All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Described herein are oral appliances having one or more sensors, and methods of using them.
Orthodontic procedures typically involve repositioning a patient's teeth to a desired arrangement in order to correct malocclusions and/or improve aesthetics. To achieve these objectives, orthodontic appliances such as braces, shell aligners, and the like can be applied to the patient's teeth by an orthodontic practitioner. The appliance can be configured to exert force on one or more teeth in order to effect desired tooth movements according to a treatment plan.
During orthodontic treatment with patient-removable appliances, the appliance may not function correctly due to a defect, or may develop a defect during use. In some instances, the appliance may be improperly installed, formed, or operated by the practitioner. There is a need for methods and apparatuses that allow monitoring of a state of the intraoral appliances. Described herein are methods and apparatuses for performing such monitoring.
Described herein are apparatuses, including devices and systems, including in particular orthodontic appliances (e.g., oral appliances) and methods for monitoring an orthodontic appliance, including, but not limited to monitoring a parameter or state of the orthodontic appliance.
In particular, described herein are oral appliances that are configured to determine that they are properly worn and/or are properly functioning when worn in the user's oral cavity. Applicants note that these apparatuses (e.g., devices and systems, which may include orthodontic aligners, mandibular repositioning apparatuses, arch expanders/palatal expanders, etc.) may function as compliance monitors, including that a patient is wearing the apparatus and/or complying with an orthodontic treatment, but are not limited to compliance monitoring. In particular, these apparatuses may monitor how well the device is contacting the patient's oral cavity, including teeth, gingiva, palate, etc. Alternatively or additionally, these apparatuses may be configured to detect and/or monitor wear and/or damage to the apparatus. The apparatus may include one or more sensors (wherein a sensor may comprise a sensor receiving and/or a sensor emitter and sensor receiver pair) providing data to a processor; the processor may analyze, including in real time, how well the apparatus is being worn, wear on the apparatus, damage to the apparatus, or the like. The processor may be part of the oral appliance worn by the patient or it may be in communication (wired or wireless communication, including real-time or near real-time communication) with the oral appliance. Thus, any of the apparatuses and methods described herein may determine and may signal or otherwise indicate how well the apparatus is operating.
Monitoring may alternatively or additionally include monitoring status of the appliance, monitoring wear of the appliance, monitoring the geographic/spatial location of the appliance, etc. In some embodiments, an orthodontic appliance includes one or more sensors configured to obtain sensor data; these sensors may include those that are indicative of a state of the appliance. As used herein, the state of the appliance may include, for example, how well the appliance is fitting the patient when worn, if the appliance has developed any damage or wear, if the appliance is defective, etc. The appliance can include one or more processors operably coupled to the sensor(s) and configured to process the sensor data so as to indicate a state of the appliance, thus enabling electronic monitoring of the appliance before and/or during a prescribed course of orthodontic treatment. Advantageously, the apparatuses (e.g., devices, systems, etc.) and methods described herein may improve treatment efficacy, as well as provide data useful to the practitioner for designing and monitoring orthodontic treatments.
For example, any of the apparatuses described herein may be configured to include one or more tooth-contacting region(s). A device for monitoring the status of an intraoral appliance may include an appliance shell comprising a plurality of teeth receiving regions (e.g., cavities) and one or more sensors operably coupled to the appliance shell and configured to generate sensor data indicative of a state of the appliance (e.g., where an how well the appliance is contacting the teeth, such as the presence of any gaps between the appliance and the teeth, buckling of the appliance, defects such as tears, cracks, etc. in the appliance, and/or operating outside of a predetermined range of parameter values), and a processor operably coupled to the one or more sensors and configured to process the sensor data so as to determine and/or indicate the state of the appliance. Sensors may be configured, for example, to determine the quality of fit of the appliance by measuring contact (pressure, location, etc.) between the appliance and the oral cavity (e.g., teeth, gingiva, palate, etc.). For example, sensors may include one or more capacitive or other electrical sensors within or on the appliance that indicate contact between the appliance and the user's teeth. Signals from such contact sensors may be received (continuously and/or periodically) to determine when contact is being made with which parts of the patient's teeth and the appliance. The processor may be configured to analyze the sensed data from one or more such sensors to determine that appropriate contact (e.g., of all or a predefined sub-set of sensors in/on the appliance) with the apparatus. A poorly-fitting appliance may not make full contact with all of the sensors, or may make contact with a subset of sensors indicating poor contact. The processor may also be configured to examine the intensity of the contact and may indicate that the level of the signal (indicating contact/non-contact) is outside of a range or threshold indicating good contact. The processor may record and/or transmit this information. In some variations this information may be logged for later use by the dental professional and/or may be used to alert the patient (e.g., via display on a smartphone, tablet, etc., and/or via SMS, text message, or the like) that the appliance should be adjusted.
Thus, the apparatuses and methods described herein may be configured to detect (“smart detection”) engagement of positioning features of a mandibular repositioning device, determine an expansion rate of a palatal expander, or identify a defect in an intraoral appliance. For example, as will be described in greater detail herein, any of the apparatuses described herein may be configured with one or more sensors that detect interaction between different portion of an oral appliance and/or between different oral appliances or components of an oral appliance. For example, mandibular repositioning devices may include contact regions that engage a first oral appliance (e.g., a low arch appliance) and a second oral appliance (e.g., an upper arch appliance). The apparatuses described herein may detect and determine interaction between the first and second oral appliances. For example such apparatuses may monitor the bite interaction (e.g., intercuspation) between the upper and lower dental arch. Sensors on either or both occlusal surface of the appliance may detect interaction with the opposite dental appliance, or in some variations, the teeth on the opposite arch.
As mentioned, the methods and apparatuses described herein may generally be used with or as part of any monitoring devices for monitoring an orthodontic appliance. Monitoring may be continuous (e.g., always on) or sampled at a regular frequency (e.g., between 0.001 Hz and 1 KHz, between 1 and 120 times/hour, between 1 and 24 time/day, etc.) or sampled for a discrete time after inserting the apparatus. For example, described herein are apparatuses that may be configured to record sensor data from appliances such as orthodontic aligners.
For example, in any of these apparatuses, the data may be stored in physical memory on the monitoring apparatus and may be retrieved by another device in communication with the monitoring apparatus. Retrieval may be done wirelessly, e.g., using near-field communication (NFC) and/or Bluetooth (BLE) technologies to use a smartphone or other hand-held device to retrieve the data. Specifically described herein are orthodontic devices using them that include one or more sensors (e.g., temperature sensor(s), capacitive sensor(s), pressure sensor(s), etc.), one or more processors (e.g., a CPU, etc.), a communication module (e.g., a NFC communication module), an antenna, and a power source (e.g., battery, etc.). A case or holder may be used to boost and/or relay the signals from the small monitoring apparatus to a handheld device such as a smartphone.
In some examples, an orthodontic apparatus including (or configured as) an intraoral appliance may generally be configured to monitor a state of an intraoral appliance, and may include a housing enclosing a power source and monitoring circuitry, the monitoring circuitry comprising a processor, a memory, and one or more sensors, and an elastomeric overmold encapsulating the housing. In general, any of the orthodontic devices described herein may be sized to fit against or over one tooth. Thus, the sensor(s) and any associated electronics (memory, processor, power supplies, etc.) may be compact and configured so as not to intrude into the patient's oral cavity substantially. For example a housing enclosing a part of the sensor(s) or affiliated electronics may have a maximum diameter of 2 cm or less, 1.5 cm or less, 1.0 cm or less, 0.9 cm or less, 0.8 cm or less, 0.7 cm or less, 0.6 cm or less, etc.). The monitoring apparatus housing may generally be thin (e.g., 1.0 cm or less, 0.9 cm or less, 0.8 cm or less, 0.7 cm or less, 0.6 cm or less, 0.5 cm or less, 0.4 cm or less, etc.). In any of these apparatuses, the monitoring circuitry may be configured for a wired connection, e.g., may include a plurality of data electrodes external to the housing.
Although the apparatuses and methods described herein include numerous examples of near field communication (NFC), including NFC-to-NFC communication, any of the methods and apparatuses described herein may be used with other types of wireless communication modes, including, without limitation, Wi-Fi, radio (RF, UHF, etc.), infrared (IR), microwave, Bluetooth (including Bluetooth low energy or BLE), magnetic field induction (including NFC), Wimax, Zigbee, ultrasound, etc. In particular, the methods and apparatuses described herein may include apparatuses that convert between these different wireless modes.
For example, described herein are orthodontic appliance systems including sensors (e.g., pairs of sensor emitters and sensor receivers) that detect relative position and/or orientation between the sensor emitter and sensor receiver. The sensor emitters and sensor receivers can be used to determine a state of the orthodontic appliance (such as a deformation of the orthodontic appliance, defects in the orthodontic appliance, etc.) and/or use, e.g., compliance, of the orthodontic appliance. These orthodontic appliance systems may also be used to track the effectiveness of the appliance, including tracking tooth and/or palatal movement.
For example, described herein are orthodontic appliance systems comprising: a first orthodontic appliance shaped to receive the patient's teeth; a sensor receiver disposed on or in the first appliance, wherein the sensor receiver is configured to detect a signal from a sensor emitter on another portion of the first appliance or on a second orthodontic appliance worn by the subject; and at least one processor configured to receive sensor data from the sensor receiver and to determine a relative position, orientation or position and orientation between the sensor receiver and the sensor emitter.
For example, an orthodontic appliance system may include: an orthodontic appliance shaped to receive the patient's teeth; a sensor emitter disposed on or in the appliance at a first location; a sensor receiver disposed on or in the appliance at a second location, wherein the sensor receiver is configured to detect a signal from the sensor emitter; and at least one processor configured to receive sensor data from the sensor receiver and to determine a relative position, orientation or position and orientation between the sensor receiver and the sensor emitter.
In any of these apparatuses, the sensor receiver and sensor emitter may be configured to emit and detect electromagnetic energy (e.g., current, voltage, electrical field, magnetic field, etc.) and/or optical energy (e.g., light). For example, the sensor receiver may be one or more of: an optical sensor, an electromagnetic sensor, a capacitive sensor, or a magnetic sensor. The sensor emitter may be configured to emit electromagnetic energy and/or optical energy for detection by the sensor receiver. In some variations the same sensor may be configured as both a sensor receiver and a sensor emitter. For example, a sensor emitter may be an electrode configured to receive and/or emit electrical energy (e.g., for detection of voltage, current, capacitance, etc.).
As mentioned, any of these systems may include at least one processor that may be disposed on or within the orthodontic appliance; alternatively the processor(s) may be located remotely. For example, the one processors may be coupled via an electrical trace on or in the first orthodontic appliance and/or may wirelessly communicate with the sensor receiver(s).
The first and second orthodontic appliances may be removable. For example, the orthodontic appliance may comprise a polymeric shell having a plurality of teeth-receiving cavities.
Any of these systems may include a second orthodontic appliance; the sensor emitter may be on or in the second orthodontic appliance. Alternatively, the sensor emitter may be on the same (e.g., first) orthodontic appliance as the sensor receiver.
In some variations the system is configured to monitoring mandibular repositioning. For example, the first orthodontic appliance may comprises a first mandibular repositioning feature and the second orthodontic appliance may comprise a second mandibular repositioning feature; the processor may be configured to determine the relative position, orientation or position and orientation between the first and second mandibular repositioning features.
Any of these systems may include a wireless communication electronics disposed on or within the first orthodontic appliance, the wireless communication electronics being configured to transfer the sensor data to the at least one processor.
Any of these systems may include a non-transitory computer-readable storage medium configured to store the sensor data.
The at least one processor may be configured to indicate that the orthodontic appliance is one or more of: deformed, has a defect, is in close proximity to the sensor receiver, and/or that the orthodontic appliance is applying a force to the patient's teeth. For example, the processor may be configured to detect, based on the signal received, changes in the relative positions and/or orientations of the sensor receiver and sensor emitter; these changes may be monitored over time. In some variations the one or more processor monitors the rate of change of the relative positions of the sensor emitter and sensor receiver.
The processor may convert signals from the sensor emitter/sensor receiver pairs (e.g., the sensor receiver) into distances and/or intensities. For example, in some variations the processor includes a memory storing one or more look-up tables for converting sensor values into distances.
In general, the orthodontic appliance may be, for example, a palatal expander, a dental aligner, etc.
Also described herein are methods of monitoring an orthodontic appliance using any of the apparatuses described herein. For example, a method of monitoring an orthodontic appliance may include: positioning a first orthodontic appliance in the patient's mouth, so that the first orthodontic appliance receives at least some of the patient's teeth; emitting a signal from sensor emitter within the patient's mouth; receiving the signal with a sensor receiver on or in the first orthodontic appliance; transmitting the signal to at least one processor; determining a relative position, orientation or position and orientation between the sensor receiver and the sensor emitter; and outputting an indicator related to the relative position orientation or position and orientation between the sensor receiver and the sensor emitter.
For example, a method for monitoring an orthodontic appliance may include: positioning a first orthodontic appliance in the patient's mouth, so that the first orthodontic appliance receives at least some of the patient's teeth; positioning a second orthodontic appliance in the patient's mouth, wherein the second orthodontic appliance receives at least some of the patient's teeth; emitting a signal from sensor emitter on or in the second orthodontic appliance; receiving the signal with a sensor receiver on or in the first orthodontic appliance; transmitting the signal to at least one processor; determining, in the processor, a relative position, orientation or position and orientation between the sensor receiver and the sensor emitter; and outputting, from the processor, the relative position orientation or position and orientation between the sensor receiver and the sensor emitter.
Positioning the first orthodontic appliance may comprise positioning the first orthodontic appliance wherein the sensor receiver is on or in a first mandibular repositioning feature.
Emitting the signal from a sensor emitter may comprise emitting an electromagnetic signal or an optical signal. For example, an electromagnetic signal may comprise one or more of: an electrical signal, a magnetic signal, an electric current.
Any of these methods may also include positioning a second orthodontic appliance in the patient's mouth, wherein the sensor emitter is on or in the second orthodontic appliance.
Emitting the signal may comprise emitting the signal from the sensor emitter, further wherein the sensor emitter is on or in the first orthodontic appliance. Transmitting the signal may comprise wireless transmitting the signal.
Determining a relative position, orientation or position and orientation between the sensor receiver and the sensor emitter may comprise indicating that the orthodontic appliance is deformed, further wherein outputting the indicator related to the relative position orientation or position and orientation may comprise outputting that the orthodontic appliance is deformed. Determining a relative position, orientation or position and orientation between the sensor receiver and the sensor emitter may comprise indicating that the orthodontic appliance has a defect, further wherein outputting the indicator related to the relative position orientation or position and orientation may comprise outputting that the orthodontic appliance has a defect. Determining a relative position, orientation or position and orientation between the sensor receiver and the sensor emitter may comprise indicating that the sensor receiver is in close proximity to the sensor emitter, further wherein outputting the indicator related to the relative position orientation or position and orientation may comprise outputting that the proximity between the sensor receiver and sensor emitter. In some variations, determining a relative position, orientation or position and orientation between the sensor receiver and the sensor emitter comprises indicating that the orthodontic appliance is applying a force to the patient's teeth, further wherein outputting the indicator related to the relative position orientation or position and orientation comprises outputting that the orthodontic appliance is applying a force to the patient's teeth or outputting the applied force.
An indicator related to the relative position, orientation or position and orientation between the sensor receiver and sensor emitter may include a numeric indicator (e.g., positional value, coordinates, rate of change over time, etc.) with or without units, and/or an indicator that the position and/or orientation between the sensor emitter and sensor receiver (or a portion of the first and/or second orthodontic appliance(s) to which they are connected) has not changed, has changed, has changed within a range or degree, etc.
Also described herein are methods, systems and apparatuses that indicate one or more states of an orthodontic appliance. For example, described herein are orthodontic devices, comprising: an intraoral appliance shaped to receive the patient's teeth; a first sensor disposed on or in the intraoral appliance; a second sensor disposed on or in the intraoral appliance; and at least one processor configured to receive sensor data from the first and second sensors and to indicate of a state of the orthodontic device based on the sensor data. The first and second sensors comprise one or more of: a capacitive sensor, a magnetic sensor, a force sensor, a pressure sensor, and an optical sensor.
The at least one processor may be disposed on or within the intraoral appliance, as described above. The at least one processor may be disposed on or within an electronic device remote from the orthodontic device. For example, the deices may include a wireless communication electronics disposed on or within the first intraoral appliance or the second intraoral appliance, the wireless communication electronics being configured to transfer sensor data from the first and second sensors to the at least one processor.
The intraoral appliance may comprise a polymeric shell having a plurality of teeth-receiving cavities. The devices may include a non-transitory computer-readable storage medium configured to store sensor data from the first and second sensors. The at least one processor may be configured to indicate that the orthodontic device is deformed. The at least one processor may be configured to indicate that the orthodontic device has a defect.
The at least one processor may be configured to indicate that the first sensor is in close proximity to the second sensor. The at least one processor is configured to indicate that the orthodontic device is applying a force to the patient's teeth. The at least one processor may be configured to indicate a position of the first sensor relative to a position of the second sensor.
Also described herein are methods for monitoring an orthodontic device. For example, a method may include: positioning an intraoral appliance in the patient's intraoral cavity, the intraoral appliance shaped to receive the patient's teeth and comprising a plurality of sensors each positioned on or in a different part of the intraoral appliance; receiving a sensed parameter from each of the plurality of sensors; and determining a state of the orthodontic device based on the sensed parameters. The sensed parameter may include one or more of: a capacitance, a magnetic field, a force measurement, a voltage, and an impedance. The determining step may comprise determining if a first portion of the intraoral appliance is aligned properly with respect to a second portion of the intraoral appliance. The determining step may comprise determining if the intraoral appliance is deformed.
The determining step may comprise determining if the intraoral appliance has a defect. The determining step may comprise determining if the intraoral appliance is applying an appropriate force to the patient's teeth.
As mentioned above, any of these methods and apparatuses may be configured to monitor mandibular repositioning using an orthodontic appliance. For example, determining the correct interaction between mandibular repositioning features of an appliance.
A mandibular repositioning system may include: a first intraoral appliance shaped to receive the patient's upper teeth and comprising a first mandibular repositioning feature; a first sensor disposed on or in the first mandibular repositioning feature; a second intraoral appliance shaped to receive the patient's lower teeth and comprising a second mandibular repositioning feature; a second sensor disposed on or in the second mandibular repositioning feature; at least one processor configured to receive sensor data from either or both the first and second sensors to detect contact between the first and second mandibular repositioning features. The first and second sensors may include one or more of: capacitive sensors, magnetic sensors, force sensors, pressure sensors, and optical sensors.
The at least one processor may be disposed on or within the first intraoral appliance or the second intraoral appliance. The at least one processor may be disposed on or within an electronic system remote from the first and second intraoral appliances. Any of these systems may include wireless communication electronics disposed on or within the first intraoral appliance or the second intraoral appliance, the wireless communication electronics being configured to transfer sensor data from the first and second sensors to the at least one processor.
The first and second intraoral appliances may comprises a polymeric shell having a plurality of teeth-receiving cavities.
In some variations the system further includes a third sensor disposed on or in the first mandibular repositioning feature; a fourth sensor disposed on or in the second mandibular repositioning feature; wherein the first sensor is disposed on a first side of the first mandibular repositioning feature, the third sensor is disposed on a second side of the first mandibular repositioning feature, the second sensor is disposed on a first side of the second mandibular repositioning feature, and the fourth sensor is disposed on a second side of the second mandibular repositioning feature; and wherein the at least one processor is configured to receive sensor data from the first, second, third, and fourth sensors to detect proper positioning when the first sensor contacts the second sensor, and to detect reverse positioning when the third sensor contacts the fourth sensor.
Also described herein are methods for monitoring a mandibular repositioning system, the method comprising: receiving sensed parameters from a first plurality of sensors of a first orthodontic appliance worn in a patient's mouth and a second plurality of sensors of a second orthodontic appliance worn in a patient's mouth, wherein the first orthodontic appliance is shaped to receive the patient's upper teeth and comprises the first plurality of sensors on or adjacent to a first positioning feature of the first intraoral appliance, further wherein the second orthodontic appliance is shaped to receive the patient's lower teeth and comprises the second plurality of sensors on or adjacent to a second positioning feature of the second intraoral appliance; and determining engagement between the first positioning feature and the second positioning feature based on the sensed parameter.
Also described herein are apparatuses (devices and systems) for monitoring palatal expansion by detecting movement/separation of the palatal suture, including detecting while applying force to expand the palatal suture. For example, described herein are palatal expander devices comprising: a palatal expander body comprising a palatal region and a tooth-receiving region configured to receive teeth of the patient's upper arch; a sensor disposed on or in the palatal region of the palatal expander body; at least one processor configured to receive sensor data from the sensor and to determine an expansion state of a patient's palatal region based on the sensor data. The sensor may comprises one or more of: a force sensor, an optical sensor, a strain gauge, a capacitive electrode. The at least one processor may be disposed on or within the palatal expander body.
The at least one processor may be disposed on or within an electronic device remote from the palatal expander device. Any of these devices may include wireless communication electronics disposed on or within the first intraoral appliance or the second intraoral appliance, the wireless communication electronics being configured to transfer sensor data from the sensor to the at least one processor. The palatal expander body may comprise a polymeric shell having a plurality of teeth-receiving cavities. The at least one processor may evaluate a size of a mid palatine suture of the patient based on the sensor data. For example, the at least one processor may determine a change in deformation of the palatal expander device based on the sensor data. In some variations, the at least one processor determines an expansion force of the palatal expander device based on the sensor data.
Also described herein are methods of monitoring palatal expansion, the method comprising: receiving sensor data from one or more sensors on a palatal expander device, as the palatal expander device is worn by a patient, wherein the palatal expander device comprises a palatal expander body including a palatal region and a tooth-receiving region, wherein the one or more sensors are on or in the palatal region; monitoring, in one processors, the sensor data from the sensor to determine an expansion state of a patient's palate based on the sensor data; and outputting an indicator of the expansion state of the patient's palate.
Receiving sensor data may comprise receiving sensor data from one or more sensors comprises receiving sensor data from a pair of sensors positioned opposite the patient's palatal suture. Receiving sensor data may comprise receiving sensor data from one or more sensors comprises receiving sensor data from one or more optical sensors.
Receiving sensor data may comprise receiving sensor data from one or more sensors comprises receiving sensor data from one or more capacitive sensors. Monitoring may comprise monitoring over a time period of greater than one day (e.g., more than: 24 hours, 36 hours, 48 hours, 3 days, 4 days, 5 days, etc.). Monitoring may be continuous (e.g., at periodic intervals, e.g. 100 Hz, 10 Hz, 1 Hz, 1/min, every 2 min, every 3 min, every 5 min, every 10 min, every 30 min, every hour, etc.) or at discrete intervals (e.g., when requested by a user, etc.). As mentioned, any of these methods may include wirelessly transmitting the sensor data to the one or more processors.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
The orthodontic apparatuses described herein are configured to determine a state of the orthodontic apparatus based on sensor data. The state of the orthodontic apparatus typically refers to how well device is operating. For example the state of the orthodontic device may refer to the state of the orthodontic appliances's patient contact, including the extent and/or duration of contact with relevant portions of a patient's oral cavity (teeth, gingiva, palate, etc.) and/or contact with another orthodontic apparatus or another region of the orthodontic apparatus. The state of the orthodontic apparatus may alternatively or additionally refer to the state of integrity of the orthodontic appliance, including detecting and/or monitoring any damage or defects in the device (e.g., breakages, tears, cavities, etc.).
Any of the apparatuses described herein may be configured to monitor one or more of: the operation (including status, e.g., operational status) of an orthodontic appliance, and/or to monitor the user compliance for wearing an appliance, and/or to monitor the overall wear or condition of an orthodontic appliance, and/or to monitor the interaction between an appliance with the patient's anatomy, e.g., teeth, gingiva, palate, etc.
Generally, these apparatuses include one or more orthodontic appliance and one or more sensors on the orthodontic appliance that are configured to detect one or more parameters that may be used to determine the state of the orthodontic apparatus. The one or more sensors may be configured based on their position on and/or in the orthodontic appliance, and/or based on their shape and size, and/or based on the type of sensor. Any appropriate type of sensor may be used, including: electrical sensors (e.g., detecting capacitance, conductance, etc.), force sensors (e.g., detecting pressure, strain, etc.), thermal sensors, etc. Examples of sensors are provided herein. The sensors may be embedded within the orthodontic apparatus and oriented to sense properties of the orthodontic appliance directly, rather than the patient. For example, the sensors may be oriented away from the patient, toward the body of the orthodontic appliance.
Any of these apparatuses may include one or more processors configured to communicate with the one or more sensors. The processor(s) may be attached to and/or integral with the orthodontic appliance. For example the processor may receive sensor input from one or more of the sensors and may send control commands to activate/deactivate and/or modulate the sensors. The processor may control the timing of sensing. The processor may regulate the power. The processor may also include or be connected to a memory for storing the data (raw data and/or processed data). The processor may also be functionally connected to a communications module (e.g., wireless communications circuitry, such as Bluetooth, WiFi, etc.).
As will be described in greater detail below, the processor may analyze the sensor data from the one or more sensors to determine the state of the orthodontic apparatus. The analysis of the sensor data may be performed on the one or more processors attached to (on or in) the orthodontic appliance, or the one or more processors (including an additional off-appliance processor) may be used to analyze or further analyze the data to determine a state of the orthodontic appliance.
For example, an orthodontic apparatus may record sensor data from an intraoral appliance, such as dental/orthodontic aligners, including shell aligners. Data recorded by the orthodontic device may be stored in physical memory on the device and may be retrieved by another device. In particular, the data described may be retrieved by a hand held electronics communication device such as a smartphone, tablet, or the like. The handheld electronic device may include a user interface to augment communication between the orthodontic device and the electronic device, and may provide feedback to the user (e.g., patient) and/or technician, physician, dentist, orthodontist, or other medical/dental practitioner. Once transmitted to the handheld device, the data may be processed (or further processed) and/or passed on to a remote processor, memory and/or server.
As mentioned, the apparatuses and methods described herein for monitoring an orthodontic appliance (e.g., a removable intraoral appliances) may generate sensor data related to the intraoral appliance. The sensor data can be processed and analyzed to determine whether the appliance is functioning properly or has a defect. Additionally, the sensor data may be used to provide information about the state of the device. Advantageously, the apparatuses and methods described herein may provide an integrated electronic sensing and logging system capable of generating more reliable and accurate patient compliance data, which may be used by the treating practitioner to track the state of the orthodontic device and improve treatment efficacy. Additionally, the orthodontic devices described herein may provide high value sensing data useful for appliance design. In some embodiments, the sensing data provided by the orthodontic devices described herein may be used as feedback to modify parameters of an ongoing orthodontic treatment, also known as adaptive closed-loop treatment planning. For example, information about the contact between the appliance and the patient's oral cavity and/or about defects or wear in an appliance may be used to determine if a replacement or modified version of the appliance should be used.
As mentioned, in any of the methods and apparatuses described herein, all or some of the sensor data of the state of the orthodontic device may be used as feedback into a treatment plan, including the treatment plan in which the appliance from which the sensor data was collected is part of. For example, sensor data indicating the relative change in position and/or orientation of one or more portions of the appliance may be used to estimate and/or approximate movement of all or some of the patient's dentition, and this information may be used to modify the treatment plan, including the duration of one or more stages, the modification of one or more current and/or future stages, or the like. Any of these methods and apparatuses may provide feedback to a patient and/or user (e.g., doctor, dentist, orthodontist, technician, etc.) on the performance of the appliance and/or treatment plan. Feedback may be reported and/or implemented in real time or after some time delay.
In any of the methods and apparatuses described herein, the use of the one or more sensors for detecting a state of the orthodontic device may be used to refine a treatment plan. Refining of the treatment plan may include reducing or eliminating the number of modifications to an original treatment plan and/or an extension of the treatment plan duration (overall or incremental duration of one or more stages). For example, the use of one or more sensors to detect a state of the orthodontic device may provide feedback that may be used to adjust the treatment plan or one or more stages of the treatment plan on the fly, which may reduce the total overall number of adjustments necessary. In some variations, a treatment plan may be adjusted based on sensor data of a state of the orthodontic device to adjust further, subsequently worn, orthodontic appliances; if the sensor data indicates, for example, that a portion of the aligner is under strain or stress beyond an expected value, this may indicate that a tooth, group of teeth and/or palatal region are not moving in response to the force(s) being applied by the appliance(s). Thus, the system or apparatus may adjust the treatment plan accordingly, e.g., by wearing the appliance until the forces on the appliance and/or the relative positions or orientations of (all or regions of) the appliance are within a determined range, and/or by providing additional appliances that may address the change from an expected value.
An orthodontic apparatus may be any orthodontic device, system or the like, including in particular orthodontic appliances such as aligners, palatal expanders and/or mandibular repositioning apparatus. The orthodontic apparatuses described herein may be removable (e.g., removably by the patient) or they may be attached (e.g., by a dental professional). An orthodontic apparatus may include multiple orthodontic appliances, including an upper arch appliance and a lower arch appliance. In some variations the apparatuses and methods described herein may detect the interaction between multiple separate orthodontic appliances. Examples of each of these variations are described in detail below.
The various embodiments described herein can be used as part of or in combination with various types of intraoral appliances worn in a patient's mouth. The intraoral appliance may be an orthodontic appliance, such as an aligner or wire-and-bracket appliance, used to reposition one or more of the patient's teeth to a desired arrangement, e.g., to correct a malocclusion. Alternatively or additionally, the intraoral appliance may be used to maintain one or more of the patient's teeth in a current arrangement, such as a retainer. Other examples of intraoral appliances suitable for use in conjunction with the embodiments herein include, mouth guards, mandibular repositioning devices, and palatal expanders.
Appliances having teeth receiving cavities that receive and may reposition teeth, e.g., via application of force, are generally illustrated with regard to
Although appliances such as the ones shown in
An appliance can fit over all teeth present in an upper or lower jaw, or less than all of the teeth. The appliance can be designed specifically to accommodate the teeth of the patient (e.g., the topography of the tooth-receiving cavities matches the topography of the patient's teeth), and may be fabricated based on positive or negative models of the patient's teeth generated by impression, scanning, and the like. Alternatively or additionally, the appliance can be a generic appliance configured to receive the teeth, but not necessarily shaped to match the topography of the patient's teeth. In some cases, only certain teeth received by an appliance will be repositioned by the appliance while other teeth can provide a base or anchor region for holding the appliance in place as it applies force against the tooth or teeth targeted for repositioning. In some embodiments, some, most, or even all of the teeth may be repositioned at some point during treatment. Teeth that are moved can also serve as a base or anchor for holding the appliance as it is worn by the patient. Typically, no wires or other means will be provided for holding an appliance in place over the teeth. In some cases, however, it may be desirable or necessary to provide individual attachments or other anchoring elements 104 on teeth 102 with corresponding receptacles or apertures 106 in the appliance 100 so that the appliance can apply a selected force on the tooth. Exemplary appliances, including those utilized in the Invisalign® System, are described in numerous patents and patent applications assigned to Align Technology, Inc. including, for example, in U.S. Pat. Nos. 6,450,807, and 5,975,893, as well as on the company's website, which is accessible on the World Wide Web (see, e.g., the URL “invisalign.com”). Examples of tooth-mounted attachments suitable for use with orthodontic appliances are also described in patents and patent applications assigned to Align Technology, Inc., including, for example, U.S. Pat. Nos. 6,309,215 and 6,830,450.
Appliances such as the ones shown in
The various embodiments of the orthodontic appliances presented herein can be fabricated in a wide variety of ways. As an example, some embodiments of the appliances herein (or portions thereof) can be produced using indirect fabrication techniques, such as by thermoforming over a positive or negative mold. Indirect fabrication of an orthodontic appliance can involve producing a positive or negative mold of the patient's dentition in a target arrangement (e.g., by rapid prototyping, milling, etc.) and thermoforming one or more sheets of material over the mold in order to generate an appliance shell. Alternatively or in combination, some embodiments of the appliances herein may be directly fabricated, e.g., using rapid prototyping, stereolithography, 3D printing, and the like.
The configuration of the orthodontic appliances herein can be determined according to a treatment plan for a patient, e.g., a treatment plan involving successive administration of a plurality of appliances for incrementally repositioning teeth. Computer-based treatment planning and/or appliance manufacturing methods can be used in order to facilitate the design and fabrication of appliances. For instance, one or more of the appliance components described herein can be digitally designed and fabricated with the aid of computer-controlled manufacturing devices (e.g., computer numerical control (CNC) milling, computer-controlled rapid prototyping such as 3D printing, etc.). The computer-based methods presented herein can improve the accuracy, flexibility, and convenience of appliance fabrication.
In some embodiments, orthodontic appliances, such as the appliance illustrated in
Predictable and effective tooth movement using an aligner such as those described above, however, may depend implicitly on good contact between the patient's teeth and the aligner. Thus, treatment efficacy may depend at least partially on fit, and the ability of the patient to properly wear the device, as well as the integrity of the apparatus itself. Thus, the methods and apparatuses described herein, which may detect and monitor these parameters, may improve patient treatment and outcomes.
An intraoral appliance can be operably coupled to a monitoring device configured to provide data related to a state of the intraoral appliance. Alternatively or in combination, the monitoring device can be configured to provide data indicative of one or more characteristics of the device, such as electrical parameters, elasticity, defects such as air bubbles or cracks, force applied by the appliance, or deformations of the appliance. The characteristics of the intraoral appliance can determine a state of the appliance.
The apparatuses described herein may include the oral appliance (e.g., aligner, palatal expander, etc.) and a status-monitoring sub-system including one or more of: sensors, processor, memory, communications circuitry (including an antenna), clock, power source (e.g., battery, capacitor, inductor, etc.), and connections and/or circuitry to communicate and/or coordinate between these components. The status-monitoring sub-system may be at least partially integrated into the oral appliance. For example, an apparatus as described herein can be configured for use in the patient's intraoral cavity by locating and sizing the monitoring sub-system for use within the oral cavity. For example, the dimensions of a monitoring device may be limited in order to avoid patient discomfort and/or facilitate integration into an intraoral appliance as discussed below. In some embodiments, a monitoring device has a height or thickness less than or equal to about 1.5 mm, or less than or equal to about 2 mm. In some embodiments, a monitoring device has a length or width less than or equal to about 4 mm, or less than or equal to about 5 mm. The shape of the monitoring device can be varied as desired, e.g., circular, ellipsoidal, triangular, square, rectangular, etc. For instance, in some embodiments, a monitoring device can have a circular shape with a diameter less than or equal to about 5 mm.
The orthodontic apparatus 300 can include any number of sensors 306, such as one, two, three, four, five, or more sensors. In some embodiments, the use of multiple sensors provides redundancy to increase the accuracy and reliability of the resultant data. Some or all of the sensors 306 can be of the same type. Some or all of the sensors 306 can be of different types. Examples of sensor types suitable for use in the monitoring devices described herein include: touch or tactile sensors (e.g., capacitive, resistive), proximity sensors, audio sensors (e.g., microelectromechanical system (MEMS) microphones), color sensors (e.g., RGB color sensors), electromagnetic sensors (e.g., magnetic reed sensors, magnetometer), light sensors, force sensors (e.g., force-dependent resistive materials), pressure sensors, temperature sensors, motion sensors (e.g., accelerometers, gyroscopes), vibration sensors, piezoelectric sensors, strain gauges, pH sensors, conductivity sensors, gas flow sensors, gas detection sensors, humidity or moisture sensors, physiological sensors (e.g., electrocardiography sensors, bio-impedance sensors, photoplethysmography sensors, galvanic skin response sensors), or combinations thereof. In some embodiments, the sensors herein can be configured as a switch that is activated and/or deactivated in response to a particular type of signal (e.g., optical, electrical, magnetic, mechanical, etc.).
In any of the apparatuses and methods described herein a sensor may be configured to sensor or detect change in the orientation of the appliance and/or of one or more region of the appliance relative to one or more other regions of the appliance. For example, a sensor may be a gyroscope (e.g., a microelectromechanical systems (“MEMS”) gyroscope or any other appropriate gyroscope and/or accelerometer, and/or any other appropriate motion sensor.
A sensor 306 can be located at any portion of an intraoral appliance, such as at or near a distal portion, a mesial portion, a buccal portion, a lingual portion, a gingival portion, an occlusal portion, or a combination thereof. A sensor 306 can be embedded within the appliance(s), including in any of these regions or portions. In embodiments where multiple sensors 306 are used, some or all of the sensors can be located at different portions of the appliance and/or intraoral cavity. Alternatively, some or all of the sensors 306 can be located at the same portion of the appliance and/or intraoral cavity.
An analog-to-digital converter (ADC) (not shown) can be used to convert analog sensor data into digital format, if desired. The processor 302 can process the sensor data obtained by the sensor(s) 306 in order to determine appliance usage and/or patient compliance, as described herein. The sensor data and/or processing results can be stored in the memory 304. Optionally, the stored data can be associated with a timestamp generated by the clock 308 (e.g., a real-time clock or counter).
The orthodontic apparatus 300 may include a communication unit 310 configured to transmit the data stored in the memory (e.g., sensor data and/or processing results) to a remote device. The communication unit 310 can utilize any suitable communication method, such as wired or wireless communication methods (e.g., RFID, near-field communication, Bluetooth, ZigBee, infrared, etc.). The communication unit 310 can include a transmitter for transmitting data to the remote device and an antenna 312. Optionally, the communication unit 310 includes a receiver for receiving data from the remote device. In some embodiments, the communication channel utilized by the communication unit 310 can also be used to power the device 300, e.g., during data transfer or if the device 300 is used passively.
The remote device can be any computing device or system, such as a mobile device (e.g., smartphone), personal computer, laptop, tablet, wearable device, etc. Optionally, the remote device can be a part of or connected to a cloud computing system (“in the cloud”). The remote device can be associated with the patient, the treating practitioner, medical practitioners, researchers, etc. In some embodiments, the remote device is configured to process and analyze the data from the monitoring apparatus 300, e.g., in order to monitor patient compliance and/or appliance usage, for research purposes, and the like.
The orthodontic apparatus 300 can be powered by a power source 316, such as a battery. In some embodiments, the power source 316 is a printed and/or flexible battery, such as a zinc-carbon flexible battery, a zinc-manganese dioxide printed flexible battery, or a solid-state thin film lithium phosphorus oxynitride battery. The use of printed and/or flexible batteries can be advantageous for reducing the overall size of the status-monitoring sub-system of the orthodontic apparatus 300 and avoiding patient discomfort. For example, printed batteries can be fabricated in a wide variety of shapes and can be stacked to make three-dimensional structures, e.g., to conform the appliance and/or teeth geometries. Likewise, flexible batteries can be shaped to lie flush with the surfaces of the appliance and/or teeth. Alternatively or in combination, other types of batteries can be used, such as supercapacitors. In some embodiments, the power source 316 can utilize lower power energy harvesting methods (e.g., thermodynamic, electrodynamic, piezoelectric) in order to generate power for the orthodontic device 300. Optionally, the power source 316 can be rechargeable, for example, using via inductive or wireless methods. In some embodiments, the patient can recharge the power source 316 when the appliance is not in use. For example, the patient can remove the intraoral appliance when brushing the teeth and place the appliance on an inductive power hub to recharge the power source 316.
Optionally, the orthodontic apparatus 300 can include a power management unit 314 connected to the power source 316. The power management unit 314 can be configured to control when the status-monitoring sub-system of the apparatus 300 is active (e.g., using power from the power source 316) and when the device 300 is inactive (e.g., not using power from the power source 316). In some embodiments, the orthodontic apparatus 300 is only active during certain times so as to lower power consumption and reduce the size of the power source 316, thus allowing for a smaller status-monitoring sub-system 302. In some embodiments, the orthodontic apparatus 300 includes an activation mechanism (not shown) for controlling when the status monitoring sub-system of the orthodontic apparatus 300 is active (e.g., powered on, monitoring appliance usage) and when the status monitoring sub-system of the orthodontic apparatus 300 is dormant (e.g., powered off, not monitoring appliance usage). The activation mechanism can be provided as a discrete component of the orthodontic device 300, or can be implemented by the processor 302, the power management unit 314, or a combination thereof. The activation mechanism can be used to reduce the amount of power used by the orthodontic apparatus 300, e.g., by inactivating the device 300 when not in use, which can be beneficial for reducing the size of the power supply 316 and thus the overall device size.
A sensor (or any other part of the status-monitoring sub-system) can be operably coupled to the intraoral appliance in a variety of ways. For example, the sensor can be physically integrated with the intraoral appliance by coupling the sensor to a portion of the appliance (e.g., using adhesives, fasteners, latching, laminating, molding, etc.), and/or embedding it within the apparatus (e.g., at the time of forming the apparatus or afterwards. For example, the coupling may be a releasable coupling allowing for removal of the monitoring device from the appliance, or may be a permanent coupling in which the monitoring device is permanently affixed to the appliance. Alternatively or in combination, the sensor can be physically integrated with the intraoral appliance by encapsulating, embedding, printing, or otherwise forming the monitoring device with the appliance. In some embodiments, the appliance includes a shell shaped to receive the patient's teeth, and the sensor is physically integrated with the shell. The sensor can be located on an inner surface of the shell (e.g., the surface adjacent to the received teeth), an outer surface of the shell (e.g., the surface away from the received teeth), or within a wall of the shell. Optionally, as discussed further herein, the shell can include a receptacle shaped to receive the sensor.
An orthodontic apparatus as described herein can include an intraoral appliance shaped to receive the patient's teeth, a first sensor disposed on or in the intraoral appliance, a second sensor disposed on or in the intraoral appliance, and at least one processor configured to receive sensor data from the first and second sensors and to indicate of a state of the orthodontic device based on the sensor data.
In general, the processor may be adapted or otherwise configured to receive and process the sensor data and use this sensor data to determine one or more parameters of the state of the orthodontic appliance that is part of the apparatus, such as the state of the orthodontic appliance's patient contact and/or the state of the orthodontic appliance's integrity. The processor may include non-volatile memory that contains instructions (e.g. software, firmware, etc.) for executing any of the steps described herein, including controlling the sensor(s) and receiving sensor data, and/or processing the data to determine a state of the appliance (e.g., the state of integrity of the appliance or the quality of contact with the patient). For example, the at least one processor can be configured to indicate that the orthodontic device is broken, worn, and/or deformed. Additionally, the processor can be configured to indicate that the orthodontic device has a defect. In some examples, the at least one processor is configured to indicate that the orthodontic device is applying an appropriate force to the patient's teeth. Additionally, the at least one processor can be configured to indicate a position of the first sensor relative to a position of the second sensor.
In any of the apparatuses described herein, the apparatus may determine if a first region (corresponding to a first sensor) is within a predetermined distance of a second region (corresponding to a second sensor), indicating the apparatus is being correctly worn and/or operated. For example, if the orthodontic device is a mandibular repositioning device, the processor can be configured to indicate that the first sensor is in close proximity to the second sensor, thereby determining if positioning features of the device are properly engaged.
At step 404 of flowchart 400, the method can further include receiving a sensed value from each of the plurality of sensors. The sensed value can be a parameter sensed by any of a number of different types of sensors. For example, a capacitive sensor may provide a capacitance value, a magnetic sensor may provide an orientation or magnitude of a magnetic field, an optical sensor may provide an output current corresponding to sensed light intensity (at a particular frequency or range of frequencies), a force sensor or strain gauge may provide a force value, and an ultrasonic sensor may provide the duration of a return pulse. These sensed values may be transmitted to a processor in the appliance (or separate from the appliance) and used to determine parameter indicating the state of the appliance. For example, at step 406 of flowchart 400, the method can include determining a state of the orthodontic device based on the sensed values. For example, in one example the determining step comprises determining if a first portion of the intraoral appliance is aligned properly with respect to a second portion of the intraoral appliance. In another example, the determining step comprises determining if the intraoral appliance is deformed. In yet another example, the determining step comprises determining if the intraoral appliance has a defect. In an additional example, the determining step comprises determining if the intraoral appliance is applying an appropriate force to the patient's teeth. In another variation, determining includes determining if the appliance is properly seated on the patient's teeth, gingiva and/or palate. In any of the apparatuses (devices and systems) described herein, one or more optical sensors may be used to detect movement and/or position of one or more regions of the apparatus relative to other regions. For example, an optical sensor may be used to detect expansion of a palatal expander/arch expander.
One the processor has determined one or more parameters indicative of the state of the apparatus, the apparatus may transmit the state of the apparatus 408 and/or the parameters to a remote device for display, storage and/or further transmission. For example the apparatus may transmit to a mobile device held by the patient (e.g., phone, smartphone, tablet, etc.) and/or to a dental professional (dentist, orthodontist, etc.).
The apparatus in
In
Referring back to
The sensors of the mandibular repositioning apparatus can further comprise additional sensors, such as sensors configured as compliance indicators (e.g., temperature sensors or accelerometers to give an indication of head position and whether the appliances are being worn, etc.). The processor(s) may be configured to use the additional compliance indicators to determine that engagement is being assessed only when the appliances are worn by the patient. The mandibular repositioning apparatus 500 may therefore be configured to detect compliance and proper use by detecting engagement of the positioning features while the appliances are being worn by the patient.
Additionally, the sensors can be used to detect defects within the appliance, such as air bubbles or cracks. Referring to
In any of these variations, the appliance may include one or more temperature sensors that may be used to monitor storage temperature. A temperature sensor on the device may be configured to monitor temperature of the device to indicate that the storage temperature does not exceed a range for safe storage (e.g., greater than 120 degrees F., greater than 125 degrees F., greater than 130 degrees F., greater than 140 degrees F., greater than 150 degrees F., greater than 160 degrees F., greater than 170 degrees F., etc., and/or less than 50 degrees F., less than 40 degrees F., less than 30 degrees F., less than 20 degrees F., less than 10 degrees F., less than 5 degrees F., less than 0 degrees F., etc.).
Thus, the apparatuses and methods described herein may be used with any one or more of the palatal expanders and/or arch expanders. For example, the methods and apparatuses described herein may generally be used to monitor the operation (including status, e.g., operational status) of an appliance including, but not limited to a palatal expander, and/or to monitor the user compliance for wearing an appliance including, but not limited to a palatal expander, and/or to monitor the overall wear or condition of an orthodontic appliance, including, but not limited to a palatal expander and/or to monitor the interaction between an appliance including, but not limited to a palatal expander, with the patient's anatomy, e.g., teeth, gingiva, palate, etc.
For example,
The palatal expander device 1000 of
Thus, any of the apparatuses described herein may be configured to detect a failure (e.g., failure mode) of the apparatus, such as a palatal expander apparatus. For example, a palatal expander such as those described herein, may fail if the palatal region deforms under the force (pressure) exerted on the apparatus when inserted into the patient's mouth. One or more sensors on the apparatus, such as those described in reference to
In some of these apparatuses, the one or more sensors may be configured to detect compliance (e.g., patient wearing of the apparatus) when the sensor(s) are directed to infer wearing of the device based on the change in sensor value(s) when monitoring the sensor itself. This may be particularly beneficial as compared to direct compliance measurements, in which the relationship between the apparatus and the patient, and particularly a sensor and the patient, may be variable, making reliable contact difficult; the internal anatomy of the mouth, including teeth, gingiva and palate, may be complex, making some sensors, such as flat electrodes, difficult to reliably operate. The method and apparatuses described herein may avoid these problems. In general, the variations described herein that may be used to monitor or measure compliance, may also be configured to monitor the quality of the compliance, including how well the apparatus is worn, or fit, in the patient's mouth. Improper fit may be detected from the sensor values, if they are outside of expected parameter ranges, particularly when wearing the device.
Referring to
In some of these apparatuses, the one or more sensors may be configured to detect compliance (e.g., patient wearing of the apparatus) when the sensor(s) are directed to infer wearing of the device based on the change in sensor value(s) when monitoring the sensor itself. This may be particularly beneficial as compared to direct compliance measurements, in which the relationship between the apparatus and the patient, and particularly a sensor and the patient, may be variable, making reliable contact difficult; the internal anatomy of the mouth, including teeth, gingiva and palate, may be complex, making some sensors, such as flat electrodes, difficult to reliably operate. The method and apparatuses described herein may avoid these problems. In general, the variations described herein that may be used to monitor or measure compliance, may also be configured to monitor the quality of the compliance, including how well the apparatus is worn, or fit, in the patient's mouth. Improper fit may be detected from the sensor values, if they are outside of expected parameter ranges, particularly when wearing the device. Any of the apparatuses described herein may be, for, example, configured to detect a retention force of an appliance (e.g., aligner, palatal expander, etc.) on the patient's teeth.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
In general, any of the apparatuses and methods described herein should be understood to be inclusive, but all or a sub-set of the components and/or steps may alternatively be exclusive, and may be expressed as “consisting of” or alternatively “consisting essentially of” the various components, steps, sub-components or sub-steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This patent application claims priority to U.S. Provisional Patent Application No. 62/593,241, filed Nov. 30, 2017, titled “SENSORS FOR MONITORING ORAL APPLIANCES,” which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2171695 | Harper | Sep 1939 | A |
2194790 | Gluck | Mar 1940 | A |
2467432 | Kesling | Apr 1949 | A |
2531222 | Kesling | Nov 1950 | A |
3089487 | Enicks et al. | May 1963 | A |
3092907 | Traiger | Jun 1963 | A |
3178820 | Kesling | Apr 1965 | A |
3211143 | Grossberg | Oct 1965 | A |
3379193 | Monsghan | Apr 1968 | A |
3385291 | Martin | May 1968 | A |
3407500 | Kesling | Oct 1968 | A |
3478742 | Bohlmann | Nov 1969 | A |
3496936 | Gores | Feb 1970 | A |
3533163 | Kirschenbaum | Oct 1970 | A |
3556093 | Quick | Jan 1971 | A |
3600808 | Reeve | Aug 1971 | A |
3660900 | Andrews | May 1972 | A |
3683502 | Wallshein | Aug 1972 | A |
3724075 | Kesling | Apr 1973 | A |
3738005 | Cohen et al. | Jun 1973 | A |
3797115 | Silverman et al. | Mar 1974 | A |
3860803 | Levine | Jan 1975 | A |
3885310 | Northcutt | May 1975 | A |
3916526 | Schudy | Nov 1975 | A |
3922786 | Lavin | Dec 1975 | A |
3949477 | Cohen et al. | Apr 1976 | A |
3950851 | Bergersen | Apr 1976 | A |
3955282 | McNall | May 1976 | A |
3983628 | Acevedo | Oct 1976 | A |
4014096 | Dellinger | Mar 1977 | A |
4055895 | Huge | Nov 1977 | A |
4094068 | Schinhammer | Jun 1978 | A |
4117596 | Wallshein | Oct 1978 | A |
4129946 | Kennedy | Dec 1978 | A |
4134208 | Pearlman | Jan 1979 | A |
4139944 | Bergersen | Feb 1979 | A |
4179811 | Hinz | Dec 1979 | A |
4179812 | White | Dec 1979 | A |
4183141 | Dellinger | Jan 1980 | A |
4195046 | Kesling | Mar 1980 | A |
4204325 | Kaelble | May 1980 | A |
4253828 | Coles et al. | Mar 1981 | A |
4255138 | Frohn | Mar 1981 | A |
4299568 | Crowley | Nov 1981 | A |
4324546 | Heitlinger et al. | Apr 1982 | A |
4324547 | Arcan et al. | Apr 1982 | A |
4348178 | Kurz | Sep 1982 | A |
4368040 | Weissman | Jan 1983 | A |
4419992 | Chorbajian | Dec 1983 | A |
4433956 | Witzig | Feb 1984 | A |
4433960 | Garito et al. | Feb 1984 | A |
4439154 | Mayclin | Mar 1984 | A |
4449928 | von Weissenfluh | May 1984 | A |
4478580 | Barrut | Oct 1984 | A |
4500294 | Lewis | Feb 1985 | A |
4505672 | Kurz | Mar 1985 | A |
4505673 | Yoshii | Mar 1985 | A |
4519386 | Sullivan | May 1985 | A |
4523908 | Drisaldi et al. | Jun 1985 | A |
4526540 | Dellinger | Jul 1985 | A |
4553936 | Wang | Nov 1985 | A |
4575330 | Hull | Mar 1986 | A |
4575805 | Moermann et al. | Mar 1986 | A |
4591341 | Andrews | May 1986 | A |
4608021 | Barrett | Aug 1986 | A |
4609349 | Cain | Sep 1986 | A |
4611288 | Duret et al. | Sep 1986 | A |
4629424 | Lauks et al. | Dec 1986 | A |
4638145 | Sakuma et al. | Jan 1987 | A |
4656860 | Orthuber et al. | Apr 1987 | A |
4663720 | Duret et al. | May 1987 | A |
4664626 | Keeling | May 1987 | A |
4665621 | Ackerman et al. | May 1987 | A |
4676747 | Kesling | Jun 1987 | A |
4755139 | Abbatte et al. | Jul 1988 | A |
4757824 | Chaumet | Jul 1988 | A |
4763791 | Halverson et al. | Aug 1988 | A |
4764111 | Knierim | Aug 1988 | A |
4790752 | Cheslak | Dec 1988 | A |
4793803 | Martz | Dec 1988 | A |
4798534 | Breads | Jan 1989 | A |
4830612 | Bergersen | May 1989 | A |
4836778 | Baumrind et al. | Jun 1989 | A |
4837732 | Brandestini et al. | Jun 1989 | A |
4850864 | Diamond | Jul 1989 | A |
4850865 | Napolitano | Jul 1989 | A |
4856991 | Breads et al. | Aug 1989 | A |
4877398 | Kesling | Oct 1989 | A |
4880380 | Martz | Nov 1989 | A |
4886451 | Cetlin | Dec 1989 | A |
4889238 | Batchelor | Dec 1989 | A |
4890608 | Steer | Jan 1990 | A |
4932866 | Guis | Jun 1990 | A |
4935635 | O'Harra | Jun 1990 | A |
4936862 | Walker et al. | Jun 1990 | A |
4937928 | van der Zel | Jul 1990 | A |
4941826 | Loran et al. | Jul 1990 | A |
4952928 | Carroll et al. | Aug 1990 | A |
4964770 | Steinbichler et al. | Oct 1990 | A |
4971557 | Martin | Nov 1990 | A |
4975052 | Spencer et al. | Dec 1990 | A |
4983334 | Adell | Jan 1991 | A |
4997369 | Shafir | Mar 1991 | A |
5002485 | Aagesen | Mar 1991 | A |
5011405 | Lemchen | Apr 1991 | A |
5015183 | Fenick | May 1991 | A |
5017133 | Miura | May 1991 | A |
5018969 | Andreiko et al. | May 1991 | A |
5027281 | Rekow et al. | Jun 1991 | A |
5035613 | Breads et al. | Jul 1991 | A |
5037295 | Bergersen | Aug 1991 | A |
5055039 | Abbatte et al. | Oct 1991 | A |
5061839 | Matsuno et al. | Oct 1991 | A |
5083919 | Quachi | Jan 1992 | A |
5094614 | Wildman | Mar 1992 | A |
5100316 | Wildman | Mar 1992 | A |
5103838 | Yousif | Apr 1992 | A |
5114339 | Guis | May 1992 | A |
5121333 | Riley et al. | Jun 1992 | A |
5123425 | Shannon et al. | Jun 1992 | A |
5128870 | Erdman et al. | Jul 1992 | A |
5130064 | Smalley et al. | Jul 1992 | A |
5131843 | Hilgers et al. | Jul 1992 | A |
5131844 | Marinaccio et al. | Jul 1992 | A |
5139419 | Andreiko et al. | Aug 1992 | A |
5145364 | Martz et al. | Sep 1992 | A |
5176517 | Truax | Jan 1993 | A |
5194003 | Garay et al. | Mar 1993 | A |
5204670 | Stinton | Apr 1993 | A |
5222499 | Allen et al. | Jun 1993 | A |
5224049 | Mushabac | Jun 1993 | A |
5238404 | Andreiko | Aug 1993 | A |
5242304 | Truax et al. | Sep 1993 | A |
5245592 | Kuemmel et al. | Sep 1993 | A |
5273429 | Rekow et al. | Dec 1993 | A |
5278756 | Lemchen et al. | Jan 1994 | A |
5306144 | Hibst et al. | Apr 1994 | A |
5314335 | Fung | May 1994 | A |
5324186 | Bakanowski | Jun 1994 | A |
5328362 | Watson et al. | Jul 1994 | A |
5335657 | Terry et al. | Aug 1994 | A |
5338198 | Wu et al. | Aug 1994 | A |
5340309 | Robertson | Aug 1994 | A |
5342202 | Deshayes | Aug 1994 | A |
5344315 | Hanson | Sep 1994 | A |
5368478 | Andreiko et al. | Nov 1994 | A |
5372502 | Massen et al. | Dec 1994 | A |
D354355 | Hilgers | Jan 1995 | S |
5382164 | Stern | Jan 1995 | A |
5395238 | Andreiko et al. | Mar 1995 | A |
5415542 | Kesling | May 1995 | A |
5431562 | Andreiko et al. | Jul 1995 | A |
5440326 | Quinn | Aug 1995 | A |
5440496 | Andersson et al. | Aug 1995 | A |
5447432 | Andreiko et al. | Sep 1995 | A |
5449703 | Mitra et al. | Sep 1995 | A |
5452219 | Dehoff et al. | Sep 1995 | A |
5454717 | Andreiko et al. | Oct 1995 | A |
5456600 | Andreiko et al. | Oct 1995 | A |
5474448 | Andreiko et al. | Dec 1995 | A |
5487662 | Kipke et al. | Jan 1996 | A |
RE35169 | Lemchen et al. | Mar 1996 | E |
5499633 | Fenton | Mar 1996 | A |
5522725 | Jordan et al. | Jun 1996 | A |
5528735 | Strasnick et al. | Jun 1996 | A |
5533895 | Andreiko et al. | Jul 1996 | A |
5540732 | Testerman | Jul 1996 | A |
5542842 | Andreiko et al. | Aug 1996 | A |
5543780 | McAuley et al. | Aug 1996 | A |
5549476 | Stern | Aug 1996 | A |
5562448 | Mushabac | Oct 1996 | A |
5570182 | Nathel et al. | Oct 1996 | A |
5575655 | Darnell | Nov 1996 | A |
5583977 | Seidl | Dec 1996 | A |
5587912 | Andersson et al. | Dec 1996 | A |
5588098 | Chen et al. | Dec 1996 | A |
5605459 | Kuroda et al. | Feb 1997 | A |
5607305 | Andersson et al. | Mar 1997 | A |
5614075 | Andre | Mar 1997 | A |
5621648 | Crump | Apr 1997 | A |
5626537 | Danyo et al. | May 1997 | A |
5636736 | Jacobs et al. | Jun 1997 | A |
5645420 | Bergersen | Jul 1997 | A |
5645421 | Slootsky | Jul 1997 | A |
5651671 | Seay et al. | Jul 1997 | A |
5655653 | Chester | Aug 1997 | A |
5659420 | Wakai et al. | Aug 1997 | A |
5683243 | Andreiko et al. | Nov 1997 | A |
5683244 | Truax | Nov 1997 | A |
5691539 | Pfeiffer | Nov 1997 | A |
5692894 | Schwartz et al. | Dec 1997 | A |
5711665 | Adam et al. | Jan 1998 | A |
5711666 | Hanson | Jan 1998 | A |
5725376 | Poirier | Mar 1998 | A |
5725378 | Wang | Mar 1998 | A |
5730151 | Summer et al. | Mar 1998 | A |
5737084 | Ishihara | Apr 1998 | A |
5740267 | Echerer et al. | Apr 1998 | A |
5742700 | Yoon et al. | Apr 1998 | A |
5769631 | Williams | Jun 1998 | A |
5774425 | Ivanov et al. | Jun 1998 | A |
5790242 | Stern et al. | Aug 1998 | A |
5799100 | Clarke et al. | Aug 1998 | A |
5800162 | Shimodaira et al. | Sep 1998 | A |
5800174 | Andersson | Sep 1998 | A |
5813854 | Nikodem | Sep 1998 | A |
5816800 | Brehm et al. | Oct 1998 | A |
5818587 | Devaraj et al. | Oct 1998 | A |
5823778 | Schmitt et al. | Oct 1998 | A |
5848115 | Little et al. | Dec 1998 | A |
5857853 | van Nifterick et al. | Jan 1999 | A |
5866058 | Batchelder et al. | Feb 1999 | A |
5876199 | Bergersen | Mar 1999 | A |
5879158 | Doyle et al. | Mar 1999 | A |
5880961 | Crump | Mar 1999 | A |
5880962 | Andersson et al. | Mar 1999 | A |
5882192 | Bergersen | Mar 1999 | A |
5886702 | Migdal et al. | Mar 1999 | A |
5890896 | Padial | Apr 1999 | A |
5904479 | Staples | May 1999 | A |
5934288 | Avila et al. | Aug 1999 | A |
5957686 | Anthony | Sep 1999 | A |
5964587 | Sato | Oct 1999 | A |
5971754 | Sondhi et al. | Oct 1999 | A |
5975893 | Chishti et al. | Nov 1999 | A |
5975906 | Knutson | Nov 1999 | A |
5980246 | Ramsay et al. | Nov 1999 | A |
5989023 | Summer | Nov 1999 | A |
6002706 | Staver et al. | Dec 1999 | A |
6018713 | Coli et al. | Jan 2000 | A |
6044309 | Honda | Mar 2000 | A |
6049743 | Baba | Apr 2000 | A |
6053731 | Heckenberger | Apr 2000 | A |
6068482 | Snow | May 2000 | A |
6070140 | Tran | May 2000 | A |
6099303 | Gibbs et al. | Aug 2000 | A |
6099314 | Kopelman et al. | Aug 2000 | A |
6102701 | Engeron | Aug 2000 | A |
6120287 | Chen | Sep 2000 | A |
6123544 | Cleary | Sep 2000 | A |
6152731 | Jordan et al. | Nov 2000 | A |
6154676 | Levine | Nov 2000 | A |
6183248 | Chishti et al. | Feb 2001 | B1 |
6183249 | Brennan et al. | Feb 2001 | B1 |
6186780 | Hibst et al. | Feb 2001 | B1 |
6190165 | Andreiko et al. | Feb 2001 | B1 |
6200133 | Kittelsen | Mar 2001 | B1 |
6201880 | Elbaum et al. | Mar 2001 | B1 |
6210162 | Chishti et al. | Apr 2001 | B1 |
6212435 | Lattner et al. | Apr 2001 | B1 |
6213767 | Dixon et al. | Apr 2001 | B1 |
6217334 | Hultgren | Apr 2001 | B1 |
6227850 | Chishti et al. | May 2001 | B1 |
6231338 | de Josselin de Jong et al. | May 2001 | B1 |
6239705 | Glen | May 2001 | B1 |
6243601 | Wist | Jun 2001 | B1 |
6263234 | Engelhardt et al. | Jul 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6288138 | Yamamoto | Sep 2001 | B1 |
6299438 | Sahagian et al. | Oct 2001 | B1 |
6309215 | Phan et al. | Oct 2001 | B1 |
6313432 | Nagata et al. | Nov 2001 | B1 |
6315553 | Sachdeva et al. | Nov 2001 | B1 |
6328745 | Ascherman | Dec 2001 | B1 |
6332774 | Chikami | Dec 2001 | B1 |
6334073 | Levine | Dec 2001 | B1 |
6350120 | Sachdeva et al. | Feb 2002 | B1 |
6364660 | Durbin et al. | Apr 2002 | B1 |
6382975 | Poirier | May 2002 | B1 |
6386878 | Pavlovskaia et al. | May 2002 | B1 |
6394802 | Hahn | May 2002 | B1 |
6402510 | Williams | Jun 2002 | B1 |
6402707 | Ernst | Jun 2002 | B1 |
6405729 | Thornton | Jun 2002 | B1 |
6406292 | Chishti et al. | Jun 2002 | B1 |
6409504 | Jones et al. | Jun 2002 | B1 |
6413086 | Womack | Jul 2002 | B1 |
6414264 | von Falkenhausen | Jul 2002 | B1 |
6414708 | Carmeli et al. | Jul 2002 | B1 |
6435871 | Inman | Aug 2002 | B1 |
6436058 | Krahner et al. | Aug 2002 | B1 |
6441354 | Seghatol et al. | Aug 2002 | B1 |
6450167 | David et al. | Sep 2002 | B1 |
6450807 | Chishti et al. | Sep 2002 | B1 |
6462301 | Scott et al. | Oct 2002 | B1 |
6470338 | Rizzo et al. | Oct 2002 | B1 |
6471511 | Chishti et al. | Oct 2002 | B1 |
6471512 | Sachdeva et al. | Oct 2002 | B1 |
6471970 | Fanara et al. | Oct 2002 | B1 |
6482002 | Jordan et al. | Nov 2002 | B2 |
6482298 | Bhatnagar | Nov 2002 | B1 |
6496814 | Busche | Dec 2002 | B1 |
6496816 | Thiesson et al. | Dec 2002 | B1 |
6499026 | Rivette et al. | Dec 2002 | B1 |
6499995 | Schwartz | Dec 2002 | B1 |
6507832 | Evans et al. | Jan 2003 | B1 |
6514074 | Chishti et al. | Feb 2003 | B1 |
6515593 | Stark et al. | Feb 2003 | B1 |
6516288 | Bagne | Feb 2003 | B2 |
6516805 | Thornton | Feb 2003 | B1 |
6520772 | Williams | Feb 2003 | B2 |
6523009 | Wilkins | Feb 2003 | B1 |
6523019 | Borthwick | Feb 2003 | B1 |
6524101 | Phan et al. | Feb 2003 | B1 |
6526168 | Ornes et al. | Feb 2003 | B1 |
6526982 | Strong | Mar 2003 | B1 |
6529891 | Heckerman | Mar 2003 | B1 |
6529902 | Kanevsky et al. | Mar 2003 | B1 |
6532455 | Martin et al. | Mar 2003 | B1 |
6535865 | Skaaning et al. | Mar 2003 | B1 |
6540512 | Sachdeva et al. | Apr 2003 | B1 |
6540707 | Stark et al. | Apr 2003 | B1 |
6542593 | Amuah | Apr 2003 | B1 |
6542881 | Meidan et al. | Apr 2003 | B1 |
6542894 | Lee et al. | Apr 2003 | B1 |
6542903 | Hull et al. | Apr 2003 | B2 |
6551243 | Bocionek et al. | Apr 2003 | B2 |
6554837 | Hauri et al. | Apr 2003 | B1 |
6556659 | Bowman Amuah | Apr 2003 | B1 |
6556977 | Lapointe et al. | Apr 2003 | B1 |
6560592 | Reid et al. | May 2003 | B1 |
6564209 | Dempski et al. | May 2003 | B1 |
6567814 | Bankier et al. | May 2003 | B1 |
6571227 | Agrafiotis et al. | May 2003 | B1 |
6572372 | Phan et al. | Jun 2003 | B1 |
6573998 | Sabban | Jun 2003 | B2 |
6574561 | Alexander et al. | Jun 2003 | B2 |
6578003 | Camarda et al. | Jun 2003 | B1 |
6580948 | Haupert et al. | Jun 2003 | B2 |
6587529 | Staszewski et al. | Jul 2003 | B1 |
6587828 | Sachdeva | Jul 2003 | B1 |
6592368 | Weathers | Jul 2003 | B1 |
6594539 | Geng | Jul 2003 | B1 |
6595342 | Maritzen et al. | Jul 2003 | B1 |
6597934 | de Jong et al. | Jul 2003 | B1 |
6598043 | Baclawski | Jul 2003 | B1 |
6599250 | Webb et al. | Jul 2003 | B2 |
6602070 | Miller et al. | Aug 2003 | B2 |
6604527 | Palmisano | Aug 2003 | B1 |
6606744 | Mikurak | Aug 2003 | B1 |
6607382 | Kuo et al. | Aug 2003 | B1 |
6611783 | Kelly et al. | Aug 2003 | B2 |
6611867 | Bowman Amuah | Aug 2003 | B1 |
6613001 | Dworkin | Sep 2003 | B1 |
6615158 | Wenzel et al. | Sep 2003 | B2 |
6616447 | Rizoiu et al. | Sep 2003 | B1 |
6616579 | Reinbold et al. | Sep 2003 | B1 |
6621491 | Baumrind et al. | Sep 2003 | B1 |
6623698 | Kuo | Sep 2003 | B2 |
6624752 | Klitsgaard et al. | Sep 2003 | B2 |
6626180 | Kittelsen et al. | Sep 2003 | B1 |
6626569 | Reinstein et al. | Sep 2003 | B2 |
6626669 | Zegarelli | Sep 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6640128 | Vilsmeier et al. | Oct 2003 | B2 |
6643646 | Su et al. | Nov 2003 | B2 |
6647383 | August et al. | Nov 2003 | B1 |
6650944 | Goedeke et al. | Nov 2003 | B2 |
6671818 | Mikurak | Dec 2003 | B1 |
6675104 | Paulse et al. | Jan 2004 | B2 |
6678669 | Lapointe et al. | Jan 2004 | B2 |
6682346 | Chishti et al. | Jan 2004 | B2 |
6685469 | Chishti et al. | Feb 2004 | B2 |
6689055 | Mullen et al. | Feb 2004 | B1 |
6690761 | Lang et al. | Feb 2004 | B2 |
6691110 | Wang et al. | Feb 2004 | B2 |
6694234 | Lockwood et al. | Feb 2004 | B2 |
6697164 | Babayoff et al. | Feb 2004 | B1 |
6697793 | McGreevy | Feb 2004 | B2 |
6702765 | Robbins et al. | Mar 2004 | B2 |
6702804 | Ritter et al. | Mar 2004 | B1 |
6705863 | Phan et al. | Mar 2004 | B2 |
6729876 | Chishti et al. | May 2004 | B2 |
6733289 | Manemann et al. | May 2004 | B2 |
6736638 | Sachdeva et al. | May 2004 | B1 |
6739869 | Taub et al. | May 2004 | B1 |
6744932 | Rubbert et al. | Jun 2004 | B1 |
6749414 | Hanson et al. | Jun 2004 | B1 |
6769913 | Hurson | Aug 2004 | B2 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6790036 | Graham | Sep 2004 | B2 |
6802713 | Chishti et al. | Oct 2004 | B1 |
6814574 | Abolfathi et al. | Nov 2004 | B2 |
6830450 | Knopp et al. | Dec 2004 | B2 |
6832912 | Mao | Dec 2004 | B2 |
6832914 | Bonnet et al. | Dec 2004 | B1 |
6843370 | Tuneberg | Jan 2005 | B2 |
6845175 | Kopelman et al. | Jan 2005 | B2 |
6885464 | Pfeiffer et al. | Apr 2005 | B1 |
6890285 | Rahman et al. | May 2005 | B2 |
6951254 | Morrison | Oct 2005 | B2 |
6976841 | Osterwalder | Dec 2005 | B1 |
6978268 | Thomas et al. | Dec 2005 | B2 |
6983752 | Garabadian | Jan 2006 | B2 |
6984128 | Breining et al. | Jan 2006 | B2 |
6988893 | Haywood | Jan 2006 | B2 |
7016952 | Mullen et al. | Mar 2006 | B2 |
7020963 | Cleary et al. | Apr 2006 | B2 |
7036514 | Heck | May 2006 | B2 |
7040896 | Pavlovskaia et al. | May 2006 | B2 |
7106233 | Schroeder et al. | Sep 2006 | B2 |
7112065 | Kopelman et al. | Sep 2006 | B2 |
7121825 | Chishti et al. | Oct 2006 | B2 |
7134874 | Chishti et al. | Nov 2006 | B2 |
7137812 | Cleary et al. | Nov 2006 | B2 |
7138640 | Delgado et al. | Nov 2006 | B1 |
7140877 | Kaza | Nov 2006 | B2 |
7142312 | Quadling et al. | Nov 2006 | B2 |
7155373 | Jordan et al. | Dec 2006 | B2 |
7156655 | Sachdeva et al. | Jan 2007 | B2 |
7156661 | Choi et al. | Jan 2007 | B2 |
7166063 | Rahman et al. | Jan 2007 | B2 |
7184150 | Quadling et al. | Feb 2007 | B2 |
7191451 | Nakagawa | Mar 2007 | B2 |
7192273 | McSurdy | Mar 2007 | B2 |
7217131 | Vuillemot | May 2007 | B2 |
7220122 | Chishti | May 2007 | B2 |
7220124 | Taub et al. | May 2007 | B2 |
7229282 | Andreiko et al. | Jun 2007 | B2 |
7234937 | Sachdeva et al. | Jun 2007 | B2 |
7241142 | Abolfathi et al. | Jul 2007 | B2 |
7244230 | Duggirala et al. | Jul 2007 | B2 |
7245753 | Squilla et al. | Jul 2007 | B2 |
7257136 | Mori et al. | Aug 2007 | B2 |
7286954 | Kopelman et al. | Oct 2007 | B2 |
7292759 | Boutoussov et al. | Nov 2007 | B2 |
7294141 | Bergersen | Nov 2007 | B2 |
7302842 | Biester et al. | Dec 2007 | B2 |
7320592 | Chishti et al. | Jan 2008 | B2 |
7328706 | Barach et al. | Feb 2008 | B2 |
7329122 | Scott | Feb 2008 | B1 |
7338327 | Sticker et al. | Mar 2008 | B2 |
D565509 | Fechner et al. | Apr 2008 | S |
7351116 | Dold | Apr 2008 | B2 |
7354270 | Abolfathi et al. | Apr 2008 | B2 |
7357637 | Liechtung | Apr 2008 | B2 |
7435083 | Chishti et al. | Oct 2008 | B2 |
7450231 | Johs et al. | Nov 2008 | B2 |
7458810 | Bergersen | Dec 2008 | B2 |
7460230 | Johs et al. | Dec 2008 | B2 |
7462076 | Walter et al. | Dec 2008 | B2 |
7463929 | Simmons | Dec 2008 | B2 |
7476100 | Kuo | Jan 2009 | B2 |
7500851 | Williams | Mar 2009 | B2 |
D594413 | Palka et al. | Jun 2009 | S |
7543511 | Kimura et al. | Jun 2009 | B2 |
7544103 | Walter et al. | Jun 2009 | B2 |
7553157 | Abolfathi et al. | Jun 2009 | B2 |
7561273 | Stautmeister et al. | Jul 2009 | B2 |
7577284 | Wong et al. | Aug 2009 | B2 |
7596253 | Wong et al. | Sep 2009 | B2 |
7597594 | Stadler et al. | Oct 2009 | B2 |
7609875 | Liu et al. | Oct 2009 | B2 |
D603796 | Sticker et al. | Nov 2009 | S |
7616319 | Woollam et al. | Nov 2009 | B1 |
7626705 | Altendorf | Dec 2009 | B2 |
7632216 | Rahman et al. | Dec 2009 | B2 |
7633625 | Woollam et al. | Dec 2009 | B1 |
7637262 | Bailey | Dec 2009 | B2 |
7637740 | Knopp | Dec 2009 | B2 |
7641473 | Sporbert et al. | Jan 2010 | B2 |
7668355 | Wong et al. | Feb 2010 | B2 |
7670179 | Muller | Mar 2010 | B2 |
7695327 | Bauerle et al. | Apr 2010 | B2 |
7698068 | Babayoff | Apr 2010 | B2 |
7711447 | Lu et al. | May 2010 | B2 |
7724378 | Babayoff | May 2010 | B2 |
D618619 | Walter | Jun 2010 | S |
7728848 | Petrov et al. | Jun 2010 | B2 |
7731508 | Borst | Jun 2010 | B2 |
7735217 | Borst | Jun 2010 | B2 |
7740476 | Rubbert et al. | Jun 2010 | B2 |
7744369 | Imgrund et al. | Jun 2010 | B2 |
7746339 | Matov et al. | Jun 2010 | B2 |
7780460 | Walter | Aug 2010 | B2 |
7787132 | Kbrner et al. | Aug 2010 | B2 |
7791810 | Powell | Sep 2010 | B2 |
7796243 | Choo-Smith et al. | Sep 2010 | B2 |
7806687 | Minagi et al. | Oct 2010 | B2 |
7806727 | Dold et al. | Oct 2010 | B2 |
7813787 | de Josselin de Jong et al. | Oct 2010 | B2 |
7824180 | Abolfathi et al. | Nov 2010 | B2 |
7828601 | Pyczak | Nov 2010 | B2 |
7841464 | Cinader et al. | Nov 2010 | B2 |
7845969 | Stadler et al. | Dec 2010 | B2 |
7854609 | Chen et al. | Dec 2010 | B2 |
7862336 | Kopelman et al. | Jan 2011 | B2 |
7869983 | Raby et al. | Jan 2011 | B2 |
7872760 | Ertl | Jan 2011 | B2 |
7874836 | McSurdy, Jr. | Jan 2011 | B2 |
7874837 | Chishti et al. | Jan 2011 | B2 |
7874849 | Sticker et al. | Jan 2011 | B2 |
7878801 | Abolfathi et al. | Feb 2011 | B2 |
7878805 | Moss et al. | Feb 2011 | B2 |
7880751 | Kuo et al. | Feb 2011 | B2 |
7892474 | Shkolnik et al. | Feb 2011 | B2 |
7904308 | Arnone et al. | Mar 2011 | B2 |
7907280 | Johs et al. | Mar 2011 | B2 |
7929151 | Liang et al. | Apr 2011 | B2 |
7930189 | Kuo | Apr 2011 | B2 |
7947508 | Tricca et al. | May 2011 | B2 |
7959308 | Freeman et al. | Jun 2011 | B2 |
7963766 | Cronauer | Jun 2011 | B2 |
7970627 | Kuo et al. | Jun 2011 | B2 |
7985414 | Knaack et al. | Jul 2011 | B2 |
7986415 | Thiel et al. | Jul 2011 | B2 |
7987099 | Kuo et al. | Jul 2011 | B2 |
7991485 | Zakim | Aug 2011 | B2 |
8017891 | Nevin | Sep 2011 | B2 |
8026916 | Wen | Sep 2011 | B2 |
8027709 | Arnone et al. | Sep 2011 | B2 |
8029277 | Imgrund et al. | Oct 2011 | B2 |
8038444 | Kitching et al. | Oct 2011 | B2 |
8045772 | Kosuge et al. | Oct 2011 | B2 |
8054556 | Chen et al. | Nov 2011 | B2 |
8070490 | Roetzer et al. | Dec 2011 | B1 |
8075306 | Kitching et al. | Dec 2011 | B2 |
8077949 | Liang et al. | Dec 2011 | B2 |
8083556 | Stadler et al. | Dec 2011 | B2 |
D652799 | Mueller | Jan 2012 | S |
8092215 | Stone-Collonge et al. | Jan 2012 | B2 |
8095383 | Arnone et al. | Jan 2012 | B2 |
8099268 | Kitching et al. | Jan 2012 | B2 |
8099305 | Kuo et al. | Jan 2012 | B2 |
8118592 | Tortorici | Feb 2012 | B2 |
8126025 | Takeda | Feb 2012 | B2 |
8136529 | Kelly | Mar 2012 | B2 |
8144954 | Quadling et al. | Mar 2012 | B2 |
8160334 | Thiel et al. | Apr 2012 | B2 |
8172569 | Matty et al. | May 2012 | B2 |
8197252 | Harrison | Jun 2012 | B1 |
8201560 | Dembro | Jun 2012 | B2 |
8215312 | Garabadian et al. | Jul 2012 | B2 |
8240018 | Walter et al. | Aug 2012 | B2 |
8275180 | Kuo | Sep 2012 | B2 |
8279450 | Oota et al. | Oct 2012 | B2 |
8292617 | Brandt et al. | Oct 2012 | B2 |
8294657 | Kim et al. | Oct 2012 | B2 |
8296952 | Greenberg | Oct 2012 | B2 |
8297286 | Smernoff | Oct 2012 | B2 |
8306608 | Mandelis et al. | Nov 2012 | B2 |
8314764 | Kim et al. | Nov 2012 | B2 |
8332015 | Ertl | Dec 2012 | B2 |
8354588 | Sticker et al. | Jan 2013 | B2 |
8366479 | Borst et al. | Feb 2013 | B2 |
8401826 | Cheng et al. | Mar 2013 | B2 |
8419428 | Lawrence | Apr 2013 | B2 |
8433083 | Abolfathi et al. | Apr 2013 | B2 |
8439672 | Matov et al. | May 2013 | B2 |
8465280 | Sachdeva et al. | Jun 2013 | B2 |
8477320 | Stock et al. | Jul 2013 | B2 |
8488113 | Thiel et al. | Jul 2013 | B2 |
8517726 | Kakavand et al. | Aug 2013 | B2 |
8520922 | Wang et al. | Aug 2013 | B2 |
8520925 | Duret et al. | Aug 2013 | B2 |
8523565 | Matty et al. | Sep 2013 | B2 |
8545221 | Stone-Collonge et al. | Oct 2013 | B2 |
8556625 | Lovely | Oct 2013 | B2 |
8570530 | Liang | Oct 2013 | B2 |
8573224 | Thornton | Nov 2013 | B2 |
8577212 | Thiel | Nov 2013 | B2 |
8601925 | Coto | Dec 2013 | B1 |
8639477 | Chelnokov et al. | Jan 2014 | B2 |
8650586 | Lee et al. | Feb 2014 | B2 |
8675706 | Seurin et al. | Mar 2014 | B2 |
8723029 | Pyczak et al. | May 2014 | B2 |
8738394 | Kuo | May 2014 | B2 |
8743923 | Geske et al. | Jun 2014 | B2 |
8753114 | Vuillemot | Jun 2014 | B2 |
8767270 | Curry et al. | Jul 2014 | B2 |
8768016 | Pan et al. | Jul 2014 | B2 |
8771149 | Rahman | Jul 2014 | B2 |
8839476 | Adachi | Sep 2014 | B2 |
8843381 | Kuo et al. | Sep 2014 | B2 |
8856053 | Mah | Oct 2014 | B2 |
8870566 | Bergersen | Oct 2014 | B2 |
8874452 | Kuo | Oct 2014 | B2 |
8878905 | Fisker et al. | Nov 2014 | B2 |
8899976 | Chen et al. | Dec 2014 | B2 |
8936463 | Mason et al. | Jan 2015 | B2 |
8944812 | Kou | Feb 2015 | B2 |
8948482 | Levin | Feb 2015 | B2 |
8956058 | Rösch | Feb 2015 | B2 |
8992216 | Karazivan | Mar 2015 | B2 |
9004915 | Moss et al. | Apr 2015 | B2 |
9022792 | Sticker et al. | May 2015 | B2 |
9039418 | Rubbert | May 2015 | B1 |
9084535 | Girkin et al. | Jul 2015 | B2 |
9084657 | Matty et al. | Jul 2015 | B2 |
9108338 | Sirovskiy et al. | Aug 2015 | B2 |
9144512 | Wagner | Sep 2015 | B2 |
9192305 | Levin | Nov 2015 | B2 |
9204952 | Lampalzer | Dec 2015 | B2 |
9211166 | Kuo et al. | Dec 2015 | B2 |
9214014 | Levin | Dec 2015 | B2 |
9220580 | Borovinskih et al. | Dec 2015 | B2 |
9241774 | Li et al. | Jan 2016 | B2 |
9242118 | Brawn | Jan 2016 | B2 |
9261358 | Atiya et al. | Feb 2016 | B2 |
9277972 | Brandt et al. | Mar 2016 | B2 |
9336336 | Deichmann et al. | May 2016 | B2 |
9351810 | Moon | May 2016 | B2 |
9375300 | Matov et al. | Jun 2016 | B2 |
9403238 | Culp | Aug 2016 | B2 |
9408743 | Wagner | Aug 2016 | B1 |
9414897 | Wu et al. | Aug 2016 | B2 |
9433476 | Khardekar et al. | Sep 2016 | B2 |
9439568 | Atiya et al. | Sep 2016 | B2 |
9444981 | Bellis et al. | Sep 2016 | B2 |
9463287 | Lorberbaum et al. | Oct 2016 | B1 |
9492243 | Kuo | Nov 2016 | B2 |
9500635 | Islam | Nov 2016 | B2 |
9506808 | Jeon et al. | Nov 2016 | B2 |
9510918 | Sanchez | Dec 2016 | B2 |
9545331 | Ingemarsson-Matzen | Jan 2017 | B2 |
9566132 | Stone-Collonge et al. | Feb 2017 | B2 |
9584771 | Mandells et al. | Feb 2017 | B2 |
9589329 | Levin | Mar 2017 | B2 |
9675427 | Kopelman | Jun 2017 | B2 |
9675430 | Verker et al. | Jun 2017 | B2 |
9693839 | Atiya et al. | Jul 2017 | B2 |
9730769 | Chen et al. | Aug 2017 | B2 |
9744006 | Ross | Aug 2017 | B2 |
9820829 | Kuo | Nov 2017 | B2 |
9830688 | Levin | Nov 2017 | B2 |
9844421 | Moss et al. | Dec 2017 | B2 |
9848985 | Yang et al. | Dec 2017 | B2 |
9861451 | Davis | Jan 2018 | B1 |
9936186 | Jesenko et al. | Apr 2018 | B2 |
10123706 | Elbaz et al. | Nov 2018 | B2 |
10123853 | Moss et al. | Nov 2018 | B2 |
10154889 | Chen et al. | Dec 2018 | B2 |
10159541 | Bindayel | Dec 2018 | B2 |
10172693 | Brandt et al. | Jan 2019 | B2 |
10195690 | Culp | Feb 2019 | B2 |
10231801 | Korytov et al. | Mar 2019 | B2 |
10238472 | Levin | Mar 2019 | B2 |
10258432 | Webber | Apr 2019 | B2 |
20010002310 | Chishti et al. | May 2001 | A1 |
20010032100 | Mahmud et al. | Oct 2001 | A1 |
20010038705 | Rubbert et al. | Nov 2001 | A1 |
20010041320 | Phan et al. | Nov 2001 | A1 |
20020004727 | Knaus et al. | Jan 2002 | A1 |
20020007284 | Schurenberg et al. | Jan 2002 | A1 |
20020010568 | Rubbert et al. | Jan 2002 | A1 |
20020015934 | Rubbert et al. | Feb 2002 | A1 |
20020025503 | Chapoulaud et al. | Feb 2002 | A1 |
20020026105 | Drazen | Feb 2002 | A1 |
20020028417 | Chapoulaud et al. | Mar 2002 | A1 |
20020035572 | Takatori et al. | Mar 2002 | A1 |
20020064752 | Durbin et al. | May 2002 | A1 |
20020064759 | Durbin et al. | May 2002 | A1 |
20020087551 | Hickey et al. | Jul 2002 | A1 |
20020107853 | Hofmann et al. | Aug 2002 | A1 |
20020188478 | Breeland et al. | Dec 2002 | A1 |
20020192617 | Phan et al. | Dec 2002 | A1 |
20030000927 | Kanaya et al. | Jan 2003 | A1 |
20030009252 | Pavlovskaia et al. | Jan 2003 | A1 |
20030019848 | Nicholas et al. | Jan 2003 | A1 |
20030021453 | Weise et al. | Jan 2003 | A1 |
20030035061 | Iwaki et al. | Feb 2003 | A1 |
20030049581 | Deluke | Mar 2003 | A1 |
20030057192 | Patel | Mar 2003 | A1 |
20030059736 | Lai et al. | Mar 2003 | A1 |
20030060532 | Subelka et al. | Mar 2003 | A1 |
20030068598 | Vallittu et al. | Apr 2003 | A1 |
20030095697 | Wood et al. | May 2003 | A1 |
20030101079 | McLaughlin | May 2003 | A1 |
20030103060 | Anderson et al. | Jun 2003 | A1 |
20030120517 | Eida et al. | Jun 2003 | A1 |
20030139834 | Nikolskiy et al. | Jul 2003 | A1 |
20030144886 | Taira | Jul 2003 | A1 |
20030172043 | Guyon et al. | Sep 2003 | A1 |
20030190575 | Hilliard | Oct 2003 | A1 |
20030192867 | Yamazaki et al. | Oct 2003 | A1 |
20030207224 | Lotte | Nov 2003 | A1 |
20030215764 | Kopelman et al. | Nov 2003 | A1 |
20030224311 | Cronauer | Dec 2003 | A1 |
20030224313 | Bergersen | Dec 2003 | A1 |
20030224314 | Bergersen | Dec 2003 | A1 |
20040002873 | Sachdeva | Jan 2004 | A1 |
20040009449 | Mah et al. | Jan 2004 | A1 |
20040013994 | Goldberg et al. | Jan 2004 | A1 |
20040019262 | Perelgut | Jan 2004 | A1 |
20040029078 | Marshall | Feb 2004 | A1 |
20040038168 | Choi et al. | Feb 2004 | A1 |
20040054304 | Raby | Mar 2004 | A1 |
20040054358 | Cox et al. | Mar 2004 | A1 |
20040058295 | Bergersen | Mar 2004 | A1 |
20040068199 | Echauz et al. | Apr 2004 | A1 |
20040078222 | Khan et al. | Apr 2004 | A1 |
20040080621 | Fisher et al. | Apr 2004 | A1 |
20040094165 | Cook | May 2004 | A1 |
20040107118 | Harnsberger et al. | Jun 2004 | A1 |
20040133083 | Comaniciu et al. | Jul 2004 | A1 |
20040152036 | Abolfathi | Aug 2004 | A1 |
20040158194 | Wolff et al. | Aug 2004 | A1 |
20040166463 | Wen et al. | Aug 2004 | A1 |
20040167646 | Jelonek et al. | Aug 2004 | A1 |
20040170941 | Phan et al. | Sep 2004 | A1 |
20040193036 | Zhou et al. | Sep 2004 | A1 |
20040197728 | Abolfathi et al. | Oct 2004 | A1 |
20040214128 | Sachdeva et al. | Oct 2004 | A1 |
20040219479 | Malin et al. | Nov 2004 | A1 |
20040220691 | Hofmeister et al. | Nov 2004 | A1 |
20040229185 | Knopp | Nov 2004 | A1 |
20040259049 | Kopelman et al. | Dec 2004 | A1 |
20050003318 | Choi et al. | Jan 2005 | A1 |
20050023356 | Wiklof et al. | Feb 2005 | A1 |
20050031196 | Moghaddam et al. | Feb 2005 | A1 |
20050037312 | Uchida | Feb 2005 | A1 |
20050038669 | Sachdeva et al. | Feb 2005 | A1 |
20050040551 | Biegler et al. | Feb 2005 | A1 |
20050042569 | Plan et al. | Feb 2005 | A1 |
20050042577 | Kvitrud et al. | Feb 2005 | A1 |
20050048433 | Hilliard | Mar 2005 | A1 |
20050074717 | Cleary et al. | Apr 2005 | A1 |
20050089822 | Geng | Apr 2005 | A1 |
20050100333 | Kerschbaumer et al. | May 2005 | A1 |
20050108052 | Omaboe | May 2005 | A1 |
20050131738 | Morris | Jun 2005 | A1 |
20050144150 | Ramamurthy et al. | Jun 2005 | A1 |
20050171594 | Machan et al. | Aug 2005 | A1 |
20050171630 | Dinauer et al. | Aug 2005 | A1 |
20050181333 | Karazivan et al. | Aug 2005 | A1 |
20050186524 | Abolfathi et al. | Aug 2005 | A1 |
20050186526 | Stewart et al. | Aug 2005 | A1 |
20050216314 | Secor | Sep 2005 | A1 |
20050233276 | Kopelman et al. | Oct 2005 | A1 |
20050239013 | Sachdeva | Oct 2005 | A1 |
20050244781 | Abels et al. | Nov 2005 | A1 |
20050244791 | Davis et al. | Nov 2005 | A1 |
20050271996 | Sporbert et al. | Dec 2005 | A1 |
20060056670 | Hamadeh | Mar 2006 | A1 |
20060057533 | McGann | Mar 2006 | A1 |
20060063135 | Mehl | Mar 2006 | A1 |
20060078842 | Sachdeva et al. | Apr 2006 | A1 |
20060084024 | Farrell | Apr 2006 | A1 |
20060093982 | Wen | May 2006 | A1 |
20060098007 | Rouet et al. | May 2006 | A1 |
20060099545 | Lia et al. | May 2006 | A1 |
20060099546 | Bergersen | May 2006 | A1 |
20060110698 | Robson | May 2006 | A1 |
20060111631 | Kelliher et al. | May 2006 | A1 |
20060115785 | Li et al. | Jun 2006 | A1 |
20060137813 | Robrecht et al. | Jun 2006 | A1 |
20060147872 | Andreiko | Jul 2006 | A1 |
20060154198 | Durbin et al. | Jul 2006 | A1 |
20060154207 | Kuo | Jul 2006 | A1 |
20060173715 | Wang | Aug 2006 | A1 |
20060183082 | Quadling et al. | Aug 2006 | A1 |
20060188834 | Hilliard | Aug 2006 | A1 |
20060188848 | Tricca et al. | Aug 2006 | A1 |
20060194163 | Tricca et al. | Aug 2006 | A1 |
20060199153 | Liu et al. | Sep 2006 | A1 |
20060204078 | Orth et al. | Sep 2006 | A1 |
20060223022 | Solomon | Oct 2006 | A1 |
20060223023 | Lai et al. | Oct 2006 | A1 |
20060223032 | Fried et al. | Oct 2006 | A1 |
20060223342 | Borst et al. | Oct 2006 | A1 |
20060234179 | Wen et al. | Oct 2006 | A1 |
20060257815 | De Dominicis | Nov 2006 | A1 |
20060275729 | Fornoff | Dec 2006 | A1 |
20060275731 | Wen et al. | Dec 2006 | A1 |
20060275736 | Wen et al. | Dec 2006 | A1 |
20060277075 | Salwan | Dec 2006 | A1 |
20060290693 | Zhou et al. | Dec 2006 | A1 |
20060292520 | Dillon et al. | Dec 2006 | A1 |
20070031775 | Andreiko | Feb 2007 | A1 |
20070046865 | Umeda et al. | Mar 2007 | A1 |
20070053048 | Kumar et al. | Mar 2007 | A1 |
20070054237 | Neuschafer | Mar 2007 | A1 |
20070065768 | Nadav | Mar 2007 | A1 |
20070087300 | Willison et al. | Apr 2007 | A1 |
20070087302 | Reising et al. | Apr 2007 | A1 |
20070106138 | Beiski et al. | May 2007 | A1 |
20070122592 | Anderson et al. | May 2007 | A1 |
20070128574 | Kuo et al. | Jun 2007 | A1 |
20070141525 | Cinader, Jr. | Jun 2007 | A1 |
20070141526 | Eisenberg et al. | Jun 2007 | A1 |
20070143135 | Lindquist et al. | Jun 2007 | A1 |
20070168152 | Matov et al. | Jul 2007 | A1 |
20070172112 | Paley et al. | Jul 2007 | A1 |
20070172291 | Yokoyama | Jul 2007 | A1 |
20070178420 | Keski-Nisula et al. | Aug 2007 | A1 |
20070183633 | Hoffmann | Aug 2007 | A1 |
20070184402 | Boutoussov et al. | Aug 2007 | A1 |
20070185732 | Hicks et al. | Aug 2007 | A1 |
20070192137 | Ombrellaro | Aug 2007 | A1 |
20070199929 | Rippl et al. | Aug 2007 | A1 |
20070215582 | Roeper et al. | Sep 2007 | A1 |
20070218422 | Ehrenfeld | Sep 2007 | A1 |
20070231765 | Phan et al. | Oct 2007 | A1 |
20070238065 | Sherwood et al. | Oct 2007 | A1 |
20070239488 | DeRosso | Oct 2007 | A1 |
20070263226 | Kurtz et al. | Nov 2007 | A1 |
20080013727 | Uemura | Jan 2008 | A1 |
20080020350 | Matov et al. | Jan 2008 | A1 |
20080045053 | Stadler et al. | Feb 2008 | A1 |
20080057461 | Cheng et al. | Mar 2008 | A1 |
20080057467 | Gittelson | Mar 2008 | A1 |
20080057479 | Grenness | Mar 2008 | A1 |
20080059238 | Park et al. | Mar 2008 | A1 |
20080090208 | Rubbert | Apr 2008 | A1 |
20080094389 | Rouet et al. | Apr 2008 | A1 |
20080113317 | Kemp et al. | May 2008 | A1 |
20080115791 | Heine | May 2008 | A1 |
20080118882 | Su | May 2008 | A1 |
20080118886 | Liang et al. | May 2008 | A1 |
20080141534 | Hilliard | Jun 2008 | A1 |
20080169122 | Shiraishi et al. | Jul 2008 | A1 |
20080171934 | Greenan et al. | Jul 2008 | A1 |
20080176448 | Muller et al. | Jul 2008 | A1 |
20080233530 | Cinader | Sep 2008 | A1 |
20080242144 | Dietz | Oct 2008 | A1 |
20080248443 | Chishti et al. | Oct 2008 | A1 |
20080254403 | Hilliard | Oct 2008 | A1 |
20080268400 | Moss et al. | Oct 2008 | A1 |
20080306724 | Kitching et al. | Dec 2008 | A1 |
20090029310 | Pumphrey et al. | Jan 2009 | A1 |
20090030290 | Kozuch et al. | Jan 2009 | A1 |
20090030347 | Cao | Jan 2009 | A1 |
20090040740 | Muller et al. | Feb 2009 | A1 |
20090061379 | Yamamoto et al. | Mar 2009 | A1 |
20090061381 | Durbin et al. | Mar 2009 | A1 |
20090075228 | Kumada et al. | Mar 2009 | A1 |
20090087050 | Gandyra | Apr 2009 | A1 |
20090098502 | Andreiko | Apr 2009 | A1 |
20090099445 | Burger | Apr 2009 | A1 |
20090103579 | Ushimaru et al. | Apr 2009 | A1 |
20090105523 | Kassayan et al. | Apr 2009 | A1 |
20090130620 | Yazdi et al. | May 2009 | A1 |
20090136890 | Kang et al. | May 2009 | A1 |
20090136893 | Zegarelli | May 2009 | A1 |
20090148809 | Kuo et al. | Jun 2009 | A1 |
20090170050 | Marcus | Jul 2009 | A1 |
20090181346 | Orth | Jul 2009 | A1 |
20090191502 | Cao et al. | Jul 2009 | A1 |
20090210032 | Beiski et al. | Aug 2009 | A1 |
20090218514 | Klunder et al. | Sep 2009 | A1 |
20090246726 | Chelnokov et al. | Oct 2009 | A1 |
20090281433 | Saadat et al. | Nov 2009 | A1 |
20090286195 | Sears et al. | Nov 2009 | A1 |
20090298017 | Boerjes et al. | Dec 2009 | A1 |
20090305540 | Stadler et al. | Dec 2009 | A1 |
20090316966 | Marshall et al. | Dec 2009 | A1 |
20090317757 | Lemchen | Dec 2009 | A1 |
20100015565 | Carrillo Gonzalez et al. | Jan 2010 | A1 |
20100019170 | Hart et al. | Jan 2010 | A1 |
20100028825 | Lemchen | Feb 2010 | A1 |
20100045902 | Ikeda et al. | Feb 2010 | A1 |
20100062394 | Jones et al. | Mar 2010 | A1 |
20100068676 | Mason et al. | Mar 2010 | A1 |
20100086890 | Kuo | Apr 2010 | A1 |
20100138025 | Morton et al. | Jun 2010 | A1 |
20100142789 | Chang et al. | Jun 2010 | A1 |
20100145664 | Hultgren et al. | Jun 2010 | A1 |
20100145898 | Malfliet et al. | Jun 2010 | A1 |
20100152599 | DuHamel et al. | Jun 2010 | A1 |
20100165275 | Tsukamoto et al. | Jul 2010 | A1 |
20100167225 | Kuo | Jul 2010 | A1 |
20100179789 | Sachdeva et al. | Jul 2010 | A1 |
20100193482 | Ow et al. | Aug 2010 | A1 |
20100196837 | Farrell | Aug 2010 | A1 |
20100216085 | Kopelman | Aug 2010 | A1 |
20100217130 | Weinlaender | Aug 2010 | A1 |
20100231577 | Kim et al. | Sep 2010 | A1 |
20100268363 | Karim et al. | Oct 2010 | A1 |
20100268515 | Vogt et al. | Oct 2010 | A1 |
20100279243 | Cinader et al. | Nov 2010 | A1 |
20100280798 | Pattijn | Nov 2010 | A1 |
20100281370 | Rohaly et al. | Nov 2010 | A1 |
20100303316 | Bullis et al. | Dec 2010 | A1 |
20100312484 | DuHamel et al. | Dec 2010 | A1 |
20100327461 | Co et al. | Dec 2010 | A1 |
20110007920 | Abolfathi et al. | Jan 2011 | A1 |
20110012901 | Kaplanyan | Jan 2011 | A1 |
20110045428 | Boltunov et al. | Feb 2011 | A1 |
20110056350 | Gale et al. | Mar 2011 | A1 |
20110065060 | Teixeira et al. | Mar 2011 | A1 |
20110081625 | Fuh | Apr 2011 | A1 |
20110091832 | Kim et al. | Apr 2011 | A1 |
20110102549 | Takahashi | May 2011 | A1 |
20110102566 | Zakian et al. | May 2011 | A1 |
20110104630 | Matov et al. | May 2011 | A1 |
20110136072 | Li et al. | Jun 2011 | A1 |
20110136090 | Kazemi | Jun 2011 | A1 |
20110143300 | Villaalba | Jun 2011 | A1 |
20110143673 | Landesman et al. | Jun 2011 | A1 |
20110159452 | Huang | Jun 2011 | A1 |
20110164810 | Zang et al. | Jul 2011 | A1 |
20110207072 | Schiemann | Aug 2011 | A1 |
20110212420 | Vuillemot | Sep 2011 | A1 |
20110220623 | Beutler | Sep 2011 | A1 |
20110235045 | Koerner et al. | Sep 2011 | A1 |
20110269092 | Kuo et al. | Nov 2011 | A1 |
20110316994 | Lemchen | Dec 2011 | A1 |
20120028210 | Hegyi et al. | Feb 2012 | A1 |
20120029883 | Heinz et al. | Feb 2012 | A1 |
20120040311 | Nilsson | Feb 2012 | A1 |
20120064477 | Schmitt | Mar 2012 | A1 |
20120081786 | Mizuyama et al. | Apr 2012 | A1 |
20120086681 | Kim et al. | Apr 2012 | A1 |
20120115107 | Adams | May 2012 | A1 |
20120129117 | McCance | May 2012 | A1 |
20120147912 | Moench et al. | Jun 2012 | A1 |
20120150494 | Anderson et al. | Jun 2012 | A1 |
20120166213 | Arnone et al. | Jun 2012 | A1 |
20120172678 | Logan et al. | Jul 2012 | A1 |
20120281293 | Gronenborn et al. | Nov 2012 | A1 |
20120295216 | Dykes et al. | Nov 2012 | A1 |
20120322025 | Ozawa et al. | Dec 2012 | A1 |
20130029284 | Teasdale | Jan 2013 | A1 |
20130081272 | Johnson et al. | Apr 2013 | A1 |
20130089828 | Borovinskih et al. | Apr 2013 | A1 |
20130095446 | Andreiko et al. | Apr 2013 | A1 |
20130103176 | Kopelman et al. | Apr 2013 | A1 |
20130110469 | Kopelman | May 2013 | A1 |
20130140289 | Baratier | Jun 2013 | A1 |
20130150689 | Shaw-Klein | Jun 2013 | A1 |
20130163627 | Seurin et al. | Jun 2013 | A1 |
20130201488 | Ishihara | Aug 2013 | A1 |
20130204599 | Matov et al. | Aug 2013 | A1 |
20130209952 | Kuo et al. | Aug 2013 | A1 |
20130235165 | Gharib et al. | Sep 2013 | A1 |
20130252195 | Popat | Sep 2013 | A1 |
20130266326 | Joseph et al. | Oct 2013 | A1 |
20130278396 | Kimmel | Oct 2013 | A1 |
20130280671 | Brawn et al. | Oct 2013 | A1 |
20130286174 | Urakabe | Oct 2013 | A1 |
20130293824 | Yoneyama et al. | Nov 2013 | A1 |
20130323664 | Parker | Dec 2013 | A1 |
20130323671 | Dillon et al. | Dec 2013 | A1 |
20130323674 | Hakomori et al. | Dec 2013 | A1 |
20130325431 | See et al. | Dec 2013 | A1 |
20130337412 | Kwon | Dec 2013 | A1 |
20140061974 | Tyler | Mar 2014 | A1 |
20140081091 | Abolfathi et al. | Mar 2014 | A1 |
20140093160 | Porikli et al. | Apr 2014 | A1 |
20140106289 | Kozlowski | Apr 2014 | A1 |
20140122027 | Andreiko et al. | May 2014 | A1 |
20140136222 | Arnone et al. | May 2014 | A1 |
20140142902 | Chelnokov et al. | May 2014 | A1 |
20140178829 | Kim | Jun 2014 | A1 |
20140265034 | Dudley | Sep 2014 | A1 |
20140272774 | Dillon et al. | Sep 2014 | A1 |
20140280376 | Kuo | Sep 2014 | A1 |
20140294273 | Jaisson | Oct 2014 | A1 |
20140313299 | Gebhardt et al. | Oct 2014 | A1 |
20140329194 | Sachdeva et al. | Nov 2014 | A1 |
20140342301 | Fleer et al. | Nov 2014 | A1 |
20140350354 | Stenzler et al. | Nov 2014 | A1 |
20140363778 | Parker | Dec 2014 | A1 |
20150002649 | Nowak et al. | Jan 2015 | A1 |
20150004553 | Li et al. | Jan 2015 | A1 |
20150021210 | Kesling | Jan 2015 | A1 |
20150079531 | Heine | Mar 2015 | A1 |
20150094564 | Tashman et al. | Apr 2015 | A1 |
20150097315 | DeSimone et al. | Apr 2015 | A1 |
20150097316 | DeSimone et al. | Apr 2015 | A1 |
20150102532 | DeSimone et al. | Apr 2015 | A1 |
20150132708 | Kuo | May 2015 | A1 |
20150140502 | Brawn et al. | May 2015 | A1 |
20150150501 | George | Jun 2015 | A1 |
20150164335 | Van Der Poel et al. | Jun 2015 | A1 |
20150173856 | Lowe et al. | Jun 2015 | A1 |
20150182303 | Abraham et al. | Jul 2015 | A1 |
20150216626 | Ranjbar | Aug 2015 | A1 |
20150216716 | Anitua Aldecoa | Aug 2015 | A1 |
20150230885 | Wucher | Aug 2015 | A1 |
20150238280 | Wu et al. | Aug 2015 | A1 |
20150238283 | Tanugula et al. | Aug 2015 | A1 |
20150306486 | Logan et al. | Oct 2015 | A1 |
20150320320 | Kopelman et al. | Nov 2015 | A1 |
20150320532 | Matty et al. | Nov 2015 | A1 |
20150325044 | Lebovitz | Nov 2015 | A1 |
20150338209 | Knuttel | Nov 2015 | A1 |
20150351638 | Amato | Dec 2015 | A1 |
20150374469 | Konno | Dec 2015 | A1 |
20160000332 | Atiya et al. | Jan 2016 | A1 |
20160003610 | Lampert et al. | Jan 2016 | A1 |
20160022185 | Agarwal et al. | Jan 2016 | A1 |
20160042509 | Andreiko et al. | Feb 2016 | A1 |
20160051345 | Levin | Feb 2016 | A1 |
20160064898 | Atiya et al. | Mar 2016 | A1 |
20160067013 | Morton et al. | Mar 2016 | A1 |
20160081768 | Kopelman et al. | Mar 2016 | A1 |
20160081769 | Kimura et al. | Mar 2016 | A1 |
20160095668 | Kuo et al. | Apr 2016 | A1 |
20160100924 | Wilson et al. | Apr 2016 | A1 |
20160106520 | Borovinskih et al. | Apr 2016 | A1 |
20160120621 | Li et al. | May 2016 | A1 |
20160128624 | Matt | May 2016 | A1 |
20160135924 | Choi et al. | May 2016 | A1 |
20160135925 | Mason et al. | May 2016 | A1 |
20160163115 | Furst | Jun 2016 | A1 |
20160217708 | Levin et al. | Jul 2016 | A1 |
20160220105 | Durent | Aug 2016 | A1 |
20160220200 | Sandholm et al. | Aug 2016 | A1 |
20160225151 | Cocco et al. | Aug 2016 | A1 |
20160228213 | Tod et al. | Aug 2016 | A1 |
20160242871 | Morton et al. | Aug 2016 | A1 |
20160246936 | Kahn | Aug 2016 | A1 |
20160287358 | Nowak et al. | Oct 2016 | A1 |
20160296303 | Parker | Oct 2016 | A1 |
20160302885 | Matov et al. | Oct 2016 | A1 |
20160328843 | Graham et al. | Nov 2016 | A1 |
20160338799 | Wu et al. | Nov 2016 | A1 |
20160346063 | Schulhof et al. | Dec 2016 | A1 |
20160367188 | Malik et al. | Dec 2016 | A1 |
20160367339 | Khardekar et al. | Dec 2016 | A1 |
20170007365 | Kopelman et al. | Jan 2017 | A1 |
20170007366 | Kopelman et al. | Jan 2017 | A1 |
20170007367 | Li et al. | Jan 2017 | A1 |
20170007368 | Boronkay | Jan 2017 | A1 |
20170020633 | Stone-Collonge et al. | Jan 2017 | A1 |
20170049311 | Borovinskih et al. | Feb 2017 | A1 |
20170049326 | Alfano et al. | Feb 2017 | A1 |
20170056131 | Alauddin | Mar 2017 | A1 |
20170071705 | Kuo | Mar 2017 | A1 |
20170086943 | Mah | Mar 2017 | A1 |
20170100209 | Wen | Apr 2017 | A1 |
20170100212 | Sherwood et al. | Apr 2017 | A1 |
20170100213 | Kuo | Apr 2017 | A1 |
20170100214 | Wen | Apr 2017 | A1 |
20170105815 | Matov et al. | Apr 2017 | A1 |
20170128162 | Dalla-Bona | May 2017 | A1 |
20170135792 | Webber | May 2017 | A1 |
20170135793 | Webber et al. | May 2017 | A1 |
20170156821 | Kopelman et al. | Jun 2017 | A1 |
20170165032 | Webber et al. | Jun 2017 | A1 |
20170215739 | Miyasato | Aug 2017 | A1 |
20170251954 | Lotan | Sep 2017 | A1 |
20170252140 | Murphy | Sep 2017 | A1 |
20170258555 | Kopelman | Sep 2017 | A1 |
20170265970 | Verker | Sep 2017 | A1 |
20170319054 | Miller et al. | Nov 2017 | A1 |
20170319296 | Webber et al. | Nov 2017 | A1 |
20170325690 | Salah et al. | Nov 2017 | A1 |
20170340411 | Akselrod | Nov 2017 | A1 |
20170340415 | Choi et al. | Nov 2017 | A1 |
20180000563 | Shanjani et al. | Jan 2018 | A1 |
20180000565 | Shanjani et al. | Jan 2018 | A1 |
20180014924 | Brawn | Jan 2018 | A1 |
20180028064 | Elbaz et al. | Feb 2018 | A1 |
20180028065 | Elbaz et al. | Feb 2018 | A1 |
20180055420 | Gassler | Mar 2018 | A1 |
20180055602 | Kopelman et al. | Mar 2018 | A1 |
20180071054 | Ha | Mar 2018 | A1 |
20180071055 | Kuo | Mar 2018 | A1 |
20180078334 | Lotan | Mar 2018 | A1 |
20180085059 | Lee | Mar 2018 | A1 |
20180096465 | Levin | Apr 2018 | A1 |
20180125610 | Carrier et al. | May 2018 | A1 |
20180153648 | Shanjani et al. | Jun 2018 | A1 |
20180153649 | Wu et al. | Jun 2018 | A1 |
20180153733 | Kuo | Jun 2018 | A1 |
20180168788 | Fernie | Jun 2018 | A1 |
20180192877 | Atiya et al. | Jul 2018 | A1 |
20180228359 | Meyer et al. | Aug 2018 | A1 |
20180280118 | Cramer | Oct 2018 | A1 |
20180284727 | Cramer et al. | Oct 2018 | A1 |
20180318043 | Li et al. | Nov 2018 | A1 |
20180353264 | Riley et al. | Dec 2018 | A1 |
20180360567 | Xue et al. | Dec 2018 | A1 |
20180368944 | Sato et al. | Dec 2018 | A1 |
20180368961 | Shanjani et al. | Dec 2018 | A1 |
20190026599 | Salah et al. | Jan 2019 | A1 |
20190046296 | Kopelman et al. | Feb 2019 | A1 |
20190046297 | Kopelman et al. | Feb 2019 | A1 |
20190069975 | Cam et al. | Mar 2019 | A1 |
20190076216 | Moss et al. | Mar 2019 | A1 |
20190090983 | Webber et al. | Mar 2019 | A1 |
20190328313 | Hanssen | Oct 2019 | A1 |
20200093571 | Shanjani | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
517102 | Nov 1977 | AU |
3031677 | Nov 1977 | AU |
5598894 | Jun 1994 | AU |
1121955 | Apr 1982 | CA |
1655732 | Aug 2005 | CN |
1655733 | Aug 2005 | CN |
102017658 | Apr 2011 | CN |
102715965 | Oct 2012 | CN |
103889364 | Jun 2014 | CN |
103961189 | Aug 2014 | CN |
204092220 | Jan 2015 | CN |
105496575 | Apr 2016 | CN |
105997274 | Oct 2016 | CN |
2749802 | May 1978 | DE |
3526198 | Feb 1986 | DE |
4207169 | Sep 1993 | DE |
69327661 | Jul 2000 | DE |
102005043627 | Mar 2007 | DE |
202010017014 | Mar 2011 | DE |
102011051443 | Jan 2013 | DE |
202012011899 | Jan 2013 | DE |
102014225457 | Jun 2016 | DE |
0428152 | May 1991 | EP |
490848 | Jun 1992 | EP |
541500 | May 1993 | EP |
714632 | May 1997 | EP |
774933 | Dec 2000 | EP |
731673 | May 2001 | EP |
1941843 | Jul 2008 | EP |
2437027 | Apr 2012 | EP |
2447754 | May 2012 | EP |
1989764 | Jul 2012 | EP |
2332221 | Nov 2012 | EP |
2596553 | Dec 2013 | EP |
2612300 | Feb 2015 | EP |
2848229 | Mar 2015 | EP |
463897 | Jan 1980 | ES |
2455066 | Apr 2014 | ES |
2369828 | Jun 1978 | FR |
2867377 | Sep 2005 | FR |
2930334 | Oct 2009 | FR |
1550777 | Aug 1979 | GB |
53-058191 | May 1978 | JP |
4028359 | Jan 1992 | JP |
08-508174 | Sep 1996 | JP |
09-19443 | Jan 1997 | JP |
2003245289 | Sep 2003 | JP |
2000339468 | Sep 2004 | JP |
2005527320 | Sep 2005 | JP |
2005527321 | Sep 2005 | JP |
2006043121 | Feb 2006 | JP |
2007151614 | Jun 2007 | JP |
2007260158 | Oct 2007 | JP |
2007537824 | Dec 2007 | JP |
2008067732 | Mar 2008 | JP |
2008523370 | Jul 2008 | JP |
04184427 | Nov 2008 | JP |
2009000412 | Jan 2009 | JP |
2009018173 | Jan 2009 | JP |
2009078133 | Apr 2009 | JP |
2009101386 | May 2009 | JP |
2009205330 | Sep 2009 | JP |
2010017726 | Jan 2010 | JP |
2011087733 | May 2011 | JP |
2012045143 | Mar 2012 | JP |
2013007645 | Jan 2013 | JP |
2013192865 | Sep 2013 | JP |
201735173 | Feb 2017 | JP |
10-20020062793 | Jul 2002 | KR |
10-20070108019 | Nov 2007 | KR |
10-20090065778 | Jun 2009 | KR |
10-1266966 | May 2013 | KR |
10-2016-041632 | Apr 2016 | KR |
10-2016-0071127 | Jun 2016 | KR |
10-1675089 | Nov 2016 | KR |
20170004401 | Jan 2017 | KR |
480166 | Mar 2002 | TW |
WO91004713 | Apr 1991 | WO |
WO9203102 | Mar 1992 | WO |
WO94010935 | May 1994 | WO |
WO9623452 | Aug 1996 | WO |
WO98032394 | Jul 1998 | WO |
WO98044865 | Oct 1998 | WO |
WO0108592 | Feb 2001 | WO |
WO0185047 | Nov 2001 | WO |
WO02017776 | Mar 2002 | WO |
WO02062252 | Aug 2002 | WO |
WO02095475 | Nov 2002 | WO |
WO03003932 | Jan 2003 | WO |
WO2006096558 | Sep 2006 | WO |
WO2006100700 | Sep 2006 | WO |
WO2006133548 | Dec 2006 | WO |
WO2007019709 | Feb 2007 | WO |
WO2007071341 | Jun 2007 | WO |
WO2007103377 | Sep 2007 | WO |
WO2008115654 | Sep 2008 | WO |
WO2009016645 | Feb 2009 | WO |
WO2009085752 | Jul 2009 | WO |
WO2009089129 | Jul 2009 | WO |
WO2009146788 | Dec 2009 | WO |
WO2009146789 | Dec 2009 | WO |
WO2010059988 | May 2010 | WO |
WO2010123892 | Oct 2010 | WO |
WO2012007003 | Jan 2012 | WO |
WO2012064684 | May 2012 | WO |
WO2012074304 | Jun 2012 | WO |
WO2012078980 | Jun 2012 | WO |
WO2012083968 | Jun 2012 | WO |
WO2012140021 | Oct 2012 | WO |
WO2013058879 | Apr 2013 | WO |
WO2014068107 | May 2014 | WO |
WO2014091865 | Jun 2014 | WO |
WO2014143911 | Sep 2014 | WO |
WO2015015289 | Feb 2015 | WO |
WO2015063032 | May 2015 | WO |
WO2015112638 | Jul 2015 | WO |
WO2015176004 | Nov 2015 | WO |
WO2016004415 | Jan 2016 | WO |
WO2016042393 | Mar 2016 | WO |
WO2016061279 | Apr 2016 | WO |
WO2016084066 | Jun 2016 | WO |
WO2016099471 | Jun 2016 | WO |
WO2016113745 | Jul 2016 | WO |
WO2016116874 | Jul 2016 | WO |
WO2016200177 | Dec 2016 | WO |
WO2017006176 | Jan 2017 | WO |
WO2017182654 | Oct 2017 | WO |
WO2018057547 | Mar 2018 | WO |
WO2018085718 | May 2018 | WO |
WO2018232113 | Dec 2018 | WO |
WO2019018784 | Jan 2019 | WO |
Entry |
---|
US 8,553,966 B1, 10/2013, Alpern et al. (withdrawn) |
Farooq et al.; Relationship between tooth dimensions and malocclusion; JPMA: The Journal of the Pakistan Medical Association; 64(6); pp. 670-674; Jun. 2014. |
Newcombe; DTAM: Dense tracking and mapping in real-time; 8 pages; retrieved from the internet (http://www.doc.ic.ac.uk/7ajd/Publications/newcombe_etal_iccv2011.pdf; on Dec. 2011. |
ormco.com; Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; 8 pages; retrieved from the internet (http://www.konsident.com/wp-content/files_mf/1295385693http_ormco.com_index_cmsfilesystemaction_fileOrmcoPDF_whitepapers.pdf) on Feb. 27, 2019. |
Video of DICOM to Surgical Guides; Can be viewed at <URL:https://youtu.be/47KtOmCEFQk; Published Apr. 4, 2016. |
Shanjani et al., U.S. Appl. No. 16/231,906 entitled “Augmented reality enhancements for dental practitioners.” Dec. 24, 2018. |
Kopleman et al., U.S. Appl. No. 16/220,381 entitled “Closed loop adaptive orthodontic treatment methods and apparatuses,” Dec. 14, 2018. |
Sabina et al., U.S. Appl. No. 16/258,516 entitled “Diagnostic intraoral scanning” filed Jan. 25, 2019. |
Sabina et al., U.S. Appl. No. 16/258,523 entitled “Diagnostic intraoral tracking” filed Jan. 25, 2019. |
Sabina et al., U.S. Appl. No. 16/258,527 entitled “Diagnostic intraoral methods and apparatuses” filed Jan. 25, 2019. |
Li et al.; U.S. Appl. No. 16/171,159 entitled “Alternative bite adjustment structures,” filed Oct. 25, 2018. |
Culp; U.S. Appl. No. 16/236,220 entitled “Laser cutting,” filed Dec. 28, 2018. |
Culp; U.S. Appl. No. 16/265,287 entitled “Laser cutting,” filed Feb. 1, 2019. |
Bernabe et al.; Are the lower incisors the best predictors for the unerupted canine and premolars sums? An analysis of peruvian sample; The Angle Orthodontist; 75(2); pp. 202-207; Mar. 2005. |
Collins English Dictionary; Teeth (definition); 9 pages; retrieved from the internet (https:www.collinsdictionary.com/US/dictionary/english/teeth) on May 13, 2019. |
Dental Monitoring; Basics: How to put the cheek retractor?; 1 page (Screenshot); retrieved from the interenet (https://www.youtube.com/watch?v=6K1HXw4Kq3c); May 27, 2016. |
Dental Monitoring; Dental monitoring tutorial; 1 page (Screenshot); retrieved from the internet (https:www.youtube.com/watch?v=Dbe3udOf9_c); Mar. 18, 2015. |
dictionary.com; Plural (definition); 6 pages; retrieved from the internet ( https://www.diotionary.com/browse/plural#) on May 13, 2019. |
dictionary.com; Quadrant (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/quadrant?s=t) on May 13, 2019. |
Ecligner Selfie; Change your smile; 1 page (screenshot); retrieved from the internet (https:play.google.com/store/apps/details?id=parklict.ecligner); on Feb. 13, 2018. |
Martinelli et al.; Prediction of lower permanent canine and premolars width by correlation methods; The Angle Orthodontist; 75(5); pp. 805-808; Sep. 2005. |
Nourallah et al.; New regression equations for prediciting the size of unerupted canines and premolars in a contemporary population; The Angle Orthodontist; 72(3); pp. 216-221; Jun. 2002. |
Paredes et al.; A new, accurate and fast digital method to predict unerupted tooth size; The Angle Orthodontist; 76(1); pp. 14-19; Jan. 2006. |
Sobral De Agular et al.; The gingival crevicular fluid as a source of biomarkers to enhance efficiency of orthodontic and functional treatment of growing patients; Bio. Med. Research International; vol. 2017; pp. 1-7; Article ID 3257235; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2017. |
Levin; U.S. Appl. No. 16/282,431 entitled “Estimating a surface texture of a tooth,” filed Feb. 2, 2019. |
Chen et al.; U.S. Appl. No. 16/223,019 entitled “Release agent receptacle,” filed Dec. 17, 2018. |
AADR. American Association for Dental Research; Summary of Activities; Los Angeles, CA: p. 195; Mar. 20-23,(year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980. |
Alcaniz et aL; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996. |
Alexander et al.; The DigiGraph Work Station Part 2 Clinical Management; J. Clin. Orthod.; pp. 402-407; (Author Manuscript); Jul. 1990. |
Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017. |
ALLESEE Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Allesee Orthodontic Appliances-Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1998. |
ALLESEE Orthodontic Appliances: DuraClearTM; Product information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997. |
ALLESEE Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003. |
ALLESEE Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; (product information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003. |
ALLESEE Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003. |
ALLESEE Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992. |
Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002. |
Altschuler et al.; Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures; AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979 -Apr. 1, 1979, New Orleans Marriot; Journal of Dental Research; vol. 58, Special Issue A, p. 221; Jan. 1979. |
Altschuler et al.; Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces; Optical Engineering; 20(6); pp. 953-961; Dec. 1981. |
Altschuler et al.; Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix; SPIE Imaging q Applications for Automated Industrial Inspection and Assembly; vol. 182; pp. 187-191; Oct. 10, 1979. |
Altschuler; 3D Mapping of Maxillo-Facial Prosthesis; AADR Abstract #607; 2 pages total, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980. |
Alves et al.; New trends in food allergens detection: toward biosensing strategies; Critical Reviews in Food Science and Nutrition; 56(14); pp. 2304-2319; doi: 10.1080/10408398.2013.831026; Oct. 2016. |
Andersson et al.; Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion; Acta Odontologica Scandinavica; 47(5); pp. 279-286; Oct. 1989. |
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1989. |
Bandodkar et al.; All-printed magnetically self-healing electrochemical devices; Science Advances; 2(11); 11 pages; e1601465; Nov. 2016. |
Bandodkar et al.; Self-healing inks for autonomous repair of printable electrochemical devices; Advanced Electronic Materials; 1(12); 5 pages; 1500289; Dec. 2015. |
Bandodkar et al.; Wearable biofuel cells: a review; Electroanalysis; 28 (6); pp. 1188-1200; Jun. 2016. |
Bandodkar et al.; Wearable chemical sensors: present challenges and future prospects; Acs Sensors; 1(5); pp. 464-482; May 11, 2016. |
Barone et al.; Creation of 3D multi-body orthodontic models by using independent imaging sensors; Sensors; 13(2); pp. 2033-2050; Feb. 5, 2013. |
Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987. |
Baumrind et al., “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc, 48(2), 11 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Fall Issue 1972. |
Baumrind et al.; A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty; NATO Symposium on Applications of Human Biostereometrics; SPIE; vol. 166; pp. 112-123; Jul. 9-13, 1978. |
Baumrind; A System for Cranio facial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs; an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems; University of Illinois; pp. 142-166; Aug. 26-30, 1975. |
Baumrind; Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives; Seminars in Orthodontics; 7(4); pp. 223-232; Dec. 2001. |
Begole et al.; A Computer System for the Analysis of Dental Casts; The Angle Orthodontist; 51(3); pp. 252-258; Jul. 1981. |
Bernard et al.; Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport; (Abstract Only), J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Montreal Canada; Mar. 9-13, 1988. |
Bhatia et al.; A Computer-Aided Design for Orthognathic Surgery; British Journal of Oral and Maxillofacial Surgery; 22(4); pp. 237-253; Aug. 1, 1984. |
Biggerstaff et al.; Computerized Analysis of Occlusion in the Postcanine Dentition; American Journal of Orthodontics; 61(3); pp. 245-254; Mar. 1972. |
Biggerstaff; Computerized Diagnostic Setups and Simulations; Angle Orthodontist; 40(IP); pp. 28-36; Jan. 1970. |
Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive,Tonawanda, New York. 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990. |
Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004. |
Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996. |
Boyd et al.; Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the Invisalipn Appliance; Seminars in Orthodontics; 7(4); pp. 274-293; Dec. 2001. |
Brandestini et al.; Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation; J. Dent. Res. Special Issue; (Abstract 305); vol. 64; p. 208; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1985. |
Brook et al.; An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter; Journal of Dental Research; 65(3); pp. 428-431; Mar. 1986. |
Burstone et al.; Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination; American Journal of Orthodontics; 79(2);pp. 115-133; Feb. 1981. |
Burstone; Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979. |
Burstone; Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 2); journal of Clinical Orthodontics; 13(8); pp. 539-551 (interview); Aug. 1979. |
Cardinal Industrial Finishes; Powder Coatings; 6 pages; retrieved from the internet (http://www.cardinalpaint.com) on Aug. 25, 2000. |
Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l. Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993. |
Chaconas et al,; The DigiGraph Work Station, Part 1, Basic Concepts; Journal of Clinical Orthodontics; 24(6); pp. 360-367; (Author Manuscript); Jun. 1990. |
Chafetz et al.; Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation; Clinical Orthopaedics and Related Research; No. 201; pp. 60-67; Dec. 1985. |
Chiappone; Constructing the Gnathologic Setup and Positioner; Journal of Clinical Orthodontics; 14(2); pp. 121-133; Feb. 1980. |
Chishti et al.; U.S. Appl. No. 60/050,342 entitled “Procedure for moving teeth using a seires of retainers,” filed Jun. 20, 1997. |
CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010. |
Cottingham; Gnathologic Clear Plastic Positioner; American Journal of Orthodontics; 55(1); pp. 23-31; Jan. 1969. |
Crawford; CAD/CAM in the Dental Office: Does It Work?; Canadian Dental Journal; 57(2); pp. 121-123 Feb. 1991. |
Crawford; Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside, Part 2: F. DuretA Man With a Vision, Part 3: The Computer Gives New Vision—Literally, Part 4: Bytes N Bites The Computer Moves From The Front Desk To The Operatory; Canadian Dental Journal; 54(9); pp. 661-666 Sep. 1988. |
Crooks; CAD/CAM Comes to USC; USC Dentistry; pp. 14-17; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Spring 1990. |
Cureton; Correcting Malaligned Mandibular Incisors with Removable Retainers; Journal of Clinical Orthodontics; 30(7); pp. 390-395; Jul. 1996. |
Curry et al.; Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research InstrumentationLaboratory/University of the Pacific; Seminars in Orthodontics; 7(4); pp. 258-265; Dec. 2001. |
Cutting et al.; Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models; Plastic and Reconstructive Surgery; 77(6); pp. 877-885; Jun. 1986. |
DCS Dental AG; The CAD/CAM DCS Titan System for Production of Crowns/Bridges; DSC Production; pp. 1-7; Jan. 1992. |
DeFranco et al.; Three-Dimensional Large Displacement Analysis of Orthodontic Appliances; Journal of Biomechanics; 9(12); pp. 793-801; Jan. 1976. |
Dental Institute University of Zurich Switzerland; Program for International Symposium on Computer Restorations: State of the Art of the CEREC-Method; 2 pages; May 1991. |
Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992. |
DENT-X; Dentsim . . . Dent-x's virtual reality 3-D training simulator . . . A revolution in dental education; 6 pages; retrieved from the internet (http://www.dent-x.com/DentSim.htm); on Sep. 24, 1998. |
Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018. |
Doruk et al.; The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26; pp. 289-291; Jun. 1, 2004. |
Doyle; Digital Dentistry; Computer Graphics World; pp. 50-52 andp. 54; Oct. 2000. |
Dummer et al.; Computed Radiography Imaging Based on High-Density 670 nm VCSEL Arrays; International Society for Optics and Photonics; vol. 7557; p. 75570H; 7 pages; (Author Manuscript); Feb. 24, 2010. |
Duret et al.; CAD/CAM Imaging in Dentistry; Current Opinion in Dentistry; 1 (2); pp. 150-154; Apr. 1991. |
Duret et al.; CAD-CAM in Dentistry; Journal of the American Dental Association; 117(6); pp. 715-720; Nov. 1988. |
Duret; The Dental CAD/CAM, General Description of the Project; Hennson International Product Brochure, 18 pages; Jan. 1986. |
Duret; Vers Une Prosthese Informatisee; Tonus; 75(15); pp. 55-57; (English translation attached); 23 pages; Nov. 15, 1985. |
Economides; The Microcomputer in the Orthodontic Office; Journal of Clinical Orthodontics; 13(11); pp. 767-772; Nov. 1979. |
Ellias et al.; Proteomic analysis of saliva identifies potential biomarkers for orthodontic tooth movement; The Scientific World Journal; vol. 2012; Article ID 647240; dio:10.1100/2012/647240; 7 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2012. |
Elsasser; Some Observations on the History and Uses of the Kesling Positioner; American Journal of Orthodontics; 36(5); pp. 368-374; May 1, 1950. |
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7. |
Faber et al.; Computerized Interactive Orthodontic Treatment Planning; American Journal of Orthodontics; 73(1); pp. 36-46; Jan. 1978. |
Felton et al.; A Computerized Analysis of the Shape and Stability of Mandibular Arch Form; American Journal of Orthodontics and Dentofacial Orthopedics; 92(6); pp. 478-483; Dec. 1987. |
Florez-Moreno; Time-related changes in salivary levels of the osteotropic factors sRANKL and OPG through orthodontic tooth movement; American Journal of Orthodontics and Dentofacial Orthopedics; 143(1); pp. 92-100; Jan. 2013. |
Friede et al.; Accuracy of Cephalometric Prediction in Orthognathic Surgery; Journal of Oral and Maxillofacial Surgery; 45(9); pp. 754-760; Sep. 1987. |
Friedrich et al.; Measuring system for in vivo recording offeree systems in orthodontic treatment-concept and analysis of accuracy; J. Biomech.; 32(1); pp. 81-85; (Abstract Only) Jan. 1999. |
Futterling et al.; Automated Finite Element Modeling of a Human Mandible with Dental Implants; JS WSCG '98—Conference Program; 8 pages; retrieved from the Internet (https://dspace5.zcu.ez/bitstream/11025/15851/1/Strasscr_98.pdf); on Aug. 21, 2018. |
Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented Reality; pp. 267-271; Jun. 12, 2001. |
GIM-ALLDENT Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002. |
Gottleib et al.; JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management; Journal of Clinical Orthodontics; 16(6); pp. 390-407; retrieved from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1982&Month=06&ArticleNum+); 21 pages; Jun. 1982. |
Grayson; New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxillofacial Surgery; American Association of Oral and Maxillofacial Surgeons; 48(8) suppl 1; pp. 5-6; Sep. 13, 1990. |
Grest, Daniel; Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PhD Thesis; 171 pages; Dec. 2007. |
Guess et al.; Computer Treatment Estimates in Orthodontics and Orthognathic Surgery; Journal of Clinical Orthodontics; 23(4); pp. 262-268; 11 pages; (Author Manuscript); Apr. 1989. |
Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991. |
Highbeam Research; Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.eom/t/toolingampproduction/november011996/simulatingstressp utonfa..); on Nov. 5, 2004. |
Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Included); Feb. 1987. |
Hoffmann et al.; Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures; Informatbnen, pp. 375-396; (English Abstract Included); Mar. 1991. |
Hojjatie et al.; Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns; Journal of Biomechanics; 23(11); pp. 1157-1166; Jan. 1990. |
Huckins; CAD-CAM Generated Mandibular Model Prototype from MRI Data; AAOMS, p. 96; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1999. |
Imani et al.; A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring; Nature Communications; 7; 11650. doi 1038/ncomms11650; 7 pages; May 23, 2016. |
INVISALIGN; You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017. |
Jia et al.; Epidermal biofuel cells: energy harvesting from human perspiration; Angewandle Chemie International Edition; 52(28); pp. 7233-7236; Jul. 8, 2013. |
Jia et al.; Wearable textile biofuel cells for powering electronics; Journal of Materials Chemistry A; 2(43); p. 18184-18189; Oct. 14, 2014. |
JCO Interviews; Craig Andreiko , DDS, MS on the Elan and Orthos Systems; Interview by Dr. Larry W. White; Journal of Clinical Orthodontics; 28(8); pp. 459-468; 14 pages; (Author Manuscript); Aug. 1994. |
JCO Interviews; Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2; Journal of Clinical Orthodontics; 17(12); pp. 819-831; 19 pages; (Author Manuscript); Dec. 1983. |
Jeerapan et al.; Stretchable biofuel cells as wearable textile-based self-powered sensors; Journal of Materials Chemistry A; 4(47); p. 18342-18353; Dec. 21, 2016. |
Jerrold; The Problem, Electronic Data Transmission and the Law; American Journal of Orthodontics and Dentofacial Orthopedics; 113(4); pp. 478-479; 5 pages; (Author Manuscript); Apr. 1998. |
Jones et al.; An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches; British Journal of Orthodontics; 16(2); pp. 85-93; May 1989. |
Kamada et.al.; Case Reports On Tooth Positioners Using LTV Vinyl Silicone Rubber; J. Nihon University School of Dentistry; 26(1); pp. 11-29; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1984. |
Kamada et.al.; Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports; J. Nihon University School of Dentistry; 24(1); pp. 1-27; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982. |
Kanazawa et al.; Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population; Journal of Dental Research; 63(11); pp. 1298-1301; Nov. 1984. |
Kesling et al.; The Philosophy of the Tooth Positioning Appliance; American Journal of Orthodontics and Oral surgery; 31(6); pp. 297-304; Jun. 1945. |
Kesling; Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment; American Journal of Orthodontics and Oral Surgery; 32(5); pp. 285-293; May 1946. |
Kim et al.; Advanced materials for printed wearable electrochemical devices: A review; Advanced Electronic Materials; 3(1); 15 pages; 1600260; Jan. 2017. |
Kim et al.; Noninvasive alcohol monitoring using a wearable tatto-based iontophoretic-biosensing system; Acs Sensors; 1(8); pp. 1011-1019; Jul. 22, 2016. |
Kim et al.; Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites; Analyst; 139(7); pp. 1632-1636; Apr. 7, 2014. |
Kim et al.; A wearable fingernail chemical sensing platform: pH sensing at your fingertips; Taianta; 150; pp. 622-628; Apr. 2016. |
Kim et al.; Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics; Biosensors and Bioelectronics; 74; pp. 1061-1068; 19 pages; (Author Manuscript); Dec. 2015. |
Kleeman et al.; The Speed Positioner; J. Clin. Orthod.; 30(12); pp. 673-680; Dec. 1996. |
Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984. |
Kumar et al.; All-printed, stretchable Zn-Ag2o rechargeable battery via, hyperelastic binder for self-powering wearable electronics; Advanced Energy Materials; 7(8); 8 pages; 1602096; Apr. 2017. |
Kumar et al.; Biomarkers in orthodontic tooth movement; Journal of Pharmacy Bioallied Sciences; 7(Suppl 2); pp. S325-S330; 12 pages; (Author Manuscript); Aug. 2015. |
Kumar et al.; Rapid maxillary expansion: A unique treatment modality in dentistry; J. Clin. Diagn. Res.; 5(4); pp. 906-911; Aug. 2011. |
Kunii et al.; Articulation Simulation for an Intelligent Dental Care System; Displays; 15(3); pp. 181-188; Jul. 1994. |
Kuroda et al.; Three-Dimensional Dental Cast Analyzing System Using Laser Scanning; American Journal of Orthodontics and Dentofacial Orthopedics; 110(4); pp. 365-369; Oct. 1996. |
Laurendeau et al.; A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics; IEEE Transactions on Medical Imaging; 10(3); pp. 453-461; Sep. 1991. |
Leinfelder et al.; A New Method for Generating Ceramic Restorations: a CAD-CAM System; Journal of the American Dental Association; 118(6); pp. 703-707; Jun. 1989. |
Manetti et al.; Computer-Aided Cefalometry and New Mechanics in Orthodontics; Fortschr Kieferorthop; 44; pp. 370-376; 8 pages; (English Article Summary Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983. |
McCann; Inside the ADA; J. Amer. Dent. Assoc, 118:286-294; Mar. 1989. |
McNamara et al.; Invisible Retainers; J. Clin Orthod.; pp. 570-578; 11 pages; (Author Manuscript); Aug. 1985. |
McNamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993. |
Moermann et al., Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress; IADR Abstract 339; J. Dent. Res.; 66(a):763; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987. |
Moles; Correcting Mild Malalignments—As Easy as One, Two, Three; AOA/Pro Corner; 11 (2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002. |
Mormann et al.; Marginale Adaptation von adhasuven Porzellaninlays in vitro; Separatdruck aus:Schweiz. Mschr. Zahnmed.; 95; pp. 1118-1129; 8 pages; (Machine Translated English Abstract); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1985. |
Nahoum; The Vacuum Formed Dental Contour Appliance; N. Y. State Dent. J.; 30(9); pp. 385-390; Nov. 1964. |
Nash; CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment; Dentistry Today; 9(8); pp. 20, 22-23 and 54; Oct. 1990. |
Nedelcu et al.; “Scanning Accuracy and Precision In 4 Intraoral Scanners: An In Vitro Comparison Based On 3-Dimensional Analysis”; J. Prosthet. Dent.; 112(6); pp. 1461-1471; Dec. 2014. |
Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977. |
Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004. |
Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002. |
Parrilla et al.; A textile-based stretchable multi-ion potentiometric sensor; Advanced Healthcare Materials; 5(9); pp. 996-1001; May 2016. |
Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc, of the 24th Annual Conf, of the IEEE Industrial Electronics Society (IECON 98); vol. 4; pp. 2415-2418; Sep. 4, 1998. |
Pinkham; Foolish Concept Propels Technology; Dentist, 3 pages, Jan./Feb. 1989. |
Pinkham; Inventors CAD/CAM May Transform Dentistry; Dentist; pp. 1 and 35, Sep. 1990. |
Ponitz; Invisible retainers; Am. J. Orthod.; 59(3); pp. 266-272; Mar. 1971. |
Procera Research Projects; Procera Research Projects 1993 Abstract Collection; 23 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1993. |
Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000. |
Proffit et al.; The first stage of comprehensive treatment: alignment and leveling; Contemporary Orthodontics; (Second Ed.); Chapter 15, MosbyYear Book; St. Louis, Missouri; pp. 470-533 Oct. 1993. |
Raintree ESSIX & ARS Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, 7 pages; retrieved from the internet (http://www.essix.com/magazine/defaulthtml) on Aug. 13, 1997. |
Redmond et al.; Clinical Implications of Digital Orthodontics; American Journal of Orthodontics and Dentofacial Orthopedics; 117(2); pp. 240-242; Feb. 2000. |
Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991. |
Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping; Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991. |
Rekow; A Review of the Developments in Dental CAD/CAM Systems; Current Opinion in Dentistry; 2; pp. 25-33; Jun. 1992. |
Rekow; Cad/Cam in Dentistry: A Historical Perspective and View of the Future; Journal Canadian Dental Association; 58(4); pp. 283, 287-288; Apr. 1992. |
Rekow; Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art; Journal of Prosthetic Dentistry; 58(4); pp. 512-516; Dec. 1987. |
Rekow; Dental CAD-CAM Systems: What is the State of the Art?; The Journal of the American Dental Association; 122(12); pp. 43-48; Dec. 1991. |
Rekow; Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis; Univ. of Minnesota, 250 pages, Nov. 1988. |
Richmond et al.; The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity.; The European Journal of Orthodontics; 14(2); pp. 125-139; Apr. 1992. |
Richmond et al.; The Development of a 3D Cast Analysis System; British Journal of Orthodontics; 13(1); pp. 53-54; Jan. 1986. |
Richmond; Recording The Dental Cast In Three Dimensions; American Journal of Orthodontics and Dentofacial Orthopedics; 92(3); pp. 199-206; Sep. 1987. |
Rudge; Dental Arch Analysis: Arch Form, A Review of the Literature; The European Journal of Orthodontics; 3(4); pp. 279-284; Jan. 1981. |
Sahm et al.; “Micro-Electronic Monitoring of Functional Appliance Wear”; Eur J Orthod.; 12(3); pp. 297-301; Aug. 1990. |
Sahm; Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics; Fortschritte der Kieferorthopadie; 51 (4); pp. 243-247; (Translation Included) Jul. 1990. |
Sakuda et al.; Integrated Information-Processing System in Clinical Orthodontics: An Approach with Use of a Computer Network System; American Journal of Orthodontics and Dentofacial Orthopedics; 101(3); pp. 210-220; 20 pages; (Author Manuscript) Mar. 1992. |
Schafer et al.; “Quantifying patient adherence during active orthodontic treatment with removable appliances using microelectronic wear-time documentation”; Eur J Orthod.; 37(1)pp. 1-8; doi:10.1093/ejo/cju012; Jul. 3, 2014. |
Schellhas et al.; Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning; Archives of Otolaryngology—Head and Neck Surgery; 114(4); pp. 438-442; Apr. 1988. |
Schroeder et al.; Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey; Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998. |
Shilliday; Minimizing finishing problems with the mini-positioner; American Journal of Orthodontics; 59(6); pp. 596-599; Jun. 1971. |
Shimada et al.; Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations; Current Oral Health Reports; 2(2); pp. 73-80; Jun. 2015. |
Siemens; CEREC—Computer-Reconstruction, High Tech in derZahnmedizin; 15 pagesl; (Includes Machine Translation); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004. |
Sinclair; The Readers' Corner; Journal of Clinical Orthodontics; 26(6); pp. 369-372; 5 pages; retrived from the internet (http://www.jco-online.com/archive/print article.asp?Year=1992&Month=06&ArticleNum=); Jun. 1992. |
Sirona Dental Systems GmbH, CEREC 3D, Manuel utiiisateur, Version 2.0X (in French); 114 pages; (English translation of table of contents included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2003. |
Stoll et al.; Computer-aided Technologies in Dentistry; Dtsch Zahna'rztl Z 45, pp. 314-322; (English Abstract Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990. |
Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984. |
The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004. |
The Dental Company Sirona: Cere omnicam and cerec bluecam brochure: The first choice in every case; 8 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2014. |
THERA MON; “Microsensor”; 2 pages; retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016. |
THORLABS; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012. |
Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000. |
TRUAX; Truax Clasp-Less(TM) Appliance System; The Functional Orthodontist; 9(5); pp. 22-24, 26-8; September-Oct. 1992. |
TRU-TATN Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996. |
U.S. Department of Commerce, National Technical Information Service, Holodontography: An Introduction to Dental Laser Holography; School of Aerospace Medicine Brooks AFB Tex; Mar. 1973, 40 pages; Mar. 1973. |
U.S. Department of Commerce, National Technical Information Service; Automated Crown Replication Using Solid Photography SM; Solid Photography Inc., Melville NY,; 20 pages; Oct. 1977. |
Vadapalli; Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018. |
Van Der Linden et al.; Three-Dimensional Analysis of Dental Casts by Means of the Optocom; Journal of Dental Research; 51(4); p. 1100; Jul.-Aug. 1972. |
Van Der Linden; A New Method to Determine Tooth Positions and Dental Arch Dimensions; Journal of Dental Research; 51(4); p. 1104; Jul.-Aug. 1972. |
Van Der Zel; Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System; Quintessence International; 24(A); pp. 769-778; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1993. |
Van Hilsen et al.; Comparing potential early caries assessment methods for teledentistry; BMC Oral Health; 13(16); doi: 10.1186/1472-6831-13-16; 9 pages; Mar. 2013. |
Varady et al.; Reverse Engineering of Geometric Models An Introduction; Computer-Aided Design; 29(4); pp. 255-268; 20 pages; (Author Manuscript); Apr. 1997. |
Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998. |
Warunek et al.; Physical and Mechanical Properties of Elastomers in Orthodonic Positioners; American Journal of Orthodontics and Dentofacial Orthopedics; 95(5); pp. 388-400; 21 pages; (Author Manuscript); May 1989. |
Warunek et.al.; Clinical Use of Silicone Elastomer Applicances; JCO; 23 (10); pp. 694-700; Oct. 1989. |
Watson et al.; Pressures recorded at te denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987. |
Wells; Application of the Positioner Appliance in Orthodontic Treatment; American Journal of Orthodontics; 58(4); pp. 351-366; Oct. 1970. |
Wikipedia; Palatal expansion; 3 pages; retrieved from the internet (https://en.wikipedia.org/wiki/Palatal_expansion) on Mar. 5, 2018. |
Williams; Dentistry and CAD/CAM: Another French Revolution; J. Dent. Practice Admin.; 4(1); pp. 2-5 Jan./Mar. 1987. |
Williams; The Switzerland and Minnesota Developments in CAD/CAM; Journal of Dental Practice Administration; 4(2); pp. 50-55; Apr./Jun. 1987. |
Windmiller et al.; Wearable electrochemical sensors and biosensors: a review; Electroanalysis; 25(1); pp. 29-46; Jan. 2013. |
Wireless Sensor Networks Magazine; Embedded Teeth for Oral Activity Recognition; 2 pages; retrieved on Sep. 19, 2016 from the internet (www.wsnmagazine.com/embedded-teeth/); Jul. 29, 2013. |
Wishan; New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing; Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery; p. 5; Presented on Sep. 13, 1990. |
Witt et al.; The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics; Fortschr Kieferorthop.; 52(3); pp. 117-125; (Translation Included) Jun. 1991. |
Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969. |
WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998. |
Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001. |
Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993. |
Yamamoto et al.; Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics; Front. Med. Biol. Eng., 1(2); pp. 119-130; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1988. |
Yamamoto et al.; Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics; Conf. Proc. IEEE Eng. Med. Biol. Soc.; 12(5); pp. 2052-2053; Nov. 1990. |
Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc, of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); 111. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports; Nippon Dental Review; 457; pp. 146-164; 43 pages; (Author Manuscript); Nov. 1980. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon); Nippon Dental Review; 452; pp. 61-74; 32 pages; (Author Manuscript); Jun. 1980. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications; Nippon Dental Review; 454; pp. 107-130; 48 pages; (Author Manuscript); Aug. 1980. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports; Nippon Dental Review; 458; pp. 112-129; 40 pages; (Author Manuscript); Dec. 1980. |
Zhou et al.; Bio-logic analysis of injury biomarker patterns in human serum samples; Taianta; 83(3); pp. 955-959; Jan. 15, 2011. |
Zhou et al.; Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review; Electroanalysis; 24(2); pp. 197-209; Feb. 2012. |
Grove et al.; U.S. Appl. No. 15/726,243 entitled “Interproximal reduction templates,” filed Oct. 5, 2017. |
Sato et al.; U.S. Appl. No. 16/041,606 entitled “Palatal contour anchorage,” filed Jul. 20, 2018. |
Sato et al.; U.S. Appl. No. 16/048,054 entitled “Optical coherence tomography for orthodontic aligners,” filed Jul. 27, 2018. |
Miller et al.; U.S. Appl. No. 16/038,088 entitled “Method and apparatuses for interactive ordering of dental aligners,” filed Jul. 17, 2018. |
Moalem et al.; U.S. Appl. No. 16/046,897 entitled Tooth shading, transparency and glazing, filed Jul. 26, 2018. |
Nyukhtikov et al.; U.S. Appl. No. 15/998,883 entitled “Buccal corridor assessment and computation,” filed Aug. 15, 2018. |
Kopelman et al.; U.S. Appl. No. 16/152,281 entitled “Intraoral appliances for sampling soft-tissue,” filed Oct. 4, 2018. |
Morton et al.; U.S. Appl. No. 16/177,067 entitled “Dental appliance having selective occlusal loading and controlled intercuspation,” filed Oct. 31, 2018. |
Akopov et al.; U.S. Appl. No. 16/178,491 entitled “Automatic treatment planning,” filed Nov. 1, 2018. |
Elbaz et al.; U.S. Appl. No. 16/198,488 entitled “Intraoral scanner with dental diagnostics capabilities,” filed Nov. 21, 2018. |
Elbaz et al.; U.S. Appl. No. 16/188,262 entitled “Intraoral scanner with dental diagnostics capabilities,” filed Nov. 12, 2018. |
O'Leary et al.; U.S. Appl. No. 16/195,701 entitled “Orthodontic retainers,” filed Nov. 19, 2018. |
Arakawa et al.; Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor; Biosensors and Bioelectronics; 84; pp. 106-111; Oct. 2016. |
beautyworlds.com; Virtual plastic surgery—beautysurge.com announces launch of cosmetic surgery digital imaging services; 5 pages; retrieved from the internet (http://www.beautyworlds.com/cosmossurgdigitalimagning.htm); Mar. 2004. |
Berland; The use of smile libraries for cosmetic dentistry; Dental Tribunne: Asia pacfic Edition; pp. 16-18; Mar. 29, 2006. |
Bookstein; Principal warps: Thin-plate splines and decomposition of deformations; IEEE Transactions on pattern analysis and machine intelligence; 11(6); pp. 567-585; Jun. 1989. |
Cadent Inc.; OrthoCAD ABO user guide; 38 pages; Dec. 21, 2005. |
Cadent Inc.; Reviewing and modifying an orthoCAD case; 4 pages; Feb. 14, 2005. |
Daniels et al.; The development of the index of complexity outcome and need (ICON); British Journal of Orthodontics; 27(2); pp. 149-162; Jun. 2000. |
Dentrix; Dentrix G3, new features; 2 pages; retrieved from the internet (http://www.dentrix.com/g3/new_features/index.asp); on Jun. 6, 2008. |
Di Giacomo et al.; Clinical application of sterolithographic surgical guides for implant placement: Preliminary results; Journal Periodontolgy; 76(4); pp. 503-507; Apr. 2005. |
Gansky; Dental data mining: potential pitfalls and practical issues; Advances in Dental Research; 17(1); pp. 109-114; Dec. 2003. |
Geomagic; Dental reconstruction; 1 page; retrieved from the internet (http://geomagic.com/en/solutions/industry/detal_desc.php) on Jun. 6, 2008. |
Gottschalk et al.; OBBTree: A hierarchical structure for rapid interference detection; 12 pages; (http://www.cs.unc.edu/?geom/OBB/OBBT.html); relieved from te internet (https://www.cse.iitk.ac.in/users/amit/courses/RIVIP/presentations/dslamba/presentation/sig96.pdf) on Apr. 25, 2019. |
gpsdentaire.com; Get a realistic smile simulation in 4 steps with GPS; a smile management software; 10 pages; retrieved from the internet (http://www.gpsdentaire.com/en/preview/) on Jun. 6, 2008. |
Karaman et al.; A practical method of fabricating a lingual retainer; Am. Journal of Orthodontic and Dentofacial Orthopedics; 124(3); pp. 327-330; Sep. 2003. |
Mantzikos et al.; Case report: Forced eruption and implant site development; The Angle Orthodontist; 68(2); pp. 179-186; Apr. 1998. |
Methot; Get the picture with a gps for smile design in 3 steps; Spectrum; 5(4); pp. 100-105; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006. |
OrthoCAD downloads; retrieved Jun. 27, 2012 from the internet (www.orthocad.com/download/downloads.asp); 2 pages; Feb. 14, 2005. |
Page et al.; Validity and accuracy of a risk calculator in predicting periodontal disease; Journal of the American Dental Association; 133(5); pp. 569-576; May 2002. |
Patterson Dental; Cosmetic imaging; 2 pages retrieved from the internet (http://patterson.eaglesoft.net/cnt_di_cosimg.html) on Jun. 6, 2008. |
Rose et al.; The role of orthodontics in implant dentistry; British Dental Journal; 201(12); pp. 753-764; Dec. 23, 2006. |
Rubin et al.; Stress analysis of the human tooth using a three-dimensional finite element model; Journal of Dental Research; 62(2); pp. 82-86; Feb. 1983. |
Sarment et al.; Accuracy of implant placement with a sterolithographic surgical guide journal of Oral and Maxillofacial Implants; 118(4); pp. 571-577; Jul. 2003. |
Smalley; Implants for tooth movement: Determining implant location and orientation: Journal of Esthetic and Restorative Dentistry; 7(2); pp. 62-72; Mar. 1995. |
Smart Technology; Smile library II; 1 page; retrieved from the internet (http://smart-technology.net/) on Jun. 6, 2008. |
Smile-Vision_The smile-vision cosmetic imaging system; 2 pages; retrieved from the internet (http://www.smile-vision.net/cos_imaging.php) on Jun. 6, 2008. |
Szeliski; Introduction to computer vision: Structure from motion; 64 pages; retrieved from the internet (http://robots.Stanford.edu/cs223b05/notes/CS%20223-B%20L10%structurefrommotion1b.ppt, on Feb. 3, 2005. |
Vevin et al.; Pose estimation of teeth through crown-shape matching; In Medical Imaging: Image Processing of International Society of Optics and Photonics; vol. 4684; pp. 955-965; May 9, 2002. |
Virtual Orthodontics; Our innovative software; 2 pages; (http://www.virtualorthodontics.com/innovativesoftware.html); retrieved from the internet (https://web.archive.org/web/20070518085145/http://www.virtualorthodontics.com/innovativesoftware.html); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2005. |
Wiedmann; According to the laws of harmony to find the right tooth shape with assistance of the computer; Digital Dental News; 2nd Vol.; pp. 0005-0008; (English Version Included); Apr. 2008. |
Wong et al.; Computer-aided design/computer-aided manufacturing surgical guidance for placement of dental implants: Case report; Implant Dentistry; 16(2); pp. 123-130; Sep. 2007. |
Wong et al.; The uses of orthodontic study models in diagnosis and treatment planning; Hong Knog Dental Journal; 3(2); pp. 107-115; Dec. 2006. |
Yaltara Software; Visual planner; 1 page; retrieved from the internet (http://yaltara.com/vp/) on Jun. 6, 2008. |
Zhang et al.; Visual speech features extraction for improved speech recognition; 2002 IEEE International conference on Acoustics, Speech and Signal Processing; vol. 2; 4 pages; May 13-17, 2002. |
Arnone et al.; U.S. Appl. No. 16/235,449 entitled “Method and system for providing indexing and cataloguing of orthodontic related treatment profiles and options,” filed Dec. 28, 2018. |
Mason et al.; U.S. Appl. No. 16/374,648 entitled “Dental condition evaluation and treatment,” filed Apr. 3, 2019. |
Brandt et al.; U.S. Appl. No. 16/235,490 entitled “Dental wire attachment,” filed Dec. 28, 2018. |
Kou; U.S. Appl. No. 16/270,891 entitled “Personal data file,” filed Feb. 8, 2019. |
Number | Date | Country | |
---|---|---|---|
20190231477 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62593241 | Nov 2017 | US |