The present disclosure is related to patient supports, and in particular to patient supports with sensors. More specifically, the present disclosure is related to a patient support apparatus including at least one sensor for detecting conditions at the interface of the patient support apparatus and a patient positioned on the patient support apparatus.
Bed sores, sometimes called pressure ulcers or debicutis ulcers, are a common type of skin breakdown experienced by patients. Conditions at the interface of a patient support apparatus and a patient's skin may be considered when determining a risk level for bed sore formation. Conditions evaluated at the interface of a patient support apparatus and a patient's skin that may be considered include moisture, temperature, skin health, and the like.
Some care centers implement manual routines for checking conditions at the interface of a patient support apparatus and a patient's skin in order to determine a risk level for bed sores. The determined risk levels can then be used to schedule therapies to mitigate the risk of bed sore formation. Such manual checks may not be performed with great frequency in some care centers on account of low staffing or high occupancy.
The present application discloses one or more of the features recited in the appended claims and/or the following features which, alone or in any combination, may comprise patentable subject matter:
A patient support apparatus may include a cushion, a cover, and a sensor unit. The cover may overlie the cushion and may be configured to support a patient. The sensor unit may be coupled to the cover.
In some embodiments, the cover may be formed to include a slit. The sensor unit may include a sensor and a flexible mount coupled to the sensor. The flexible mount may be inserted through the slit formed in the cover to couple the sensor unit to the cover.
The flexible mount may include a stem portion and a retention portion. The stem portion may be inserted through the slit while the retention portion engages the cover along the slit to retain the sensor in place relative to the cover.
In some embodiments, the retention portion may be U-shaped. In other embodiments, the retention portion is V-shaped or triangular.
In some embodiments, the flexible mount may include a flexible film and a circuit. The circuit may be coupled to the flexible film to provide an electrical path from the sensor.
In some embodiments, the cover may include a top layer, a middle layer, and a bottom layer. The slit formed in the cover may extend through the top layer of the cover. The middle layer may be made of a three-dimensional material configured to conduct air between the top layer and the bottom layer.
In some embodiments, the patient support apparatus may also include an air box. The air box may be coupled to the cover and may be configured to provide air to the middle layer of the cover. The air box may include a blower and a controller. The blower may be coupled to the middle layer of the cover. The controller may be coupled to the blower and to the sensor unit. The controller may be configured to adjust operation of the blower based on information from the sensor unit.
In some embodiments, the cushion includes a plurality of inflatable bladders. It is contemplated that the patient support apparatus may also include a lower ticking coupled to the cover to encase the plurality of inflatable bladders.
In some embodiment, the patient support apparatus may also include an air box. The air box may include a blower and a controller. The blower may be coupled to the plurality of inflatable bladders. The controller may be coupled to the sensor unit and the blower. The controller may be configured to adjust the operation of the blower based on information from the sensor unit.
In some embodiments, the sensor unit may be located in a central portion of the cover. The central portion of the cover may be situated between a head end and a foot end of the cover so that the sensor unit is arranged to underlie the pelvic region of a patient.
According to another aspect of the present disclosure, a patient support apparatus may include a cushion, a cover and a wireless sensor unit. The cover may overlie a top side of the cushion and may be configured to support a patient.
In some embodiments, the wireless sensor unit may be configured to detect moisture and may be coupled to the cover between a head end and a foot end of the cover. The wireless sensor unit may be located in a central region of the cover to underlie a patient's pelvic area when a patient is lying on the cover.
In some embodiments, the cover may be a topper overlying the top side of the cushion. The topper may be configured to conduct air along the top side of the surface.
In some embodiments, the patient support apparatus may also include an air box including a blower and a controller. The blower may be coupled to the topper. The controller may be coupled to the blower and may be in wireless communication with the wireless sensor unit. The controller may be configured to adjust the operation of the blower to change the amount of air provided to the topper based on information received from the sensor unit.
In some embodiments, the cushion may include a plurality of inflatable bladders. The patient support apparatus may include an air box including a blower and a controller. The blower may be coupled to the plurality of inflatable bladders. The controller may be coupled to the blower and may be in wireless communication with the wireless sensor unit. The controller may be configured to operate the blower to adjust the pressure in the plurality of inflatable bladders based on information received from the wireless sensor unit.
In some embodiments, the wireless sensor unit may be passive. The patient support apparatus may include a reader spaced apart from the wireless sensor unit. The reader may be configured to power the sensor unit and to receive data from the wireless sensor unit. The reader may be arranged to underlie the wireless sensor unit.
In some embodiments, the patient support apparatus may include a frame including deck and a base. The deck may underlie the cushion and the cover. The base may underlie the deck to support the deck above a floor. The reader may be coupled to the deck.
Additional features, which alone or in combination with any other feature(s), including those listed above and those listed in the claims, may comprise patentable subject matter and will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
An illustrative patient support apparatus 10 includes a frame 12, a support surface 14 mounted on the frame 12, and an air box 16 coupled to the support surface 14. The support surface 14 illustratively includes a topper 18 and a sensor unit 20 coupled to the topper 18 (sometimes called a cover). Both the topper 18 and the sensor unit 20 are located adjacent to a top side 24 of the support surface 14. The sensor unit 20 is configured to detect conditions at the interface of the support surface 14 and a patient positioned on the patient support apparatus 10.
The illustrative sensor unit 20 is configured to detect moisture levels at the interface of the patient support apparatus 10 and a patient's skin, for example from sweat or incontinence. In some embodiments, the sensor unit 20 may be configured to detect conditions other than moisture such as temperature, pressure, or the like.
The topper 18 is configured to conduct air along the top side 24 of the support surface 14 along the interface of a patient's skin with the support surface 14 to carry away moisture from the patient as suggested in
In the illustrative embodiment, the sensor unit 20 includes a sensor 28 and a flexible mount 30 as shown in
In some embodiments, the flexible mount 30 may be a flexible textile with an integrated circuit (not shown) that is sewn or adhered to the topper 18. Illustrative textiles with integrated power and data circuits are available from Weel Technologies of Guangdong, China. The compliance of flexible mount 30 included in the sensor unit 20 (whether polymeric film or textile) may make lying on the sensor unit 20 more comfortable for a patient lying on the support surface 14 than if the sensor unit 20 included other rigid components and/or connectors.
The flexible mount 30 is illustratively shaped to include a stem portion 32, a retention portion 34, and a tab portion 36 as shown, for example, in
When the sensor unit 20 is coupled to the topper 18, the stem portion 32 is inserted under a top layer 40 of the topper 18 through a slit 51 formed in the top layer 40 of the topper 18 as shown in
Coupling of the sensor unit 20 to the topper 18 via insertion of the stem portion 32 into the slit 51 until further insertion is blocked by contact of the retention portion 34 with the topper 18 as suggested in
Referring briefly to
Turning now to
In addition to the topper 18 and the sensor unit 20, the illustrative support surface 14 includes a lower ticking 44, a valve box 45, foam components 46, inflatable bladders 50, a rigid sheet 55, and upper ticking 54 as shown in
The foam components 46 include a foam shell 47 and a foot-section filler pad 48 as shown in
Turning now to
The illustrative controller 70 includes a memory 71, a clock 72, and a processor 73. The memory 71 is configured to hold instructions and data for use by the processor 73. The clock 72 is coupled to the processor 73 to provide time stamps to the processor 73. The processor 73 executes the instructions on the memory 71 and writes information to the memory 71, for example, adjusting operation of the blower 65 and valve box 45 based on inputs received from the sensor unit 20, the ambient sensor unit 68, and the sensor 66 as proscribed by the instructions written in the memory 71.
In operation, the controller 70 receives moisture data (and sometimes temperature data) corresponding to conditions adjacent to a patient's skin from the sensor unit 20 and moisture data (and sometimes temperature data) corresponding to atmospheric conditions from the ambient sensor unit 68. Based on the received data, the controller 70 determines a risk level for developing bed sores.
If the risk level exceeds one or more predetermined thresholds stored in the memory 71, the controller 70 takes one or more corresponding corrective actions. Corrective actions may include displaying an alert on the user interface 64, sending an alert to a caregiver via a nurse call (or similar) system, and/or adjusting the operation of the blower 65 and the valve box 45 to increase air flow through the topper 18, to change the pressure in the support bladders 60, and/or to start lateral rotation of the patient using the turn bladders 62.
In the illustrative embodiment, the frame 12 includes a base 81 and a deck 83 as shown in
In
In
In
In the alternative topper 118, air provided by the air box 16 is introduced into the actively cooled region 182 at origination points 80, 81 adjacent to a patient's pelvic region and a patient's torso region. The passively cooled region 184 is pneumatically separated from the actively cooled region 182 and air flow in the passively cooled region 184 is driven by temperature differences between a patient's body overlaying the topper 118. The alternative topper 118 is further described in U.S. Application No. 61/770,704 filed Feb. 28, 2013, which is hereby incorporated in its entirety by reference herein.
The support bladders 60 are illustratively vertically-oriented column-shaped bladders as shown in
An alternative patient support apparatus 210 is shown in
Unlike the patient support apparatus 10, the patient support apparatus 210 includes a wireless sensor unit 290 rather than a sensor unit 20 as shown in
The wireless sensor unit 290 is illustratively a passive sensor that is not wired for power and does not include an internal power source. Rather, the sensor unit 290 is powered wirelessly by a reader 292 incorporated into the frame 212 underlying the support surface 214 as shown in
The reader 292 is illustratively integrated into the deck 283 of the frame 212 and is arranged to underlie the wireless sensor unit 290. The reader 292 is coupled to the controller 270 for communication with the controller 270 included in the air box 216. The reader 292 is configured to wirelessly power the wireless sensor unit 290 and to receive moisture data from the wireless sensor unit 290 while the patient support apparatus 10 is in use.
The air box 216 is illustratively integrated with the frame 212, as shown in
As discussed with regard to controller 70 herein, controller 270 is configured to adjust operation the bed based on data from sensors located along the top side 224 of the support surface 214 and spaced apart from the support surface 214. In particular, the controller 270 receives moisture data (and sometimes temperature data) corresponding to conditions adjacent to a patient's skin from the wireless sensor unit 290 and moisture data (and sometimes temperature data) corresponding to atmospheric conditions from the ambient sensor unit 268. Based on the received data, the controller 270 determines a risk level for developing bed sores.
If the risk level exceeds one or more predetermined thresholds stored in the memory 271, the controller 270 takes one or more corresponding corrective actions. Corrective actions may include displaying an alert on the user interface 264, sending an alert to a caregiver via a nurse call (or similar) system, and/or adjusting the operation of the blower 265 and the valve box 245 to increase air flow through the topper 218, to change the pressure in the support bladders 260, and/or to start lateral rotation of the patient using the turn bladders 262.
Although certain illustrative embodiments have been described in detail above, variations and modifications exist within the scope and spirit of this disclosure as described and as defined in the following claims.
This application is a divisional of U.S. application Ser. No. 14/190,972, which was filed Feb. 26, 2014 and which claimed the benefit, under 35 U.S.C. §119(e), of U.S. Provisional Application No. 61/770,679, which was filed Feb. 28, 2013, each of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61770679 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14190972 | Feb 2014 | US |
Child | 15090715 | US |