. For example, the catheter assembly in the insertion state may be shaped for introduction through the subclavian artery to the heart. The catheter pump may be configured for insertion through a smaller opening and with a lower average flow rate for right side support. In various embodiments, the catheter assembly is scaled up for a higher flow rate for sicker patients and/or larger patients.
In various embodiments, it can be important to measure various properties and/or characteristics during operation of a catheter pump or catheter assembly. For example, it can be desirable to measure local properties of the fluid flow such as pressure, flow rate, turbulence, viscosity, and/or chemical or biological composition. It may also be desirable to measure other properties including, but not limited to, properties based on the surrounding anatomy, cardiovascular system, or pulmonary system. It may also be desirable to measure changes to these properties. For example, it may be desirable to measure and record the rate of change or minimum and maximum values within a period of time. Suitable devices for measuring the local properties include, but are not limited to, sensors to measure pressure, flow, and blood chemistry. Exemplary flow rate sensors include a differential pressure flowmeter, a velocity flowmeter, a positive displacement flowmeter, a mass flowmeter, and an open channel flowmeter. Exemplary flow sensors include Doppler ultrasound and time of flight. Additional details regarding exemplary sensor assemblies are provided below.
In various embodiments, the position and/or orientation of the impeller assembly of a catheter pump relative to the anatomy can be determined using measured parameters. For example, as explained in more detail herein, in left ventricular assist devices (LVADs), a desired target position for an exemplary catheter pump is such that the aortic valve is between the inlets and the outlets of the catheter pump. If the catheter pump is positioned too far within the left ventricle or too far within the aorta, then the flow rate may be meaningfully reduced and patient outcomes may be negatively affected. Typically the catheter pump is positively placed in a target position under fluoroscopy. During operation, however, the pump can become displaced because of several factors including operation of the pump and forces on the pump from the aortic valve, aortic walls, and left ventricle. It can be desirable to continuously monitor the position of the impeller assembly of the catheter pump relative to the anatomy to ensure continued alignment at a target position. Although the examples explained herein are illustrated and described with respect to LVADs, it should be appreciated that similar sensor configurations can be used with other cardiac assist devices (such as right ventricular assist devices, or RVADs, or biventricular assist devices, or BiVADs) and/or other types of catheter assemblies.
In some embodiments, a catheter assembly can include a cannula having a proximal portion and a distal portion. A proximal sensor assembly can be disposed near the proximal portion of the cannula. In some embodiments, a distal sensor assembly can also be disposed near the distal portion of the cannula. In some embodiments, only a proximal sensor assembly can be used, while in other embodiments, only a distal sensor assembly can be used. In an exemplary embodiment, the catheter pump is configured for positioning across the aortic valve such that blood is moved from the left ventricle to the ascending aorta. An optional proximal sensor assembly positioned proximal the valve measures a fluid property (e.g., pressure) in the aorta of the patient. An optional distal sensor assembly positioned distal the valve measures a fluid property (e.g., pressure) in the left ventricle. In one embodiment, the catheter assembly includes at least two sensors and calculates a difference in the measured values between the at least two sensors. In other procedures, however, it should be appreciated that the proximal and distal sensor assemblies can measure other properties and/or characteristics, such as flow rate, chemical/biological composition, etc. Further, in other procedures, the proximal and/or distal sensors can be configured to be disposed in other parts of the anatomy or other chambers of the heart (such as the right atrium, right ventricle, and/or pulmonary artery for right-side assist procedures).
In a typical procedure, a physician may confirm placement at a target location using conventional techniques like fluoroscopy or x-ray. The one or more sensors then transmit a baseline signal to a controller indicative of proper positioning of the catheter pump. The controller can include a processing unit configured to store and analyze a baseline signature based on the signal received from the sensor(s), which can be representative of proper placement of the distal portion of the catheter pump, e.g., such that the aorta straddles the inlets and outlets of the impeller assembly for an exemplary left-side assist procedure. If the impeller assembly becomes misaligned or otherwise out of position relative to the anatomy, then the signal transmitted by the sensor(s) is expected to change. The processing unit which processes the signal detects an event based on the signal. The processor may detect a disturbance signature. In one example, the processor may identify a signature in the sensor signal indicative of improper placement of the catheter pump. In one example, the processor identifies an event based on one or more of the following factors: an amplitude, a maximum value, a minimum value, a frequency, a wavelength, a shape of the signal waveform, a rate of change (first derivative) of a characteristic of the signal, whether the signal is positive or negative, and whether the signal changes between positive and negative. Various signal processing techniques and/or look-up tables as will be understood from the description herein can be used to determine analyze the signal. In one example, the processor compares the received signal to the baseline signature and identifies a disturbance event (e.g. malpositioning of the pump) when the received value is sufficiently different from the baseline signature. In one example, the received signal is sufficiently different when the comparison value exceeds a predefined threshold. In the case of an event detection, the controller can send a notification to the clinician. The clinician can accordingly reposition the working end of the catheter pump in the proper orientation.
In various embodiments, the processor makes use of heuristics, fuzzy logic, neural networks, machine learning, and/or other advanced processing and learning techniques. In various embodiments, the processor evaluates the signal information using artificial intelligence including inference rules related to the target location and/or position in the pathway to the target location, comparisons to information in a database, and probabilities, among others.
The processor may improve or learn over time. In one example, the processor detects a fault in the pump based on the received signal and returns an alarm notification for the clinician, e.g., by way of a user interface on a console. In one implementation, the processor detects the fault in the pump using stored values such as expert data. If the processor determines that the pump is properly positioned, but a determined flow rate is below an expected value, the processor may identify a failure in the pump. In another example, the processor identifies a mechanical failure and displays an alarm representative of the failure mode to the physician. The physician resets the alarm, indicating the pump is working properly, and after one or more resets the processor learns that the circumstances or parameters are a false positive. Likewise, the processor can use past information to improve the accuracy of its event detection techniques.
In various embodiments, the catheter pump system includes at least one sensor to measure pressure and/or flow rate. In one embodiment, the system includes a pressure sensor to measure pressure as a proxy for flow rate. For example, the system can determine a flow rate based on the measured pressure using a standard pressure-flow curve. In various embodiments, the processor makes use of the pressure and/or flow pattern. For example, the flow pattern in the ventricle is expected to be different than the atria and blood vessels, not just in absolute values, but also in flow patterns. The ventricle experiences distinct flow patterns commensurate with the cardiac cycle. Similarly, the flow on the venous side of the vasculature is relatively low pressure and turbulent compared to the arterial side. The processor can make use of such knowledge of the physiology to identify where the sensor is located and the local conditions.
In various embodiments, the processor makes use of information from adjunctive devices like a heart rate monitor, ECG or EEG, blood glucose monitor, or accelerometer. The processor may make use of inputs from a physician (e.g. hematocrit or pulmonary capillary wedge pressure).
In various embodiments, the processor makes use of biomarkers. For example, lactate dehydrogenase (LDH) and brain natriuretic peptide (BNP) can be used as biomarkers for developing a thrombosis risk index. The processor can identify a particular event based on the thrombosis risk index. For example, if the thrombosis risk index suggests a high likelihood of thrombus while the flow rate is significantly below an expected value and the current to the pump spikes, the processor may determine that thrombus is present in the pump.
In various embodiments, the processor makes use of various inputs including, but not limited to, the signal from the sensor(s), motor current, motor voltage, and back electromagnetic force (emf) from the motor.
A. Overview of Catheter Pump Systems Having One or More Sensor Assemblies
The system 501 can include a controller 502 having a processing unit 503. One will appreciate, however, that the processor unit can be separate from the controller. The processor unit can also be placed anywhere, including in the body. The proximal and distal sensor assemblies 521, 524 can be in data communication with the controller 502. For example, for optical pressure sensors, the proximal and distal sensor assemblies 521, 524 can be in optical communication with the controller 502 by way of one or more optical fibers. The controller 502 may be physically coupled to or housed in a console in some arrangements. The processing unit 503 can include one or more processors programmed to perform methods that are encoded on software stored and/or compiled on any suitable type of storage medium, such as a non-transitory computer-readable storage medium. Any suitable processor can be used in the processing unit 503, including, but not limited to, field programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), complex programmable logic devices (CPLDs), programmable logic arrays (PLAs), general purpose processors, microprocessors, or other similar processing devices. The computer-implemented instructions may be stored on any suitable storage medium, such as optical storage devices, volatile or non-volatile memory devices, RAM, EEPROM, ROM, etc.
The controller 502 can electrically communicate with a user interface 505. The user interface 505 can include visual (e.g., a display), audio, and/or other outputs for notifying the clinician of various events during a treatment procedure. For example, the controller 502 can communicate various properties or characteristics of the treatment procedure to the user interface 505, which can notify the clinician of such properties or characteristics. In some embodiments, the controller 502 can determine whether or not the catheter assembly 500 is properly or improperly positioned relative to the patient's anatomy, and the user interface 505 can notify the clinician about the proper or improper position. For example, the user interface can signal to the clinician that the catheter assembly needs to be pushed in further or retracted. The user interface 505 can also include one or more input devices configured to receive instructions from the clinician, for example, for initiating, modifying, and/or terminating a treatment procedure.
The catheter assembly 500 can include a tip member 526. The tip member 526 can be any suitable tip, such as the elongate and rounded tip member 526 shown in
The cannula 508 can include one or more fluid inlets 523 near a distal portion of the cannula 508 and one or more fluid outlets 522 near a proximal portion of the cannula 508. During operation, the impeller 512 can rotate, pulling fluid in a proximal direction relative to the catheter assembly 500. For example, blood can be pulled from a left ventricle through the inlets 523 and can propagate within the cannula 508. The blood can exit the cannula 508 through the outlets 522 near the proximal portion of the cannula 508. In still other embodiments, however, blood can flow distally (e.g. in an RVAD configuration). Although a plurality of inlets 523 and outlets 522 are described herein, it should be appreciated that, in other embodiments, there may be only one inlet 523 and/or only one outlet 522.
As shown in
In some arrangements, the first proximal sensor location 521A can be disposed nearer the outlets 522 than the second proximal sensor location 521B. For example, as shown in
The distal sensor assembly 524 can be disposed near the distal portion of the catheter assembly 500. As with the proximal sensor assembly 521, the distal sensor assembly 524 can include a sensor body configured to convert a fluid property (e.g., pressure) to a signal readable by the controller 502 (e.g., an optical signal, a voltage, or a current). The distal sensor assembly 524 can be disposed at one or more distal sensor locations. As shown in
In some embodiments, the distal sensor assembly 524 can be positioned at the third distal sensor location 524C. The third distal sensor location 524C can be disposed at or near a distal-most end of the catheter assembly 500. For example, as shown in
B. Detecting the Position of the Impeller Assembly Relative to the Anatomy
When the impeller assembly 592 is inserted across the aortic valve 533 and activated, the proximal sensor assembly 521 may measure a pressure curve similar to the theoretical, exemplary pressure curve P1′ shown in the top plot of
The bottom plot in
By contrast, when the impeller is properly positioned (such that the outlets 523 and distal sensor assembly 524 are in the left ventricle 532) and the impeller is activated to rotate at operational speeds, the pump can reduce loading on the left ventricle. By example, if it is assumed the ventricle has a volume such that it pumps 5.5 Lpm at full cardiac output and an exemplary pump can flow 4 Lpm, the heart will still pump 1.5 Lpm even when the pump is operating. If it is further assumed that the heart rate is 150 bpm, then it can be determined that only 1.5 L is expelled by the natural contractility of the ventricle for every 150 beats or 1 cL/beat. This scenario might be referred to as “fragmented flow” because the pump is taking on some of the flow, in this case, most of the flow. By removing blood from the ventricle the pump operates to reduce loading on the ventricle and allow the ventricle to recover.
In some embodiments, the pump can pump blood through the impeller assembly 592 at flow rates of at least about 3.5 liters per minute (Lpm), at least about 4 Lpm, at least about 4.5 Lpm, at least about 5 Lpm, etc. In some arrangements, the pump can pump blood through the impeller assembly 592 at flow rates in a range of about 3.5 Lpm to about 6 Lpm, or in a range of about 4 Lpm to about 5.5 Lpm. In some arrangements, the pump can pump blood through the impeller assembly 592 at flow rates in a range of about 4.5 Lpm to about 5.5 Lpm. Additional details of impellers 508 capable of pumping blood at these flow rates is described in U.S. patent application Ser. No. 13/802,570, entitled “IMPELLER FOR CATHETER PUMP,” filed on Mar. 13, 2013, which is incorporated by reference herein in its entirety and for all purposes.
During operation of the impeller assembly 592, the impeller 508 can reduce the ventricular pressures considerably, which can improve patient outcomes, as explained herein. For example, as shown in
Furthermore, as with the aortic pressure P1′ measured by the proximal sensor assembly 521, the ventricular pressure P2′ may be relatively smooth, exhibiting reduced pulsatility. In some arrangements, the pressure curve P2′ (reflecting ventricular pressures when the impeller assembly 592 is in a proper treatment position) may exhibit less pulsatility than the pressure curve P1′ (reflecting aortic pressures when the impeller assembly 592 is in the proper treatment position).
Thus, the pressure curves P1′ and P2′ may represent baseline signatures of the treatment procedure when the impeller assembly 592 is in a correct or proper treatment position (e.g.,
For example, when the impeller assembly 592 is properly positioned, the distal sensor assembly 524 can be positioned within the left ventricle 532 and can detect fluid flow having a baseline signature similar to that plotted in P2′, which may correspond to a ventricular baseline signature V. In addition, or alternatively, when the impeller assembly 592 is properly positioned, the proximal sensor assembly 521 can be positioned within the aorta 531, and can detect fluid flow having a baseline signature similar to that plotted in P1′, which may correspond to an aortic baseline signature A. When the impeller assembly 592 is properly positioned across the aortic valve 533, the processing unit 503 can process the signals transmitted to the controller 502 by the sensor assemblies 521 and/or 524. For example, various pre-processing procedures may be performed to convert the raw sensor data (e.g., an optical signal representative of pressure) into data to be processed by the processing unit 503. The pre-processing can include applying a filter to the signal. The pre-processing can be performed by the processor or a separate component. The processing unit 503 can associate ventricular and/or aortic baseline signatures V, A with a proper placement configuration. Any suitable signal processing techniques in the time domain and/or frequency domain (e.g., Fourier analysis) may be performed on the baseline signatures A, V to characterize the signals detected by the sensor assemblies 521, 524 when the impeller assembly 592 is positioned at a desirable or proper position and orientation. The controller 502 can store the baseline signatures A, V in memory for comparison with other signatures detected by the sensors and processed by the controller 502.
As explained above, it can be advantageous to ensure that the catheter pump is properly positioned and aligned (e.g., across the aortic valve 533 in the exemplary embodiment) throughout the treatment procedure, so that the pump provides adequate, consistent cardiac assistance to the patient. The impeller assembly 592 may become misaligned in a variety of ways during a treatment procedure. For example, the proximal end of the catheter body 504 may be disturbed by the patient, or other external forces may cause the impeller assembly 592 to move within the heart 530.
In various embodiments, the impeller assembly 592 may be initially aligned in a proper treatment location, such as that shown in
When the impeller assembly 592 is misaligned, various embodiments disclosed herein can detect such misalignment using the proximal sensor assembly 521 and/or the distal sensor assembly 524. Disturbance signatures, which may be determined based on plots of pressure detected by the proximal and/or distal sensor assemblies, may comprise a signature representative of a configuration in which the impeller assembly 592 is misaligned relative to a proper orientation or position.
For example, a disturbance signature V′ (not shown) detected by the distal sensor assembly 524 may represent a misaligned configuration in which the inlets 523 are proximal and/or near the aortic valve 533. Without being limited by theory, if the inlets 523 are disposed proximal, over, near, and/or aligned with the aortic valve 533, the pressure signature V′ detected by the distal sensor assembly 524 and processed by the controller 502 may be substantially different from the baseline pressure signature V when the impeller assembly 592 is properly positioned in the anatomy. For example, the disturbance pressure signature V′ may be at different absolute pressures than the baseline pressure signature V when the inlets 523 and the distal sensor assembly 524 are positioned fully within the left ventricle 532. Furthermore, the disturbance pressure signature V′ may exhibit different pulsatility and/or pressure spikes than the baseline pressure signature V. A pressure difference ΔPV′ of the disturbance signature V′ between minimum and maximum pressures may also be different from the pressure difference ΔPV of the baseline signature V. The disturbance signature V′ may also be substantially different from the baseline signature V over time. For example, the disturbance signature V′ may have a period or wavelength that is sufficiently different from the wavelength of the baseline signature V so as to indicate that the inlets 523 are near the aortic valve 533. In some cases, there may also be a time lead or lag between the disturbance and baseline signatures.
Similarly, an aortic disturbance signature A′ detected by the proximal sensor assembly 521 may represent a misaligned configuration in which the outlets 522 are near and/or distal the aortic valve 533. If the outlets 522 are disposed distal, over, near, and/or aligned with the aortic valve 533, the disturbance pressure signature A′ detected by the proximal sensor assembly 521 and processed by the controller 502 may be substantially different from the baseline pressure signature A when the impeller assembly 592 is properly positioned in the anatomy, e.g., within the aorta 531. Furthermore, in some cases, the pulsatility of the aortic disturbance signature A′ may be different as compared with the baseline signature A. As with the ventricular disturbance signature V′, there may be other substantial differences relative to the aortic baseline signature A.
The impeller assembly 592 can be misaligned in other ways. For example, in some situations, the entire impeller assembly 592 may be positioned completely within the left ventricle 532. In such situations, blood flowing through the outlets 522 may be occluded by the valve 533, such that the flow rate through the aorta 531 and vascular system is not appreciably increased relative to the normal cardiac output of the patient's heart. In such arrangements, the measurements detected by the proximal sensor assembly 521 and the distal sensor assembly 524 may be about the same (i.e. the difference is negligible), which would indicate the assembly 592 is entirely in the left ventricle 532 or aorta 531, depending on the pressure reading. In one example, if the differential between the proximal and distal sensors begins to rapidly approach zero, the processor identify imminent misplacement in either the aorta or ventricle.
Turning to
Various embodiments disclosed herein can advantageously reduce the average pressure in the left ventricle 732 by a significant amount, which can improve patient outcomes. In some embodiments, it can be advantageous to initially provide sufficient support to the heart such that the heart and impeller assembly 592 pump at least about 2 Lpm (e.g., at least about 4 Lpm) to ensure sufficient organ perfusion even if the heart is barely able to pump. As explained above, the impeller 508 may be configured pump blood through the impeller assembly 592 at flow rates of at least about 2 liters per minute (Lpm), at least about 2.5 Lpm, at least about 3.5 Lpm, at least about 4 Lpm, at least about 4.5 Lpm, at least about 5 Lpm, etc. In some arrangements, the pump can pump blood through the impeller assembly 592 at flow rates in a range of about 2 Lpm to about 6 Lpm, or in a range of about 4 Lpm to about 5.5 Lpm. In some arrangements, the pump can pump blood through the impeller assembly 592 at flow rates in a range of about 4.5 Lpm to about 5.5 Lpm. Additional details of impellers 508 capable of pumping blood at these flow rates is described in U.S. patent application Ser. No. 13/802,570, entitled “IMPELLER FOR CATHETER PUMP,” filed on Mar. 13, 2013, which is incorporated by reference herein in its entirety and for all purposes.
Thus, in some embodiments, the clinician can insert the impeller assembly 592 to a desired treatment location (e.g.,
In some embodiments, the clinician can move the impeller assembly 592 relative to the aortic valve 533 until the impeller 508 provides adequate flow rate and reduced ventricular pressure. The motor speed that drives the impeller 508 can also be adjusted by the clinician. In some embodiments, the clinician can estimate how far the inlets 523 are past the aortic valve 533. For example, to provide adequate flow and/or reduced ventricular pressures P2, it may be desirable to place the inlets 523 between about 0.5 cm and about 4 cm distal the aortic valve 533. In some embodiments, it can be advantageous to place the inlets 523 in a range of about 1.5 cm to about 3 cm distal the aortic valve 533, e.g., about 2 cm distal the aortic valve 533 in one embodiment. The clinician can use a mechanical marker at the proximal end of the catheter body outside the patient's body to provide a rough estimate of the position of the impeller assembly 592 relative to the aortic valve 533. The clinician can manipulate the impeller assembly 592 until the pressures detected by the distal sensor assembly 724 are at suitably low average levels.
Once the pump is roughly positioned such that it maintains a sufficient flow rate to ensure adequate organ perfusion, in various embodiments disclosed herein, the clinician can optimize positioning by moving impeller assembly 592 to reduce pressure spikes and smooth out the pressure profile P2. As shown in
The pump disclosed herein can also reduce remodeling of the left ventricle 732. After heart attacks or other cardiac events, the left ventricle 732 may gradually become remodeled, which may lead to long-term heart problems, such as chronic heart failure (e.g. dilated cardiomyopathy). Advantageously, the pump disclosed herein may reduce the extent of ventricular remodeling when operated at a proper treatment position over time. For example, using the impeller assembly 592 disclosed herein even for several hours may have positive effects on remodeling. Use of the pump for longer periods (e.g. days, weeks, or even months), may dramatically reduce or prevent remodeling. In some embodiments, operating the impeller assembly 592 at pressure profiles such as that shown in
Accordingly, in the embodiment described herein with respect to
In a block 602, the signal can be processed to determine a fluid signature related to a property of the fluid flowing through the proximal port. For example, the raw signal from the sensor can be pre-processed to convert the detected signal (e.g., an optical signal, a voltage, a current, etc.) into a parameter data representative of fluid flow. A processor can filter the raw signal to extract the parameter data, e.g., pressure values. The parameter data can comprise data that can be manipulated by a processor. The processor can detect a signature of the parameter data. For example, the processor can determine the shape of the pressure waveform over time, including, e.g., first and second derivatives of the pressure data and other operations that may be used to identify a signature of the flow. In some embodiments, the signal can comprise a pressure signal (e.g., an optical signal representative of the sensed pressure), and the signature can represent the pressure of the fluid flowing through the proximal port. Similarly, in arrangements having a distal port and a distal sensor, the raw signal from the distal sensor can be processed into a distal signature.
Turning to a block 603, the determined fluid signature can be compared with a baseline signature. The baseline signature can be associated with a proper position of the cannula during a treatment procedure. For example, as explained herein with respect to left-side support procedures, it may be desirable to position the cannula within the patient such that the aortic valve is disposed between the inlets and outlets of the cannula. Accordingly, in a proper positioning of the cannula during the procedure, the proximal port can be disposed proximal the aortic valve. In embodiments with a distal port and distal sensor, the distal port can be disposed distal the aortic valve relative to the cannula. The baseline signature can be representative of the pressure (or other fluid property) of the blood flowing through the inlets and outlets when the cannula is properly positioned.
In a block 604, the position of the cannula can be determined based at least in part on the comparison of the determined fluid signature with the baseline signature. In some embodiments, if the determined fluid signature (e.g., a disturbance signature) is significantly different from the baseline signature, the method 600 can determine that the cannula is in an improper position during the procedure. In a block 605, the determination or result can be displayed to the clinician, e.g. to notify the clinician whether or not the impeller housing is in a proper treatment position. For example, a user interface can notify the clinician that the impeller assembly is in an improper position, and the clinician can reposition the cannula accordingly.
In some arrangements, the method 600 can compute a difference between a mean baseline signature and a mean disturbance signature. If the computed difference exceeds a predetermined threshold, then it can be determined that the cannula is misaligned. In some arrangements, the method 600 can compare pressure differences ΔP associated with the difference between minimum and maximum pressures, Pmin and Pmax, respectively, between the baseline signature and the determined signature. If the compared pressure differences ΔP are substantially different, then the method 600 can determine that the cannula is misaligned. In various embodiments, substantially different means greater than 5%, greater than 10%, greater than 25%, or greater than 50%. In various embodiments, substantially different means greater than 100%, greater than 150%, greater than 200%, greater than 250%, or greater than 300%. In some arrangements, the period or wavelength λ, of the determined signature can be compared with the period or wavelength λ, of the baseline signature. If the wavelength λ, of the determined signature differs substantially from the wavelength λ, of the baseline signature, then the method 600 may determine that the cannula is misaligned. It should be appreciated that other metrics may be used to determine whether or not the cannula is misaligned relative to the anatomy. Indeed, any suitable time-domain and/or frequency domain signal processing methods, look-up tables, or other techniques may be used to determine the position of the cannula relative to the anatomy.
Advantageously, in some embodiments, the method 600 can determine whether the outlets 522 or inlets 523 of the cannula are near and/or substantially aligned with a cardiac valve, such as the aortic valve 533. Such a determination may indicate, for example, that the cannula 508 is sliding distally (in the case of the outlets 522 approaching the valve 533) or proximally (in the case of the inlets 523 approaching the valve 533). For example, although the cannula 508 may be initially positioned properly such that the valve 533 is between the inlets 522 and outlets 523, the cannula 508 may slide distally due to some external disturbance. So long as the proximal sensor assembly 521 remains in the aorta 531, the controller 502 can process the signal detected by the sensor tip and may determine that the processed or determined signature A′ (e.g., representative of pressure in the aorta 531) is substantially similar to the baseline aortic signature A. In such a case, the controller 502 may indicate that the cannula 508 is properly positioned, even though the cannula 508 may have moved distally by a small amount.
However, if the cannula 508 continues to slide distally, e.g., towards the left ventricle 532, then the outlets 522 and the proximal sensor assembly 521 may approach the aortic valve 533 such that the outlets 522 and proximal sensor assembly 521 are brought into close proximity to (and/or are substantially aligned with) the aortic valve 533. The signal received from the proximal sensor assembly 521 may be processed by the controller 502 to determine a signature of the flow through the outlets 522. When the outlets 522 overlie or are sufficiently close to the aortic valve 533, the controller 502 may determine that the determined signature A′ is substantially different from the baseline aortic signature A. The controller 502 may therefore indicate that the cannula 508 is misaligned. Furthermore, based on known or estimated flow signatures when the outlets 522 overlie the aortic valve 533, the controller 502 may recognize that the outlets 522 overlie, align with, and/or are in close proximity with the aortic valve 533. The controller 502 may communicate with the user interface 505, which can inform the clinician that the cannula 508 is sliding distally and that the clinician should reposition the cannula 508. Although the example above discussed the situation of the cannula 508 sliding distally, it should be appreciated that similar methods may be conducted in situations in which the cannula 508 slides proximally such that the inlets 523 approach and come in close proximity to (and/or overlie) the aortic valve 533. Accordingly, in addition to determining whether or not the aortic valve 533 is disposed between the inlets 523 and outlets 522, the embodiments disclosed herein can also determine whether or not the inlets 523 and/or outlets 522 are in close proximity to and/or overlying the aortic valve 533 (or another cardiac valve).
The processor 610 can also receive additional inputs, such as information 611 from adjunctive devices such as a heart rate monitor, ECG or EEG, blood glucose monitor, pulmonary catheter (for measuring pulmonary capillary wedge pressure), or an accelerometer. The adjunctive devices can provide the processor 610 with additional information 611 to help inform decisions made by the processor 610 during treatment. In addition, expert data 612 can be received and processed by the processor 610. Expert data 612 can comprise any suitable data that can inform the clinician about the status of the catheter pump. For example, expert data 612 can inform the clinician about whether or not the pump is functioning properly, blockage in the pump, etc.
The processor 610 can include a comparator 614 configured to compare and otherwise manipulate multiple values relative to one another, e.g., based on a comparison of voltages and/or currents. For example, the comparator 614 can evaluate stored baselines 615 and signatures 616 (which may be stored in a look-up table 617, for example) to determine whether the impeller assembly is aligned or misaligned, in accordance with the embodiments described herein. The processor 610 can be programmed to decide whether or not the impeller assembly is aligned, and can notify the clinician by way of a user interface 618. The clinician can monitor the pressures displayed on the user interface 618 in real-time and can adjust the impeller assembly 592 to achieve a desired pressure profile.
Although the embodiments illustrated with respect to
Furthermore, it should be appreciated that the methods and systems disclosed herein can continuously monitor the position and movement of the impeller assembly 592 throughout a treatment procedure. If the cannula 508 of the impeller assembly 592 moves relative to the anatomy, the embodiments disclosed herein can track in real-time the position of the cannula 508 and can notify the clinician if misalignment of the cannula 508 is imminent. In addition, although the embodiments disclosed herein may relate to position detection of the impeller assembly 592 using pressure sensors, it should be appreciated that the sensor assemblies can be used to measure other properties, such as flow rate, biological or chemical composition, temperature, etc.
C. Examples of Proximal Sensor Assemblies
In the embodiment of
The proximal sensor assembly 521 can include a sensor tip 542 and an elongate connector 541 providing data communication between the sensor tip 542 and the controller 502 (shown in
The sensor tip 542 can be disposed proximate a proximal window 537 formed through an outer surface of the catheter assembly 500 (e.g., the sensor tip 542 can be substantially axially aligned with the window 537). For example, as shown in
The elongate connector 541 of the proximal sensor assembly 521 can extend proximally to the proximal end portion of the catheter body 504. The connector 541 (e.g., an optical fiber cable) can pass through an aperture or opening formed through the outer surface of the catheter body 504 at the proximal end portion. In other arrangements, the connector 521 can extend laterally through a motor housing or flow diverter at a proximal end of the assembly 500 outside the patient.
Accordingly, in some embodiments, a proximal sensor assembly 521 can extend from outside the patient to a proximal portion of the cannula 508 near the outlets 522 (e.g., substantially axially aligned with the outlets 522 in some arrangements). The assembly 521 can comprise a pressure sensor, which can comprise a fiber optic pressure sensor. It should be appreciated that such fiber optic sensors may be delicate. For example, fiber optic sensors may be easily damaged and/or broken during operation or manipulation of the catheter pump, or during insertion of the sensor assembly 521. Typically the failure mode is by bending or cutting. Accordingly, it can be important to provide sufficient protection to the sensor assembly (including the sensor tip 542 and connector 541) to prevent damage to the optical fiber. Advantageously, the embodiments disclosed herein enable the use of fiber optic sensors, because the sensor pathways are sufficiently sized to allow for passage of the optical fibers without imparting excessive stresses on the fibers. Any stresses experienced by the fiber are tensive, and such fibers are generally resilient when exposed to tensile forces as opposed to bending. For example, the use of a sensor lumen in the catheter body 504 and a trough 539 in the bearing housing 546 can accommodate the use of relatively delicate optical fibers. The relatively smooth transition between the catheter body 504 and the cannula 508, in addition to the careful routing of the connector 541, may at least in part act to protect optical fiber pressure sensors from abrasion, rubbing, and kinking. In turn, using optical fibers to measure pressure at the outlets 522 can improve the accuracy of pressure measurements.
D. Examples of Distal Sensor Assemblies
The distal sensor assembly 524 shown in
In the embodiment of
Coating the sensor assembly 524 in or on the cannula wall 553 can provide one effective way to position the distal sensor assembly 524 near the inlets 523 of the cannula 508. However, in some arrangements, disposing the connector 541 adjacent the rings 551 may damage the optical fiber. Furthermore, during the coating process, it may be difficult to ensure that the optical fiber is evenly and flatly applied against the outer wall 553 of the cannula 508, which can result in a gap between the fiber and the rings 551.
Accordingly, in another embodiment, a protective tube 554 can be disposed about the outer wall 553 of the cannula 508 to provide additional protection for the optical fiber. For example,
The elongate connector 541 (e.g., the optical fiber, not shown in
In some embodiments, the distal sensor assembly 524 can be inserted through the distal lumen 525 after deployment of the cannula 508 within the heart 530. In other embodiments, the sensor assembly 524 can be disposed through the distal lumen 525 during deployment of the cannula 508. Advantageously, the embodiment disclosed in
Moreover, as shown in
In the embodiment of
Although the inventions herein have been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present inventions. It is therefore to be understood that numerous modifications can be made to the illustrative embodiments and that other arrangements can be devised without departing from the spirit and scope of the present inventions as defined by the appended claims. Thus, it is intended that the present application cover the modifications and variations of these embodiments and their equivalents.
This application is a Divisional of U.S. patent application Ser. No. 14/687,493, filed on Apr. 15, 2015, and claims priority to U.S. Provisional Patent Application No. 61/979,920, filed on Apr. 15, 2014, the entire contents of both of which are incorporated by reference herein in their entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1902418 | Pilgrim | Mar 1933 | A |
2356659 | Paiva | Aug 1944 | A |
2649052 | Weyer | Aug 1953 | A |
2664050 | Abresch | Dec 1953 | A |
2684035 | Kemp | Jul 1954 | A |
2789511 | Doble | Apr 1957 | A |
2896926 | Chapman | Jul 1959 | A |
2935068 | Shearman | May 1960 | A |
3080824 | Boyd et al. | Mar 1963 | A |
3455540 | Marcmann | Jul 1969 | A |
3510229 | Smith | May 1970 | A |
3812812 | Hurwitz | May 1974 | A |
3860968 | Shapiro | Jan 1975 | A |
3904901 | Renard et al. | Sep 1975 | A |
3995617 | Watkins et al. | Dec 1976 | A |
4115040 | Knorr | Sep 1978 | A |
4129129 | Amrine | Dec 1978 | A |
4135253 | Reich et al. | Jan 1979 | A |
4143425 | Runge | Mar 1979 | A |
4149535 | Volder | Apr 1979 | A |
4304524 | Coxon | Dec 1981 | A |
D264134 | Xanthopoulos | Apr 1982 | S |
4382199 | Isaacson | May 1983 | A |
4392836 | Sugawara | Jul 1983 | A |
4458366 | MacGregor et al. | Jul 1984 | A |
4537561 | Xanthopoulos | Aug 1985 | A |
4540402 | Aigner | Sep 1985 | A |
4560375 | Schulte et al. | Dec 1985 | A |
4589822 | Clausen et al. | May 1986 | A |
4625712 | Wampler | Dec 1986 | A |
4655745 | Corbett | Apr 1987 | A |
4673334 | Allington et al. | Jun 1987 | A |
4686982 | Nash | Aug 1987 | A |
4696667 | Masch | Sep 1987 | A |
4704121 | Moise | Nov 1987 | A |
4728319 | Masch | Mar 1988 | A |
4753221 | Kensey et al. | Jun 1988 | A |
4769006 | Papantonakos | Sep 1988 | A |
4817586 | Wampler | Apr 1989 | A |
4846152 | Wampler et al. | Jul 1989 | A |
4895557 | Moise et al. | Jan 1990 | A |
4898576 | Philip | Feb 1990 | A |
4900227 | Trouplin | Feb 1990 | A |
4902272 | Milder et al. | Feb 1990 | A |
4906229 | Wampler | Mar 1990 | A |
4908012 | Moise et al. | Mar 1990 | A |
4919647 | Nash | Apr 1990 | A |
4944722 | Carriker et al. | Jul 1990 | A |
4954129 | Giuliani et al. | Sep 1990 | A |
4955856 | Phillips | Sep 1990 | A |
4957504 | Chardack | Sep 1990 | A |
4964864 | Summers et al. | Oct 1990 | A |
4969865 | Hwang et al. | Nov 1990 | A |
4976270 | Parl et al. | Dec 1990 | A |
4985014 | Orejola | Jan 1991 | A |
4994017 | Yozu | Feb 1991 | A |
4995857 | Arnold | Feb 1991 | A |
5000177 | Hoffmann et al. | Mar 1991 | A |
5021048 | Buckholtz | Jun 1991 | A |
5044902 | Malbec | Sep 1991 | A |
5045072 | Castillo et al. | Sep 1991 | A |
5049134 | Golding et al. | Sep 1991 | A |
5059174 | Vaillancourt | Oct 1991 | A |
5061256 | Wampler | Oct 1991 | A |
5089016 | Millner et al. | Feb 1992 | A |
5092844 | Schwartz et al. | Mar 1992 | A |
5098256 | Smith | Mar 1992 | A |
5106368 | Uldall et al. | Apr 1992 | A |
5112200 | Isaacson et al. | May 1992 | A |
5112292 | Hwang et al. | May 1992 | A |
5112349 | Summers et al. | May 1992 | A |
5129883 | Black | Jul 1992 | A |
5142155 | Mauze et al. | Aug 1992 | A |
5147186 | Buckholtz | Sep 1992 | A |
5163910 | Schwartz et al. | Nov 1992 | A |
5169378 | Figuera | Dec 1992 | A |
5171212 | Buck et al. | Dec 1992 | A |
5190528 | Fonger et al. | Mar 1993 | A |
5195960 | Hossain et al. | Mar 1993 | A |
5201679 | Velte, Jr. et al. | Apr 1993 | A |
5211546 | Isaacson et al. | May 1993 | A |
5221270 | Parker | Jun 1993 | A |
5234407 | Teirstein et al. | Aug 1993 | A |
5234416 | Macaulay et al. | Aug 1993 | A |
5286259 | Ganguly et al. | Feb 1994 | A |
5290227 | Pasque | Mar 1994 | A |
5300112 | Barr | Apr 1994 | A |
5312341 | Turi | May 1994 | A |
5344443 | Palma et al. | Sep 1994 | A |
5346458 | Affeld | Sep 1994 | A |
5360317 | Clausen et al. | Nov 1994 | A |
5376114 | Jarvik | Dec 1994 | A |
5393197 | Lemont et al. | Feb 1995 | A |
5393207 | Maher et al. | Feb 1995 | A |
5405341 | Martin | Apr 1995 | A |
5405383 | Barr | Apr 1995 | A |
5415637 | Khosravi | May 1995 | A |
5437541 | Vainrub | Aug 1995 | A |
5449342 | Hirose et al. | Sep 1995 | A |
5458459 | Hubbard et al. | Oct 1995 | A |
5490763 | Abrams et al. | Feb 1996 | A |
5505701 | Anaya Fernandez de Lomana | Apr 1996 | A |
5527159 | Bozeman, Jr. et al. | Jun 1996 | A |
5533957 | Aldea | Jul 1996 | A |
5534287 | Lukic | Jul 1996 | A |
5554114 | Wallace et al. | Sep 1996 | A |
5586868 | Lawless et al. | Dec 1996 | A |
5588812 | Taylor et al. | Dec 1996 | A |
5609574 | Kaplan et al. | Mar 1997 | A |
5613935 | Jarvik | Mar 1997 | A |
5643226 | Cosgrove et al. | Jul 1997 | A |
5678306 | Bozeman, Jr. et al. | Oct 1997 | A |
5692882 | Bozeman, Jr. et al. | Dec 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5704926 | Sutton | Jan 1998 | A |
5707218 | Maher et al. | Jan 1998 | A |
5722930 | Larson, Jr. et al. | Mar 1998 | A |
5725513 | Ju et al. | Mar 1998 | A |
5725570 | Heath | Mar 1998 | A |
5730628 | Hawkins | Mar 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5741234 | Aboul-Hosn | Apr 1998 | A |
5741429 | Donadio, III | Apr 1998 | A |
5746709 | Rom et al. | May 1998 | A |
5749855 | Reitan | May 1998 | A |
5755784 | Jarvik | May 1998 | A |
5776111 | Tesio | Jul 1998 | A |
5776161 | Globerman | Jul 1998 | A |
5776190 | Jarvik | Jul 1998 | A |
5779721 | Nash | Jul 1998 | A |
5807311 | Palestrant | Sep 1998 | A |
5814011 | Corace | Sep 1998 | A |
5824070 | Jarvik | Oct 1998 | A |
5851174 | Jarvik et al. | Dec 1998 | A |
5859482 | Crowell et al. | Jan 1999 | A |
5868702 | Stevens et al. | Feb 1999 | A |
5868703 | Bertolero et al. | Feb 1999 | A |
5888241 | Jarvik | Mar 1999 | A |
5888242 | Antaki et al. | Mar 1999 | A |
5911685 | Siess et al. | Jun 1999 | A |
5921913 | Siess | Jul 1999 | A |
5927956 | Lim et al. | Jul 1999 | A |
5941813 | Sievers et al. | Aug 1999 | A |
5951263 | Taylor et al. | Sep 1999 | A |
5957941 | Ream | Sep 1999 | A |
5964694 | Siess et al. | Oct 1999 | A |
5993420 | Hyman et al. | Nov 1999 | A |
6007478 | Siess et al. | Dec 1999 | A |
6007479 | Rottenberg et al. | Dec 1999 | A |
6015272 | Antaki et al. | Jan 2000 | A |
6015434 | Yamane | Jan 2000 | A |
6018208 | Maher et al. | Jan 2000 | A |
6027863 | Donadio, III | Feb 2000 | A |
6053705 | Schoeb et al. | Apr 2000 | A |
6056719 | Mickley | May 2000 | A |
6058593 | Siess | May 2000 | A |
6059760 | Sandmore et al. | May 2000 | A |
6068610 | Ellis et al. | May 2000 | A |
6071093 | Hart | Jun 2000 | A |
6083260 | Aboul-Hosn | Jul 2000 | A |
6086527 | Talpade | Jul 2000 | A |
6086570 | Aboul-Hosn et al. | Jul 2000 | A |
6106494 | Saravia et al. | Aug 2000 | A |
6109895 | Ray et al. | Aug 2000 | A |
6113536 | Aboul-Hosn et al. | Sep 2000 | A |
6123659 | Le Blanc et al. | Sep 2000 | A |
6123725 | Aboul-Hosn | Sep 2000 | A |
6132363 | Freed et al. | Oct 2000 | A |
6135943 | Yu et al. | Oct 2000 | A |
6136025 | Barbut et al. | Oct 2000 | A |
6139487 | Siess | Oct 2000 | A |
6152704 | Aboul-Hosn et al. | Nov 2000 | A |
6162194 | Shipp | Dec 2000 | A |
6176822 | Nix et al. | Jan 2001 | B1 |
6176848 | Rau et al. | Jan 2001 | B1 |
6186665 | Maher et al. | Feb 2001 | B1 |
6190304 | Downey et al. | Feb 2001 | B1 |
6190357 | Ferrari et al. | Feb 2001 | B1 |
6200260 | Bolling | Mar 2001 | B1 |
6203528 | Deckert et al. | Mar 2001 | B1 |
6210133 | Aboul-Hosn et al. | Apr 2001 | B1 |
6210318 | Lederman | Apr 2001 | B1 |
6210397 | Aboul-Hosn et al. | Apr 2001 | B1 |
6214846 | Elliott | Apr 2001 | B1 |
6217541 | Yu | Apr 2001 | B1 |
6227797 | Watterson et al. | May 2001 | B1 |
6228063 | Aboul Hosn | May 2001 | B1 |
6234960 | Aboul-Hosn et al. | May 2001 | B1 |
6234995 | Peacock, III | May 2001 | B1 |
6245007 | Bedingham et al. | Jun 2001 | B1 |
6245026 | Campbell et al. | Jun 2001 | B1 |
6247892 | Kazatchkov et al. | Jun 2001 | B1 |
6248091 | Voelker | Jun 2001 | B1 |
6254359 | Aber | Jul 2001 | B1 |
6254564 | Wilk et al. | Jul 2001 | B1 |
6287319 | Aboul-Hosn et al. | Sep 2001 | B1 |
6287336 | Globerman et al. | Sep 2001 | B1 |
6295877 | Aboul-Hosn | Oct 2001 | B1 |
6299635 | Frantzen | Oct 2001 | B1 |
6305962 | Maher et al. | Oct 2001 | B1 |
6387037 | Bolling et al. | May 2002 | B1 |
6395026 | Aboul-Hosn | May 2002 | B1 |
6413222 | Pantages et al. | Jul 2002 | B1 |
6422990 | Prem | Jul 2002 | B1 |
6425007 | Messinger | Jul 2002 | B1 |
6428464 | Bolling | Aug 2002 | B1 |
6447441 | Yu et al. | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6468298 | Pelton | Oct 2002 | B1 |
6494694 | Lawless et al. | Dec 2002 | B2 |
6503224 | Forman et al. | Jan 2003 | B1 |
6508777 | Macoviak et al. | Jan 2003 | B1 |
6508787 | Reimund et al. | Jan 2003 | B2 |
6517315 | Belady | Feb 2003 | B2 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6527699 | Goldowsky | Mar 2003 | B1 |
6532964 | Aboul-Hosn et al. | Mar 2003 | B2 |
6533716 | Schmitz-Rode et al. | Mar 2003 | B1 |
6544216 | Sammler et al. | Apr 2003 | B1 |
6547519 | Deblanc et al. | Apr 2003 | B2 |
6565598 | Lootz | May 2003 | B1 |
6572349 | Sorensen et al. | Jun 2003 | B2 |
6609883 | Woodard et al. | Aug 2003 | B2 |
6610004 | Viole et al. | Aug 2003 | B2 |
6613008 | Aboul-Hosn et al. | Sep 2003 | B2 |
6616323 | McGill | Sep 2003 | B2 |
6623420 | Reich et al. | Sep 2003 | B2 |
6623475 | Siess | Sep 2003 | B1 |
6641093 | Coudrais | Nov 2003 | B2 |
6641558 | Aboul-Hosn et al. | Nov 2003 | B1 |
6645241 | Strecker | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6660014 | Demarais et al. | Dec 2003 | B2 |
6673105 | Chen | Jan 2004 | B1 |
6692318 | McBride | Feb 2004 | B2 |
6709418 | Aboul-Hosn et al. | Mar 2004 | B1 |
6716189 | Jarvik et al. | Apr 2004 | B1 |
6749598 | Keren et al. | Jun 2004 | B1 |
6776578 | Belady | Aug 2004 | B2 |
6776794 | Hong et al. | Aug 2004 | B1 |
6783328 | Lucke et al. | Aug 2004 | B2 |
6790171 | Gruendeman et al. | Sep 2004 | B1 |
6794784 | Takahashi et al. | Sep 2004 | B2 |
6794789 | Siess et al. | Sep 2004 | B2 |
6814713 | Aboul Hosn et al. | Nov 2004 | B2 |
6817836 | Nose et al. | Nov 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6835049 | Ray | Dec 2004 | B2 |
6860713 | Hoover | Mar 2005 | B2 |
6866625 | Ayre et al. | Mar 2005 | B1 |
6866805 | Hong et al. | Mar 2005 | B2 |
6887215 | McWeeney | May 2005 | B2 |
6889082 | Bolling et al. | May 2005 | B2 |
6901289 | Dahl et al. | May 2005 | B2 |
6926662 | Aboul-Hosn et al. | Aug 2005 | B1 |
6935344 | Aboul-Hosn et al. | Aug 2005 | B1 |
6942611 | Siess | Sep 2005 | B2 |
6949066 | Bearnson et al. | Sep 2005 | B2 |
6962488 | Davis et al. | Nov 2005 | B2 |
6966748 | Woodard et al. | Nov 2005 | B2 |
6972956 | Franz et al. | Dec 2005 | B2 |
6974436 | Aboul-Hosn et al. | Dec 2005 | B1 |
6981942 | Khaw et al. | Jan 2006 | B2 |
6984392 | Bechert et al. | Jan 2006 | B2 |
7010954 | Siess et al. | Mar 2006 | B2 |
7011620 | Siess | Mar 2006 | B1 |
7014417 | Salomon | Mar 2006 | B2 |
7018182 | O'Mahony et al. | Mar 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7027875 | Siess et al. | Apr 2006 | B2 |
7037069 | Arnold et al. | May 2006 | B2 |
7070555 | Siess | Jul 2006 | B2 |
7122019 | Kesten et al. | Oct 2006 | B1 |
7125376 | Viole et al. | Oct 2006 | B2 |
7144365 | Bolling et al. | Dec 2006 | B2 |
7150711 | Nusser et al. | Dec 2006 | B2 |
7160243 | Medvedev | Jan 2007 | B2 |
7172551 | Leasure | Feb 2007 | B2 |
7175588 | Morello | Feb 2007 | B2 |
7214038 | Saxer et al. | May 2007 | B2 |
7229258 | Wood et al. | Jun 2007 | B2 |
7238010 | Hershberger et al. | Jul 2007 | B2 |
7241257 | Ainsworth et al. | Jul 2007 | B1 |
7262531 | Li et al. | Aug 2007 | B2 |
7264606 | Jarvik et al. | Sep 2007 | B2 |
7267667 | Houde et al. | Sep 2007 | B2 |
7284956 | Nose et al. | Oct 2007 | B2 |
7288111 | Holloway et al. | Oct 2007 | B1 |
7290929 | Smith et al. | Nov 2007 | B2 |
7329236 | Kesten et al. | Feb 2008 | B2 |
7331921 | Viole et al. | Feb 2008 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7341570 | Keren et al. | Mar 2008 | B2 |
7381179 | Aboul-Hosn et al. | Jun 2008 | B2 |
7393181 | McBride et al. | Jul 2008 | B2 |
7469716 | Parrino et al. | Dec 2008 | B2 |
7478999 | Limoges | Jan 2009 | B2 |
7491163 | Viole et al. | Feb 2009 | B2 |
7534258 | Gomez et al. | May 2009 | B2 |
7605298 | Bechert et al. | Oct 2009 | B2 |
7619560 | Penna et al. | Nov 2009 | B2 |
7633193 | Masoudipour et al. | Dec 2009 | B2 |
7645225 | Medvedev et al. | Jan 2010 | B2 |
7657324 | Westlund et al. | Feb 2010 | B2 |
7682673 | Houston et al. | Mar 2010 | B2 |
7722568 | Lenker et al. | May 2010 | B2 |
7731675 | Aboul-Hosn et al. | Jun 2010 | B2 |
7736296 | Siess et al. | Jun 2010 | B2 |
7758521 | Morris et al. | Jul 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7780628 | Keren et al. | Aug 2010 | B1 |
7785246 | Aboul-Hosn et al. | Aug 2010 | B2 |
7811279 | John | Oct 2010 | B2 |
7819833 | Ainsworth et al. | Oct 2010 | B2 |
7820205 | Takakusagi et al. | Oct 2010 | B2 |
7828710 | Shifflette | Nov 2010 | B2 |
7841976 | McBride et al. | Nov 2010 | B2 |
7878967 | Khanal | Feb 2011 | B1 |
7918828 | Lundgaard et al. | Apr 2011 | B2 |
7927068 | McBride et al. | Apr 2011 | B2 |
7934912 | Voltenburg, Jr. et al. | May 2011 | B2 |
7935102 | Breznock et al. | May 2011 | B2 |
7942804 | Khaw | May 2011 | B2 |
7942844 | Moberg et al. | May 2011 | B2 |
7955365 | Doty | Jun 2011 | B2 |
7993259 | Kang et al. | Aug 2011 | B2 |
7998054 | Bolling | Aug 2011 | B2 |
7998190 | Gharib et al. | Aug 2011 | B2 |
8012079 | Delgado | Sep 2011 | B2 |
8025647 | Siess et al. | Sep 2011 | B2 |
8052399 | Stemple et al. | Nov 2011 | B2 |
8062008 | Voltenburg, Jr. et al. | Nov 2011 | B2 |
8079948 | Shifflette | Dec 2011 | B2 |
8110267 | Houston et al. | Feb 2012 | B2 |
8114008 | Hidaka et al. | Feb 2012 | B2 |
8123669 | Siess et al. | Feb 2012 | B2 |
8142400 | Rotem et al. | Mar 2012 | B2 |
8177703 | Smith et al. | May 2012 | B2 |
8206350 | Mann et al. | Jun 2012 | B2 |
8209015 | Glenn | Jun 2012 | B2 |
8216122 | Kung et al. | Jul 2012 | B2 |
8235943 | Breznock et al. | Aug 2012 | B2 |
8236040 | Mayberry et al. | Aug 2012 | B2 |
8236044 | Robaina | Aug 2012 | B2 |
8255050 | Mohl | Aug 2012 | B2 |
8257312 | Duffy | Sep 2012 | B2 |
8262619 | Chebator et al. | Sep 2012 | B2 |
8277470 | Demarais et al. | Oct 2012 | B2 |
8317715 | Belleville et al. | Nov 2012 | B2 |
8329913 | Murata et al. | Dec 2012 | B2 |
8333687 | Farnan et al. | Dec 2012 | B2 |
8348991 | Weber et al. | Jan 2013 | B2 |
8364278 | Pianca et al. | Jan 2013 | B2 |
8376707 | McBride et al. | Feb 2013 | B2 |
8382818 | Davis et al. | Feb 2013 | B2 |
8388565 | Shifflette | Mar 2013 | B2 |
8409128 | Ferrari | Apr 2013 | B2 |
8414645 | Dwork et al. | Apr 2013 | B2 |
8439859 | Pfeffer et al. | May 2013 | B2 |
8449443 | Rodefeld et al. | May 2013 | B2 |
8485961 | Campbell et al. | Jul 2013 | B2 |
8489190 | Pfeffer et al. | Jul 2013 | B2 |
8535211 | Campbell et al. | Sep 2013 | B2 |
8540615 | Aboul-Hosn et al. | Sep 2013 | B2 |
8545379 | Marseille et al. | Oct 2013 | B2 |
8545380 | Farnan et al. | Oct 2013 | B2 |
8579858 | Reitan et al. | Nov 2013 | B2 |
8585572 | Mehmanesh | Nov 2013 | B2 |
8591393 | Walters et al. | Nov 2013 | B2 |
8597170 | Walters et al. | Dec 2013 | B2 |
8608635 | Yomtov et al. | Dec 2013 | B2 |
8617239 | Reitan | Dec 2013 | B2 |
8684904 | Campbell et al. | Apr 2014 | B2 |
8690749 | Nunez | Apr 2014 | B1 |
8721516 | Scheckel | May 2014 | B2 |
8721517 | Zeng et al. | May 2014 | B2 |
8727959 | Reitan et al. | May 2014 | B2 |
8734331 | Evans et al. | May 2014 | B2 |
8784441 | Rosenbluth et al. | Jul 2014 | B2 |
8790236 | Larose et al. | Jul 2014 | B2 |
8795576 | Tao et al. | Aug 2014 | B2 |
8801590 | Mohl | Aug 2014 | B2 |
8814776 | Hastie et al. | Aug 2014 | B2 |
8814933 | Siess | Aug 2014 | B2 |
8849398 | Evans | Sep 2014 | B2 |
8944748 | Liebing | Feb 2015 | B2 |
8992406 | Corbett | Mar 2015 | B2 |
8998792 | Scheckel | Apr 2015 | B2 |
9028216 | Schumacher et al. | May 2015 | B2 |
9089670 | Scheckel | Jul 2015 | B2 |
9217442 | Wiessler et al. | Dec 2015 | B2 |
9308302 | Zeng | Apr 2016 | B2 |
9314558 | Er | Apr 2016 | B2 |
9327067 | Zeng et al. | May 2016 | B2 |
9328741 | Liebing | May 2016 | B2 |
9358330 | Schumacher | Jun 2016 | B2 |
20020010487 | Evans et al. | Jan 2002 | A1 |
20020047435 | Takahashi et al. | Apr 2002 | A1 |
20020094287 | Davis | Jul 2002 | A1 |
20020107506 | McGuckin et al. | Aug 2002 | A1 |
20020111663 | Dahl et al. | Aug 2002 | A1 |
20020151761 | Viole et al. | Oct 2002 | A1 |
20030018380 | Craig et al. | Jan 2003 | A1 |
20030023201 | Aboul-Hosn et al. | Jan 2003 | A1 |
20030100816 | Siess | May 2003 | A1 |
20030135086 | Khaw et al. | Jul 2003 | A1 |
20030187322 | Siess | Oct 2003 | A1 |
20030205233 | Aboul-Hosn et al. | Nov 2003 | A1 |
20030208097 | Aboul-Hosn et al. | Nov 2003 | A1 |
20030228214 | McBride | Dec 2003 | A1 |
20030231959 | Snider | Dec 2003 | A1 |
20040010229 | Houde et al. | Jan 2004 | A1 |
20040044266 | Siess et al. | Mar 2004 | A1 |
20040101406 | Hoover | May 2004 | A1 |
20040113502 | Li et al. | Jun 2004 | A1 |
20040116862 | Ray | Jun 2004 | A1 |
20040152944 | Medvedev et al. | Aug 2004 | A1 |
20040253129 | Sorensen et al. | Dec 2004 | A1 |
20050049696 | Siess et al. | Mar 2005 | A1 |
20050085683 | Bolling et al. | Apr 2005 | A1 |
20050090883 | Westlund et al. | Apr 2005 | A1 |
20050095124 | Arnold et al. | May 2005 | A1 |
20050113631 | Bolling et al. | May 2005 | A1 |
20050135942 | Wood et al. | Jun 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050250975 | Carrier et al. | Nov 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20060005886 | Parrino et al. | Jan 2006 | A1 |
20060008349 | Khaw | Jan 2006 | A1 |
20060036127 | Delgado et al. | Feb 2006 | A1 |
20060058869 | Olson et al. | Mar 2006 | A1 |
20060062672 | McBride et al. | Mar 2006 | A1 |
20060063965 | Aboul-Hosn et al. | Mar 2006 | A1 |
20060089521 | Chang | Apr 2006 | A1 |
20060155158 | Aboul-Hosn | Jul 2006 | A1 |
20060167404 | Pirovano et al. | Jul 2006 | A1 |
20070142785 | Lundgaard et al. | Jun 2007 | A1 |
20070156006 | Smith et al. | Jul 2007 | A1 |
20070203442 | Bechert et al. | Aug 2007 | A1 |
20070212240 | Voyeux et al. | Sep 2007 | A1 |
20070217932 | Voyeux et al. | Sep 2007 | A1 |
20070217933 | Haser et al. | Sep 2007 | A1 |
20070233270 | Weber et al. | Oct 2007 | A1 |
20070237739 | Doty | Oct 2007 | A1 |
20070248477 | Nazarifar et al. | Oct 2007 | A1 |
20080004645 | To et al. | Jan 2008 | A1 |
20080004690 | Robaina | Jan 2008 | A1 |
20080031953 | Takakusagi et al. | Feb 2008 | A1 |
20080103516 | Wulfman et al. | May 2008 | A1 |
20080103591 | Siess | May 2008 | A1 |
20080114339 | McBride et al. | May 2008 | A1 |
20080119943 | Armstrong et al. | May 2008 | A1 |
20080132748 | Shifflette | Jun 2008 | A1 |
20080167679 | Papp | Jul 2008 | A1 |
20080168796 | Masoudipour et al. | Jul 2008 | A1 |
20080306327 | Shifflette | Dec 2008 | A1 |
20090018567 | Escudero et al. | Jan 2009 | A1 |
20090023975 | Marseille et al. | Jan 2009 | A1 |
20090024085 | To et al. | Jan 2009 | A1 |
20090053085 | Thompson et al. | Feb 2009 | A1 |
20090062597 | Shifflette | Mar 2009 | A1 |
20090073037 | Penna et al. | Mar 2009 | A1 |
20090087325 | Voltenburg, Jr. et al. | Apr 2009 | A1 |
20090093764 | Pfeffer et al. | Apr 2009 | A1 |
20090093765 | Glenn | Apr 2009 | A1 |
20090093796 | Pfeffer et al. | Apr 2009 | A1 |
20090099638 | Grewe | Apr 2009 | A1 |
20090112312 | Larose et al. | Apr 2009 | A1 |
20090118567 | Siess | May 2009 | A1 |
20090163864 | Breznock et al. | Jun 2009 | A1 |
20090171137 | Farnan et al. | Jul 2009 | A1 |
20090182188 | Marseille et al. | Jul 2009 | A1 |
20090234378 | Escudero et al. | Sep 2009 | A1 |
20100030161 | Duffy | Feb 2010 | A1 |
20100030186 | Stivland | Feb 2010 | A1 |
20100041939 | Siess | Feb 2010 | A1 |
20100047099 | Miyazaki et al. | Feb 2010 | A1 |
20100087773 | Ferrari | Apr 2010 | A1 |
20100094089 | Litscher et al. | Apr 2010 | A1 |
20100127871 | Pontin | May 2010 | A1 |
20100137802 | Yodfat et al. | Jun 2010 | A1 |
20100174239 | Yodfat et al. | Jul 2010 | A1 |
20100191035 | Kang et al. | Jul 2010 | A1 |
20100197994 | Mehmanesh | Aug 2010 | A1 |
20100268017 | Siess et al. | Oct 2010 | A1 |
20100274330 | Burwell et al. | Oct 2010 | A1 |
20100286210 | Murata et al. | Nov 2010 | A1 |
20100286791 | Goldsmith | Nov 2010 | A1 |
20110004046 | Campbell et al. | Jan 2011 | A1 |
20110004291 | Davis et al. | Jan 2011 | A1 |
20110009687 | Mohl | Jan 2011 | A1 |
20110015610 | Plahey et al. | Jan 2011 | A1 |
20110034874 | Reitan et al. | Feb 2011 | A1 |
20110076439 | Zeilon | Mar 2011 | A1 |
20110098805 | Dwork et al. | Apr 2011 | A1 |
20110106004 | Eubanks et al. | May 2011 | A1 |
20110152831 | Rotem et al. | Jun 2011 | A1 |
20110152906 | Escudero et al. | Jun 2011 | A1 |
20110152907 | Escudero et al. | Jun 2011 | A1 |
20110218516 | Grigorov | Sep 2011 | A1 |
20110237863 | Ricci et al. | Sep 2011 | A1 |
20110257462 | Rodefeld et al. | Oct 2011 | A1 |
20110270182 | Breznock et al. | Nov 2011 | A1 |
20110275884 | Scheckel | Nov 2011 | A1 |
20110300010 | Jarnagin et al. | Dec 2011 | A1 |
20120029265 | LaRose et al. | Feb 2012 | A1 |
20120059213 | Spence et al. | Mar 2012 | A1 |
20120059460 | Reitan | Mar 2012 | A1 |
20120083740 | Chebator et al. | Apr 2012 | A1 |
20120142994 | Toellner | Jun 2012 | A1 |
20120172654 | Bates | Jul 2012 | A1 |
20120172655 | Campbell et al. | Jul 2012 | A1 |
20120172656 | Walters et al. | Jul 2012 | A1 |
20120178985 | Walters et al. | Jul 2012 | A1 |
20120178986 | Campbell et al. | Jul 2012 | A1 |
20120184803 | Simon et al. | Jul 2012 | A1 |
20120203056 | Corbett | Aug 2012 | A1 |
20120220854 | Messerly et al. | Aug 2012 | A1 |
20120224970 | Schumacher et al. | Sep 2012 | A1 |
20120226097 | Smith et al. | Sep 2012 | A1 |
20120234411 | Scheckel et al. | Sep 2012 | A1 |
20120237357 | Schumacher et al. | Sep 2012 | A1 |
20120265002 | Roehn et al. | Oct 2012 | A1 |
20130041202 | Toellner et al. | Feb 2013 | A1 |
20130053622 | Corbett | Feb 2013 | A1 |
20130053623 | Evans et al. | Feb 2013 | A1 |
20130066140 | McBride et al. | Mar 2013 | A1 |
20130085318 | Toellner et al. | Apr 2013 | A1 |
20130085319 | Evans et al. | Apr 2013 | A1 |
20130096364 | Reichenbach et al. | Apr 2013 | A1 |
20130103063 | Escudero et al. | Apr 2013 | A1 |
20130106212 | Nakazumi et al. | May 2013 | A1 |
20130138205 | Kushwaha et al. | May 2013 | A1 |
20130204362 | Toellner et al. | Aug 2013 | A1 |
20130209292 | Baykut et al. | Aug 2013 | A1 |
20130237744 | Pfeffer et al. | Sep 2013 | A1 |
20130245360 | Schumacher et al. | Sep 2013 | A1 |
20130303831 | Evans et al. | Nov 2013 | A1 |
20130303969 | Keenan et al. | Nov 2013 | A1 |
20130303970 | Keenan et al. | Nov 2013 | A1 |
20130331639 | Campbell et al. | Dec 2013 | A1 |
20130345492 | Pfeffer et al. | Dec 2013 | A1 |
20140005467 | Farnan et al. | Jan 2014 | A1 |
20140010686 | Tanner et al. | Jan 2014 | A1 |
20140012065 | Fitzgerald et al. | Jan 2014 | A1 |
20140039465 | Schulz Heike et al. | Feb 2014 | A1 |
20140051908 | Khanal et al. | Feb 2014 | A1 |
20140067057 | Callaway et al. | Mar 2014 | A1 |
20140088455 | Christensen et al. | Mar 2014 | A1 |
20140128659 | Heuring et al. | May 2014 | A1 |
20140148638 | LaRose et al. | May 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140255176 | Bredenbreuker et al. | Sep 2014 | A1 |
20140275725 | Schenck et al. | Sep 2014 | A1 |
20140275726 | Zeng | Sep 2014 | A1 |
20140301822 | Scheckel | Oct 2014 | A1 |
20140303596 | Schumacher et al. | Oct 2014 | A1 |
20150025558 | Wulfman et al. | Jan 2015 | A1 |
20150031936 | Larose et al. | Jan 2015 | A1 |
20150051435 | Siess et al. | Feb 2015 | A1 |
20150051436 | Spanier et al. | Feb 2015 | A1 |
20150080743 | Siess et al. | Mar 2015 | A1 |
20150087890 | Spanier et al. | Mar 2015 | A1 |
20150141738 | Toellner et al. | May 2015 | A1 |
20150141739 | Hsu et al. | May 2015 | A1 |
20150151032 | Voskoboynikov et al. | Jun 2015 | A1 |
20150209498 | Franano et al. | Jul 2015 | A1 |
20150250935 | Anderson et al. | Sep 2015 | A1 |
20150290372 | Muller et al. | Oct 2015 | A1 |
20150343179 | Schumacher et al. | Dec 2015 | A1 |
20160184500 | Zeng | Jun 2016 | A1 |
20160250399 | Tiller et al. | Sep 2016 | A1 |
20160250400 | Schumacher | Sep 2016 | A1 |
20160256620 | Scheckel et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2701810 | Apr 2009 | CA |
0453234 | Oct 1991 | EP |
0533432 | Mar 1993 | EP |
1393762 | Mar 2004 | EP |
1591079 | Nov 2005 | EP |
2298374 | Mar 2011 | EP |
2267800 | Nov 1975 | FR |
2239675 | Jul 1991 | GB |
S4823295 | Mar 1973 | JP |
S58190448 | Nov 1983 | JP |
H02211169 | Aug 1990 | JP |
H06114101 | Apr 1994 | JP |
H08196624 | Aug 1996 | JP |
H1099447 | Apr 1998 | JP |
3208454 | Sep 2001 | JP |
500877 | Sep 2002 | TW |
9526695 | Oct 1995 | WO |
9715228 | May 1997 | WO |
0019097 | Apr 2000 | WO |
0043062 | Jul 2000 | WO |
0069489 | Nov 2000 | WO |
0124867 | Apr 2001 | WO |
02070039 | Sep 2002 | WO |
03103745 | Dec 2003 | WO |
2005089674 | Sep 2005 | WO |
2005123158 | Dec 2005 | WO |
2009073037 | Jun 2009 | WO |
2009076460 | Jun 2009 | WO |
2010133567 | Nov 2010 | WO |
2010149393 | Dec 2010 | WO |
2011035926 | Mar 2011 | WO |
2011035929 | Mar 2011 | WO |
2011039091 | Apr 2011 | WO |
2011076439 | Jun 2011 | WO |
2011089022 | Jul 2011 | WO |
2012007140 | Jan 2012 | WO |
2012007141 | Jan 2012 | WO |
2013148697 | Oct 2013 | WO |
2013160407 | Oct 2013 | WO |
2014019274 | Feb 2014 | WO |
2015063277 | May 2015 | WO |
Entry |
---|
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/045370, dated Feb. 25, 2016, in 10 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014371, dated Jul. 28, 2016, in 16 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014379, dated Jul. 29, 2016, in 17 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014391, dated Jul. 28, 2016, in 15 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/051553, dated Mar. 23, 2017, in 11 pages. |
International Search Report received in International Patent Application No. PCT/US2003/004401, dated Jan. 22, 2004, in 7 pages. |
International Search Report received in International Patent Application No. PCT/US2003/004853, dated Nov. 10, 2003, in 5 pages. |
JOMED Reitan Catheter Pump RCP, Feb. 18, 2003, in 4 pages. |
JOMED Reitan Catheter Pump RCP, Percutaneous Circulatory Support, in 10 pages, believed to be published prior to Oct. 15, 2003. |
Krishnamani et al., “Emerging Ventricular Assist Devices for Long-Term Cardiac Support,” National Review, Cardiology, Feb. 2010, pp. 71-76, vol. 7. |
Kunst et al., “Integrated unit for programmable control of the 21F Hemopump and registration of physiological signals,” Medical & Biological Engineering & Computing, Nov. 1994, pp. 694-696. |
Mihaylov et al., “Development of a New Introduction Technique for the Pulsatile Catheter Pump,” Artificial Organs, 1997, pp. 425-427; vol. 21(5). |
Mihaylov et al., “Evaluation of the Optimal Driving Mode During Left Ventricular Assist with Pulsatile Catheter Pump in Calves,” Artificial Organs, 1999, pp. 1117-1122; vol. 23(12). |
Minimally Invasive Cardiac Assist Jomed Catheter PumpTM, in 6 pages, believed to be published prior to Jun. 16, 1999. |
Morgan, “Medical Shape Memory Alloy Applications—The Market and its Products,” Materials Science and Engineering, 2004, pp. 16-23, vol. A 378. |
Morsink et al., “Numerical Modelling of Blood Flow Behaviour in the Valved Catheter of the PUCA-Pump, a LVAD,” The International Journal of Artificial Organs, 1997, pp. 277-284; vol. 20(5). |
Nishimura et al, “The Enabler Cannula Pump: A Novel Circulatory Support System,” The International Journal of Artificial Organs, 1999, pp. 317-323; vol. 22(5). |
Nullity Action against the owner of the German part DE 50 2007 005 015.6 of European patent EP 2 047 872 B1, dated Jul. 13, 2015, in 61 pages. |
Petrini et al., “Biomedical Applications of Shape Memory Alloys,” Journal of Metallurgy, 2011, pp. 1-15. |
Raess et al., “Impella 2.5,” J. Cardiovasc. Transl. Res., 2009, pp. 168-172, vol. 2(2). |
Rakhorst et al., “In Vitro Evaluation of the Influence of Pulsatile Intraventricular Pumping on Ventricular Pressure Patterns,” Artificial Organs, 1994, pp. 494-499, vol. 18(7). |
Reitan et al., “Hemodynamic Effects of a New Percutaneous Circulatory Support Device in a Left Ventricular Failure Model,” ASAIO Journal, 2003, pp. 731-736, vol. 49. |
Reitan et al., “Hydrodynamic Properties of a New Percutaneous Intra-Aortic Axial Flow Pump,” ASAIO Journal 2000, pp. 323-328. |
Reitan, Evaluation of a New Percutaneous Cardiac Assist Device, Department of Cardiology, Faculty of Medicine, Lund University, Sweden, 2002, in 172 pages. |
Rothman, “The Reitan Catheter Pump: A New Versatile Approach for Hemodynamic Support”, London Chest Hospital Barts & The London NHS Trust, Oct. 22-27, 2006 (TCT 2006: Transcatheter Cardiovascular Therapeutics 18th Annual Scientific Symposium, Final Program), in 48 pages. |
Schmitz-Rode et al., “An Expandable Percutaneous Catheter Pump for Left Ventricular Support,” Journal of the American College of Cardiology, 2005, pp. 1856-1861, vol. 45(11). |
Shabari et al., “Improved Hemodynamics with a Novel Miniaturized Intra-Aortic Axial Flow Pump in a Porcine Model of Acute Left Ventricular Dysfunction,” ASAIO Journal, 2013, pp. 240-245; vol. 59. |
Sharony et al, “Cardiopulmonary Support and Physiology—The Intra-Aortic Cannula Pump: A Novel Assist Device for the Acutely Failing Heart,” The Journal of Thoracic and Cardiovascular Surgery, Nov. 1992, pp. 924-929, vol. 118(5). |
Sharony et al., “Right Heart Support During Off-Pump Coronary Artery Surgery—A Multi-Center Study,” The Heart Surgery Forum, 2002, pp. 13-16, vol. 5(1). |
Siess et al., “Basic design criteria for rotary blood pumps,” H. Masuda, Rotary Blood Pumps, Springer, Japan, 2000, pp. 69-83. |
Siess et al., “Concept, realization, and first in vitro testing of an intraarterial microaxial blood pump,” Artificial Organs, 1995, pp. 644-652, vol. 19, No. 7, Blackwell Science, Inc., Boston, International Society for Artificial Organs. |
Siess et al., “From a lab type to a product: A retrospective view on Impella's assist technology,” Artificial Organs, 2001, pp. 414-421, vol. 25, No. 5, Blackwell Science, Inc., International Society for Artificial Organs. |
Siess et al., “System analysis and development of intravascular rotation pumps for cardiac assist,” Dissertation, Shaker Verlag, Aachen, 1999, 39 pages. |
Sieß et al., “Hydraulic refinement of an intraarterial microaxial blood pump”, The International Journal of Artificial Organs, 1995, vol. 18, No. 5, pp. 273-285. |
Sieß, “Systemanalyse and Entwicklung intravasaler Rotationspumpen zur Herzunterstützung”, Helmholtz-Institut fur Blomedixinische Technik an der RWTH Aachen, Jun. 24, 1998, in 105 pages. |
Smith et al., “First-In-Man Study of the Reitan Catheter Pump for Circulatory Support in Patients Undergoing High-Risk Percutaneous Coronary Intervention,” Catheterization and Cardiovascular Interventions, 2009, pp. 859-865, vol. 73(7). |
Sokolowski et al., “Medical Applications of Shape Memory Polymers,” Biomed. Mater. 2007, pp. S23-S27, vol. 2. |
Stoeckel et al., “Self-Expanding Nitinol Stents—Material and Design Considerations,” European Radiology, 2003, in 13 sheets. |
Stolinski et al., “The heart-pump interaction: effects of a microaxial blood pump,” International Journal of Artificial Organs, 2002, pp. 1082-1088, vol. 25, Issue 11. |
Supplemental European Search Report received from the European Patent Office in EP Application No. EP 05799883 dated Mar. 19, 2010, 3 pages. |
Takagaki et al., “A Novel Miniature Ventricular Assist Device for Hemodynamic Support,” ASAIO Journal, 2001, pp. 412-416; vol. 47. |
Throckmorton et al., “Flexible Impeller Blades in an Axial Flow Pump for Intravascular Cavopulmonary Assistance of the Fontan Physiology,” Cardiovascular Engineering and Technology, Dec. 2010, pp. 244-255, vol. 1(4). |
Throckmorton et al., “Uniquely shaped cardiovascular stents enhance the pressure generation of intravascular blood pumps,” The Journal of Thoracic and Cardiovascular Surgery, Sep. 2012, pp. 704-709, vol. 133, No. 3. |
Verkerke et al., “Numerical Simulation of the PUCA Pump, A Left Ventricular Assist Device,” Abstracts of the XIXth ESAO Congress, The International Journal of Artificial Organs, 1992, p. 543, vol. 15(9). |
Verkerke et al., “Numerical Simulation of the Pulsating Catheter Pump: A Left Ventricular Assist Device,” Artificial Organs, 1999, pp. 924-931, vol. 23(10). |
Verkerke et al., “The PUCA Pump: A Left Ventricular Assist Device,” Artificial Organs, 1993, pp. 365-368, vol. 17(5). |
Wampler et al., “The Sternotomy Hemopump, A Second Generation Intraarterial Ventricular Assist Device,” ASAIO Journal, 1993, pp. M218-M223, vol. 39. |
Weber et al., “Principles of Impella Cardiac Support,” Supplemental to Cardiac Interventions Today, Aug./Sep. 2009. |
Written Opinion received in International Patent Application No. PCT/US2003/04853, dated Feb. 25, 2004, 5 pages. |
“Statistical Analysis and Clinical Experience with the Recover® Pump Systems”, Impella CardioSystems GmbH, Sep. 2005, 2 sheets. |
ABIOMED—Recovering Hearts. Saving Lives., Impella 2.5 System, Instructions for Use, Jul. 2007, in 86 sheets. |
ABIOMED, “Impella 5.0 with the Impella Console, Circulatory Support System, Instructions for Use & Clinical Reference Manual,” Jun. 2010, in 122 pages. |
Aboul-Hosn et al., “The Hemopump: Clinical Results and Future Applications”, Assisted Circulation 4, 1995, in 14 pages. |
Barras et al., “Nitinol—Its Use in Vascular Surgery and Other Applications,” Eur. J. Vasc. Endovasc. Surg., 2000, pp. 564-569; vol. 19. |
Biscarini et al., “Enhanced Nitinol Properties for Biomedical Applications,” Recent Patents on Biomedical Engineering, 2008, pp. 180-196, vol. 1(3). |
Cardiovascular Diseases (CVDs) Fact Sheet No. 317; World Health Organization [Online], Sep. 2011. http://www.who.int/mediacentre/factsheets/fs317/en/index.html, accessed on Aug. 29, 2012. |
Compendium of Technical and Scientific Information for the HEMOPUMP Temporary Cardiac Assist System, Johnson 3, Johnson Interventional Systems, 1988, in 15 pages. |
Dekker et al., “Efficacy of a New Intraaortic Propeller Pump vs the lntraaortic Balloon Pump, An Animal Study”, Chest, Jun. 2003, vol. 123, No. 6, pp. 2089-2095. |
Duerig et al., “An Overview of Nitinol Medical Applications,” Materials Science Engineering, 1999, pp. 149-160; vol. A273. |
European Search Report received in European Patent Application No. 057998813, dated May 10, 2011, in 4 pages. |
Extended EP Search Report, dated Mar. 15, 2018, for related EP patent application No. EP 15833166.0, in 7 pages. |
Extended European Search Report received in European Patent Application No. 07753903.9, dated Oct. 8, 2012, in 7 pages. |
Extended European Search Report received in European Patent Application No. 13790890.1, dated Jan. 7 2016, in 5 pages. |
Extended European Search Report received in European Patent Application No. 13791118.6, dated Jan. 7 2016, in 3 pages. |
Extended European Search Report received in European Patent Application No. 13813687.4, dated Feb. 24, 2016, in 6 pages. |
Extended European Search Report received in European Patent Application No. 13813867.2, dated Feb. 26, 2016, in 7 pages. |
Extended European Search Report received in European Patent Application No. 14764392.8, dated Oct. 27, 2016, in 7 pages. |
Extended European Search Report received in European Patent Application No. 14779928.2, dated Oct. 7, 2016, in 7 pages. |
Federal and Drug Administration 510(k) Summary for Predicate Device IMPELLA 2.5 (K112892), prepared Sep. 5, 2012. |
Grech, “Percutaneous Coronary Intervention. I: History and Development,” BMJ., May 17, 2003, pp. 1080-1082, vol. 326. |
Hsu et al., “Review of Recent Patents on Foldable Ventricular Assist Devices,” Recent Patents on Biomedical Engineering, 2012, pp. 208-222, vol. 5. |
Ide et al., “Evaluation of the Pulsatility of a New Pulsatile Left Ventricular Assist Device—the Integrated Cardioassist Catheter-in Dogs,” J. of Thorac and Cardiovasc Sur, Feb. 1994, pp. 569-0575, vol. 107(2). |
Ide et al., “Hemodynamic Evaluation of a New Left Ventricular Assist Device: An Integrated Cardioassist Catheter as a Pulsatile Left Ventricle-Femoral Artery Bypass,” Blackwell Scientific Publications, Inc., 1992, pp. 286-290, vol. 16(3). |
Impella CP®—Instructions for Use & Clinical Reference Manual (United States only), Abiomed, Inc., Jul. 2014, 148 pages, www.abiomed.com. |
Impella LD® with the Impella® Controller—Circulatory Support System—Instructions for Use & Clinical Reference Manual (United States only), Abiomed, Inc., Sep. 2010, 132 pages, www.abiomed.com. |
International Preliminary Examination Report received in International Patent Application No. PCT/US2003/04401, dated May 18, 2004, in 4 pages. |
International Preliminary Examination Report received in International Patent Application No. PCT/US2003/04853, dated Jul. 26, 2004, in 5 pages. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received in International Patent Application No. PCT/US2005/033416, dated Mar. 20, 2007, in 7 pages. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received in International Patent Application No. PCT/US2007/007313, dated Sep. 23, 2008, in 6 pages. |
International Preliminary Report on Patentability and Written Opinion received in International Patent Application No. PCT/US2014/020878, dated Sep. 15, 2015, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2005/033416, dated Dec. 11, 2006, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2007/007313, dated Mar. 4, 2008, in 6 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2010/040847, dated Jan. 6, 2011, in 15 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020369, dated Jul. 30, 2012, in 10 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020382, dated Jul. 31, 2012, in 11 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020383, dated Aug. 17, 2012; in 9 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020553, dated Aug. 17, 2012, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040798, dated Aug. 21, 2013, in 16 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040799, dated Aug. 21, 2013, in 19 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040809, dated Sep. 2, 2013, in 25 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/048332, dated Oct. 16, 2013, in 14 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/048343, dated Oct. 11, 2013, in 15 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2014/020790, dated Oct. 9, 2014, in 9 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2014/020878, dated May 7, 2014, in 11 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025959, dated Oct. 22, 2015, in 9 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025960, dated Oct. 22, 2015, in 11 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026013, dated Oct. 22, 2015, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026014, dated Oct. 22, 2015, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026025, dated Oct. 22, 2015, in 12 pages. |
Number | Date | Country | |
---|---|---|---|
20180326131 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
61979920 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14687493 | Apr 2015 | US |
Child | 16020674 | US |