The present invention relates generally to sensors, including flexible and stretchable fabric-based pressure sensors associated with or incorporated in garments and other substrates intended to contact a body surface (directly or indirectly), and to sensor interfaces with electronic components and devices. Several aspects of detailed sensor system components and integration of sensing systems in garments are disclosed.
Various types of sensing systems have been incorporated in shoes, insoles, socks and other types of garments for monitoring various physiological parameters for various applications, including recreational, fitness, sporting, military, diagnostic and medical applications. The use of sensing systems for fitness applications to monitor and analyze activities such as running, walking, energy expenditure, and the like, is now common. Medical applications for sensing pressure, temperature and the like for purposes of monitoring neuropathic and other degenerative conditions with the goal of alerting an individual and/or medical service providers to sensed parameters that may indicate the worsening of a condition, lack of healing, and the like, have been proposed. Footwear-related sensing systems directed to providing sensory data for patients suffering from neuropathy, for gait analysis, rehabilitation assessment, shoe research, design and fitting, orthotic design and fitting, and the like, have been proposed.
Sensing devices and footwear having sensors incorporated for monitoring pressure and other body parameters have been proposed. Various types of sensing systems for monitoring various physiological parameters have been incorporated in bands, wrist-worn devices, portable electronic devices, medical devices, shoes, insoles, socks and other types of garments for various applications. The use of sensing systems for fitness applications to monitor and analyze activities such as running, walking, energy expenditure, and the like, is now common. Medical applications for sensing pressure, posture, gait, temperature and the like for purposes of monitoring neuropathic and other degenerative conditions with the goal of alerting an individual and/or medical service providers to sensed parameters that may indicate the worsening of a condition, lack of healing, and the like, have been proposed. Footwear-related sensing systems directed to providing sensory data for patients suffering from neuropathy, for gait analysis, rehabilitation assessment, shoe research, design and fitting, orthotic design and fitting, and the like, have been proposed.
In one aspect, the components and assemblies for collection and analysis of data from sites such as feet and other body surfaces described herein are directed to providing intermittent and/or continuous monitoring and reporting of conditions and activity parameters (such as force, pressure, shear, etc.) at body locations and combining that data with additional data for purposes of analyzing and reporting activity parameters and providing feedback to the user or a third party, such as a coach in fitness applications, a caretaker or medical professional in medical applications, or the like. In other aspects, the components and assemblies for collection and analysis of data from sites such as feet and other body surfaces described herein are directed to reducing the incidence and severity of gait problems and wounds, improving a user's gait, providing information to caretakers, increasing compliance with prescribed regimen, and accelerating the pace and quality of wound healing. In yet other aspects, sensors, interfaces, systems and materials described herein for collection and analysis of physiological and biomechanical data from sites such as feet and other body parts may be used for a variety of sports-related, military, fitness, medical, diagnostic and therapeutic purposes.
In one aspect, sensor systems of the present invention comprise one or more sensor(s) mounted to or incorporated in or integrated with or associated with (referred to herein, collectively, as “associated with”) a substrate material such as a wearable garment, a wearable band, an independently positionable component, or another substrate, such as a bandage or a flexible and/or pliable sheet material. In one aspect, sensors are capable of sensing a physiological parameter of the underlying skin or tissue; in some aspects, sensors are capable of sensing force and/or pressure and/or shear exerted on or against an underlying skin or tissue. In some aspects, sensors are capable of sensing conductive impulses or properties associated with a body surface or tissue. Each sensor is electrically connected, optionally via one or more flexible leads, to a flexible and conductive trace associated with the substrate, and conductive traces terminate at conductive signal transfer terminals associated with the substrate. Each sensor may additionally be connected to a ground trace terminating at a ground terminal.
Sensor systems and sensing devices described herein preferably comprise at least one flexible sensor (or, means for sensing), and one or more of the sensor(s), flexible leads, and conductive traces may be stretchable and/or elastic as well as being flexible. In some embodiments, the sensor(s), flexible leads and conductive traces may all comprise pliable, electrically resistive and/or conductive fabric materials. Garments and other types of substrates incorporating such sensor systems and sensing devices may be comfortably worn by users, and/or contact a body surface of users, under many conditions, providing real time monitoring of conditions at or near body surfaces.
The signal transfer terminal(s) on the substrate may be matingly received in signal receipt terminals associated with a Dedicated Electronic Device (DED) that is mountable to the substrate or electrically connects to the signal transfer terminal(s) and serves as a (temporary or permanent) data collection device. The DED may also (optionally) house batteries or other energy storage (and/or energy generating devices) and serve as a sensor charging device. The DED may additionally communicate with one or more external electronic device(s), such as a smartphone, personal computing device/display, host computer, or the like for signal transfer, processing, analysis and display to a user and/or others. In some embodiments, the external electronic device, and/or the DED, communicates with an external, hosted computing system (operated, e.g., at a centralized, hosted facility and/or in the “Cloud”) that provides additional data analysis, formulates feedback, notifications, alerts, and the like, that may be displayed to the user, a coach, a caretaker, a clinician, or the like, through one or more computing and/or display devices. In alternative embodiments, the DED may itself perform signal processing and analysis, and may display or otherwise communicate feedback directly to a user without interfacing with an external computing device. In some embodiments, the DED is detachably attachable to signal receipt terminals incorporated in an interface component associated with a substrate.
In some embodiments, one or more resistive sensor(s) detect changes in voltage or resistance across a surface area that is associated with force exerted on the sensor, which is related to pressure (as force per unit surface area) and/or shear. Force, pressure, shear and measurements or values that are derivative thereof may therefore be determined at identifiable spatial locations where sensors are positioned. E-textile sensors capable of providing proportional pressure signals (e.g., proportional pressure sensed over a surface area), and/or providing pressure signals that correlate with spatial locations on a surface area of the e-textile sensors are preferred for many applications.
In some embodiments, FSR (Force Sensitive Resistor) or piezo-resistive sensors may be used. One type of piezoresistive force sensor that has been used previously in footwear pressure sensing applications, known as the FLEXIFORCE® sensor, can be made in a variety of shapes and sizes, and measures resistance, which is inversely proportional to applied force. These sensors use pressure sensitive inks with silver leads terminating in pins, with the pressure sensitive area and leads sandwiched between polyester film layers. FLEXIFORCE® sensors are available from Tekscan, Inc., 307 West First Street, South Boston, Mass. 02127-1309 USA. Other types of sensors, including sensors employing conductive electrodes, may also be associated with various substrate materials (e.g., garments, sheet materials and the like). Such sensors may provide data relating to temperature, moisture, humidity, stress, strain, heart rate, respiratory rate, blood pressure, blood oxygen saturation, blood flow, local gas content, galvanic skin response, bacterial content, position, multi-axis acceleration, as well as locational positioning (GPS), and the like. A variety of such sensors are known in the art and may be adapted for use in sensing systems described herein.
In some embodiments, sensors and/or associated leads and/or conductive traces incorporated in sensing systems of the present invention comprise non-silicon-based materials such as flexible, resistive and/or conductive “e-textile” fabric and/or yarn material(s). In some embodiments, sensors and/or associated leads and/or conductive traces incorporated in sensing systems of the present invention comprise flexible, resistive and/or conductive fabric or yarn materials that are substantially isotropic with respect to their flexibility and/or stretch properties. By “substantially” isotropic, we mean to include materials that have no more than a 15% variation and, in some embodiments, no more than a 10% variation in flexibility and/or stretch properties in any direction, or along any axis of the material. Suitable materials, such as resistive and/or piezoresistive or conductive fabric and yarns, coated and/or impregnated fabrics and yarns, such as metallic coated fabric and yarn materials and fabric and yarn materials coated or impregnated with other types of resistive or conductive formulations, are known in the art and a variety of such fabric and yarn materials may be used. In some embodiments, pressure sensors comprise flexible conductive woven fabric material that is stretchable and/or elastic and/or substantially isotropic with respect to its flexibility and/or stretch properties.
Fabrics and yarns comprising a knitted nylon/spandex substrate coated with a resistive formulation are suitable for use, for example, in fabricating biometric e-textile pressure sensors and in other applications requiring environmental stability and conformability to irregular configurations. One advantage of using these types of e-textile sensors is that they perform reliably in a wide variety of environments (e.g., under different temperature and moisture conditions), and they're generally flexible, durable, washable, and comfortably worn against the skin. Suitable flexible resistive fabric and yarn materials are available, for example, from VTT/Shieldex Trading USA, 4502 Rt-31, Palmyra, N.Y. 14522, from Statex Productions & Vertriebs GmbH, Kleiner Ort 11 28357 Bremen Germany, and from Eeonyx Corp., 750 Belmont Way, Pinole, Calif. 94564.
Techniques for deriving force and/or pressure and/or shear measurements using e-textile materials are known in the art and various techniques may be suitable. See, e.g., http://www.kobakant.at/DIY/?p=913. Techniques for measuring other parameters using e-textile materials, such as humidity and temperature measurements, are also known and may be used in sensing systems of the present invention. See, e.g., http://www.nano-tera.ch/pdf/posters2012/TWIGS105.pdf. E-textile sensors of the present invention may thus be capable of monitoring various parameters, including force, pressure, shear, humidity, temperature, gas content, and the like, at the sensor site. Additional monitoring capabilities may be available using e-textile sensors as innovation in fabric sensors proceeds and as nano-materials and materials incorporating nano-structures are developed and become commercially feasible.
Flexible (and optionally stretchable or elastic) resistive and/or conductive fabric sensor(s), leads and/or traces may be associated with an underlying substrate such as fabric or sheet material that's substantially non-conductive and flexible. The term “fabric” or “sheet material” as used herein, refers to many types of pliable materials, including traditional fabrics comprising woven or non-woven fibers or strands, knitted substrates and materials, as well as fiber reinforced sheet materials, and other types of flexible sheeting materials composed of natural and/or synthetic materials, including flexible plastic sheeting material, pliable thermoplastic, foam and composite materials, screen-like or mesh materials, and the like. The underlying substrate may comprise a sheet material fabricated from flexible fabric material that is stretchy and/or elastic. The sheet material forming the underlying substrate may be substantially isotropic with respect to its flexibility and/or stretch properties. By “substantially” isotropic, we mean to include materials that have no more than a 15% variation and, in some embodiments, no more than a 10% variation in flexibility and/or stretch properties in any direction, or along any axis of the material.
Flexible resistive or conductive yarns may also be used to fabricate e-textile sensors. Such resistive or conductive yarns may be woven or knit or otherwise associated with or integrated in a substrate material according to predetermined patterns to provide a plurality of spatially distinctive sensors associated with a substrate such as a garment. In one embodiment, garments having a plurality of integrated and spatially distinct resistive or conductive sensors fabricated by weaving or knitting or otherwise associating resistive or conductive yarns or fibers in substrate materials are preferred.
For garment and similar applications, for example, one or more e-textile sensor(s) and/or sensing devices may be associated with (e.g., sewn or otherwise permanently or detachably attached or connected or fixed to, or woven or knit or integrated in) a garment or a surface of a garment for contacting an individual's skin, directly or indirectly, during use. Conductive sensors may be used, for example, to detect electrical impulses for monitoring vital signs, skin conductance, or the like; resistive sensors may be used, for example, for detecting pressure and/or force and/or shear exerted against an individual's skin or other force-related parameters sensed at or near a skin surface.
In situations where parameters are desired to be measured as they impact an outer surface or fabric layer, one or more sensor(s) may be associated with (e.g., mounted to or woven or knit or integrated in) an external surface of a garment or substrate. For applications such as bands, bandages and independently positionable sensing components, e-textile sensors may likewise be mounted to or otherwise associated with an underlying substrate that may be conveniently positioned as desired by the user or a third party, such as a caretaker or clinician. In alternative embodiments, e-textile sensors may be sandwiched between substrate layers (as in compression socks or other types of compression garments and substrates) or otherwise incorporated in various types of substrates.
Each sensor may be associated with one or more leads, each of the leads being electrically connected to a conductive trace conveying electrical signals from the sensor to a signal transfer terminal. In some embodiments, e-textile sensors as previously described may be electrically connected to lead(s), or e-textile sensors may have flexible yarn or textile lead(s) associated with or incorporated in the e-textile sensor footprint. The lead(s) are electrically connected to flexible conductive traces, which may comprise a variety of flexible conductive materials, such as a conductive fabric, yarn, fibers or the like. In some embodiments, the conductive traces are stretchable and/or elastic, and are woven or knit into and form part of the substrate. In some embodiments, the conductive traces are insulated or have an insulative coating.
In some embodiments, conductive traces comprise a conductive e-textile fabric having generally high electrical conductivity, such as silver coated e-textile materials, and may be bonded to the underlying substrate material using adhesives, heat bonding or non-conductive threads. Suitable e-textile materials are known in the art and are available, for example, from the vendors identified above. In some embodiments, conductive traces comprise a conductive yarn or fiber having generally high electrical conductivity, and the yarn or fiber materials are integrated into the substrate material by knitting, weaving, or the like. In some embodiments, the conductive traces comprise a conductive yarn or fiber having generally high electrical conductivity, and having an insulative coating, and the insulated, conductive yarn or fiber materials are integrated into the substrate material by knitting, weaving, or the like. In some embodiments, conductive traces comprise other types of flexible conductive materials, such as thermoplastic elastomers (TPEs), conductive inks, or the like. Conductive traces comprising materials such as TPEs, conductive inks, and the like, may be associated (directly or indirectly) with a substrate and with one or more leads or sensors to provide conductive pathways between the sensors and corresponding signal transfer terminals.
Sensor(s) as described herein and sensor systems, including e-textile pressure sensors and a variety of other types of sensors, with (optional) leads and conductive traces, may be associated with a variety of substrates including, without limitation, garments intended to be worn (directly or indirectly) against the skin of an individual, such as shirts, tunics, shorts, body suits, leotards, underwear, leggings, socks, footies, gloves, caps, bands such as wrist bands, leg bands, torso and back bands, brassieres, and the like. Sensors and sensor systems may additionally be associated with wraps having different sizes and configurations for fitting onto or wrapping around a portion of an individual's body, and with bands, bandages, and wound dressing materials, as well as with other types of accessories that contact a user's body surface (directly or indirectly) such as insoles, shoes, boots, belts, straps, and the like.
Each of the conductive traces terminates in a signal transfer terminal that is mounted to/in/on, or otherwise associated with (referred to, collectively, as “associated with”), the underlying substrate and can be contacted to a mating signal receipt terminal of a dedicated electronic device (DED) having data storage, processing and/or analysis capabilities. In general, conductive traces and terminals are arranged in a predetermined arrangement that corresponds to the arrangement of signal receipt terminals in the DED. Many different types of signal transfer and receipt terminals are known and may be used in this application. In one exemplary embodiment, signal transfer and receipt terminals may be mounted in cooperating fixtures for sliding engagement of the fixtures and terminals. In another embodiment, signal transfer terminals may be provided as conductive fixtures that are electrically connected to the conductive trace (and thereby to a corresponding sensor) and detachably connectible to a mating conductive fixture located on the DED.
In some embodiments, the mating signal receipt and signal transfer terminals may comprise mechanically mating, electrically conductive members such as snaps or other types of fasteners providing secure mechanical mating and high integrity, high reliability transfer of signals and/or data. In some embodiments, the mating terminals may comprise conductive pins, including stationary conductive pins as well as movable pins, such as spring-loaded pins, referred to as pogo pin connectors. In some embodiments, easy and secure mating of the terminals may be enhanced using magnetic mechanisms or other types of mechanisms that help users to properly and securely align and connect/disconnect the mating terminals with minimal effort. In some embodiments, easy and secure mating of the terminals may be enhanced by complementary (and/or locking) mechanical configurations of housing components associated with mating terminals. In some embodiments, mating terminals provided on the underlying substrate (e.g., a garment, sock, sheet, band, etc.) and on a DED are provided in a predetermined arrangement, or have a keyed configuration, to ensure that the DED is properly aligned and mounted to the terminals provided on the substrate in a predictable and pre-determined orientation.
The DED, in addition to having data recording, processing and/or analysis capabilities, may incorporate an energy source such as a battery providing energy for data recording, processing and/or analysis, as well as providing energy for operation of one or more of the sensor(s). The energy source may comprise a rechargeable and/or replaceable battery source, and/or a regenerative energy system. The DED generally provides a lightweight and water-tight enclosure for the data collection and processing electronics and (optional) energy source and provides signal receiving terminals that mate with the signal transfer terminals connected to the sensor(s) for conveying data from the sensors to the dedicated electronic device. In some embodiments, the DED is provided as a bendable or partially bendable device that can be shaped, as desired, to fit comfortably on and closely to body surfaces having different configurations and sizes.
A DED may be provided in the form of a curved band for mounting to the user at or near the user's ankle, and particularly at or near a front-facing portion of the user's ankle, for example, and may be at least partially flexible so that it fits, comfortably and functionally, on men's and women's ankles and on ankles having different sizes and shapes, providing connection to the sensor transfer terminals provided in a sock or anklet. In some embodiments, a partially or fully bendable DED may be used in a variety of configurations, including, e.g., flat or substantially flat configurations, depending on the location of sensor transfer terminals provided in an underlying substrate. In some embodiments, a partially or fully bendable DED may be used in different configurations with sensor transfer terminals provided in different form factors. For example, a common DED may be shaped to fit comfortably on a user's ankle and mate with sensor transfer terminals provided on an underlying sock or anklet; it may also be shaped to fit comfortably on a user's arm and/or wrist and mate with sensor transfer terminals provided on an underlying sleeve. The same bendable DED may additionally be shaped to fit comfortably, in a generally curved or a generally flat configuration, and mate with sensor transfer terminals provided on garments or substrates having other form factors.
DEDs having alternative configurations are also disclosed and may be used in a variety of applications. In some embodiments, a DED may be provided in the form of a button-like or dongle-like or capsule-like object having signal receipt terminals that mate with signal transfer terminals provided in a mating DED-receiving fixture that may be mounted to or incorporated in (referred to, collectively, as “associated with”) an underlying surface of a garment or another substrate. In some embodiments, the DED-receiving fixture may comprise a substantially flexible and bendable material and may be mounted to a sock substrate at or near a user's ankle In some embodiments, the DED-receiving fixture may be associated with an underlying garment at different garment regions, and multiple DED-receiving fixtures and DEDs may be used for various monitoring and data collection purposes.
When sensors are incorporated in a shirt-like garment or tunic and signal transfer terminals are arranged on a front or back surface of the garment, the DED may have a generally medallion-like form factor, or a button-like or linear or another form factor, depending on the placement and type of signal transfer terminals, the underlying conformation of the body surface, and the like. When sensors are incorporated in a wrap or band or sheet-like substrate, the signal transfer terminals may be arranged at or near an exposed end of the wrap or band or sheet following its application to an underlying anatomical structure or body surface or substrate, and the DED may be provided as a band or a tab or a button-like or dongle-like or capsule-like device having aligned signal receipt terminals. The DED may be provided as a substantially flexible or a substantially rigid component, depending upon the application, and it may take a variety of forms.
In some embodiments, the DED communicates with and transfers data to one or more external computing and/or display system(s), such as a smartphone, computer, tablet computer, dedicated computing device, medical records system or the like, using wired and/or wireless data communication means and protocols. The DED and/or an external computing and/or display system may, in turn, communicate with a centralized host computing system (located, e.g., in the Cloud), where further data processing and analysis takes place. Substantially real-time feedback, including data displays, notifications, alerts and the like, may be provided to the user, caretaker and/or clinician according to user, caretaker and/or clinician preferences.
In some embodiments, the DED may store data temporarily to a local memory, and may periodically transfer the data (e.g., in batches) to the above mentioned external computing and/or display system(s). Offline processing and feedback, including data displays, notifications and the like may be provided to the user, caretaker, and/or clinician according to user, caretaker and/or clinician preferences.
In operation, an authentication routine and/or user identification system matches the DED and associated sensing system (e.g., the collection of sensor(s) associated with an underlying substrate) with the user, caretaker and/or clinician, and may link user information or data from other sources to a software- and/or firmware-implemented system residing on the external computing system. The external computing device may itself communicate with a centralized host computing system or facility where data is stored, processed, analyzed, and the like, and where output, communications, instructions, commands, and the like may be formulated for delivery back to the user, caretaker and/or clinician through the external computing device and/or the DED.
Calibration routines may be provided to ensure that the DED and connected related sensor system are properly configured to work optimally for the specific user. Configuration and setup routines may be provided to guide the user (or caretaker or medical professional) to input user information or data to facilitate data collection, and various protocols, routines, data analysis and/or display characteristics, and the like, may be selected by the user (or caretaker or medical professional) to provide data collection and analysis that is targeted to specific users. Specific examples are provided below. Notification and alarm systems may be provided, and selectively enabled, to provide messages, warnings, alarms, and the like to the user, and/or to caretakers and/or medical providers, substantially in real-time, based on sensed data.
Various other aspects of sensing systems and background relating to the construction, use and utility for such sensing systems are described in the following previously published and commonly owned patent publications, all of which are incorporated herein by reference in their entireties: U.S. Pat. No. 8,925,392; PCT Patent Publication 2013/116242 A2; PCT Patent Publication 2015/017712 A1; U.S. Patent Publication US-2015-0182843-A1; and PCT Patent Publication WO 2015/175838 A1.
It will be understood that the appended drawings are not necessarily to scale, and that they present one embodiment of many aspects of systems and components of the present invention. Specific design features, including dimensions, orientations, locations and configurations of various illustrated components may be modified, for example, for use in various intended applications and environments.
In one embodiment, systems incorporating sensors, traces and terminals may be associated with a garment having a sock-like form factor. Although a specific embodiment of sensing systems is illustrated and described with reference to specific types of sensors, traces, bands, conductive bridges and terminals associated with a substrate having a sock-like form factor, it will be appreciated that similar fabrication techniques and features may be used in connection with a variety of sensors, traces, terminals and substrates, including other types of garments (e.g., shirts, underwear, body suits, leotards, leggings, footies, gloves, caps, sleeves, body bands and brassieres), insoles, shoes, boots, belts, straps, bandages, wraps, wrapping bands, wound dressings, sheets, pads, cushions, sporting equipment, and the like. The term “sensor,” as we use it herein, refers to the various types of sensors as described herein, as well as additional means for sensing as that term may be construed to extend to sensors as described herein as well as other, additional types of sensors that may be associated with sensing systems as described.
For the illustrated embodiments incorporating pressure sensors, parameters such as pressure, force and/or shear are detected at one or more areas of the foot, and trends in those parameters detected over one or more monitoring period(s) may produce conclusions relating to the user's gait, walking or running style, cadence, foot landing, susceptibility to injury, etc. can be drawn and feedback can be provided to the user, and/or to a third party (e.g., coach, care provider, physical therapist, group, etc.) to report activity, progression, susceptibility to injury, or the like. For medical applications, conclusions relating to gait, the lack of proper offloading and related conditions of the underlying skin or tissue, healing progression (or lack of healing), discomfort, extent and seriousness of injury, and the like, may be drawn and may be communicated to the user, caretaker and/or clinician, essentially in real time. In addition, notifications, alerts, recommended actions, and the like may also be communicated to the user, caretaker and/or clinician based on the data analysis, essentially in real time. These systems are suitable for use in many different types of applications.
The material forming the substrate material of the sock is generally pliable and stretchable, and it is substantially non-electrically conductive. Natural and synthetic materials that are known and used in fabricating socks and other garments are suitable. The contrasting lines and pathways shown in
The conductive traces provide an electrical pathway connecting sensors or sensor leads to signal transfer terminals, which are illustrated as conductive terminals penetrating a mounting tab provided on each sock (See,
The trace lines (sensor traces T1-T6 and ground traces GTR, GTL) shown in
Trace patterns for the left and right socks shown in
In the embodiment illustrated in
In the embodiment illustrated in
The area of trace termination is shown more clearly in
The conductive bridges may be arranged in a staggered, offset arrangement as shown in
The conductive traces in this example include three sensor traces T4-T6, each communicating with a corresponding sensor (and/or sensor lead), and one common or ground trace GTR, which communicates (serially in the embodiment illustrated) with a common or ground lead of each of the sensors forming the sensing system. The common or ground trace GTR is the left-most trace shown in
In some embodiments, as shown in
The horizontal distance D1 between a terminal end of the common or ground trace GTR and the closest edge of a terminal end of sensor trace T5 (shown at B in
In general, each signal trace edge is separated (vertically) a distance of at least about 12 stitches from an edge of its nearest neighboring trace; in some embodiments, each signal trace edge is separated (vertically) a distance of at least about 15 stitches from an edge of its nearest neighboring trace. In the illustrated embodiment, the vertical distance V1 between the lower edge of a terminal end of the ground trace (shown at G in
In some embodiments, as illustrated in
The inwardly facing contact surfaces 26 of each conductive terminal button 25 in the embodiment shown in
The external or outwardly-facing surfaces 27 of conductive signal transfer terminals 25, as shown in the exemplary embodiment illustrated in
Mounting band 30, as illustrated in
In the illustrated embodiment, a peripheral groove 33 provided in exterior surface 32 has spaced bores or perforations 34 for stitching the mounting band to the substrate. Mounting band 30 additionally has grooves with spaced bores for attaching the mounting band to the underlying substrate provided at locations between neighboring conductive terminals 25. The mounting band perforation pattern is clearly shown in
The conductive or partially conductive fittings 50, 51, 52, 53 illustrated in
Conductive fittings 50, 51, 52, 53 may be associated with band 40 using various attachment systems, such as adhesives, fasteners, or the like. In some embodiments the band and conductive fitting combination may be fabricated and associated during processing, such as during a two shot manufacturing process. Using a two shot manufacturing technique, the band 30 may be formed from a suitable non-conductive material (e.g., a non-conductive TPE) in a first shot, and the fittings 50-53 may be formed, directly on the tab, as a second shot using a suitable conductive material (e.g., a conductive TPE). In some embodiments, the non-conductive band 40 and the conductive fittings 50-53 may comprise flexible materials having a durometer of less than about 100 on a Shore A scale. In some embodiments, the non-conductive tab 40 and conductive fittings 50-53 may comprise flexible materials characterized by different hardnesses. In some embodiments, the non-conductive band may comprise a material having a higher hardness on a Shore A scale than that of the conductive fittings. In some embodiments, the band may comprise a non-conductive TPE material having a hardness of about 80 Shore A; the conductive fittings may comprise a conductive TPE having a hardness of about 70 Shore A.
In another embodiment illustrated in
The signal transfer terminals that connect to the sensor(s) in the sock are connectible to mating DED 35 in
The signal transfer terminals for one sock (shown as “left” in
One or more signal transfer terminal(s), DED and/or mounting band may comprise a magnetic component, as previously mentioned. Magnetic field properties may be used to create terminal interfaces that can only connect in a predetermined orientation: in this way, the user is guided to properly connect the DED to the sensor system(s) associated with an underlying substrate. In addition, circuitry in the DED may provide the ability to automatically turn the data collection on and off, for example, based on the presence of the magnetic connection between the DED and the sensor system. It will be appreciated that many other types of mechanical and non-mechanical interfaces may be used to attach and detach the DED from the signal transfer terminals, and to transfer signals and/or data from the sensing system to the DED.
A plurality of contacts (illustrated as contacts 86A, 86B, 86C, 86D) are provided penetrating and projecting from an interior (lower) surface 87 of band portion 81 of mounting tab 80. Contacts 86A-86D are configured and aligned for interfacing with and electrically contacting trace terminal portions or conductive bridges provided on an underlying substrate. The size, configuration, alignment and number of mounting tab contacts may vary depending on the size, configuration, alignment and number of trace terminations provided on a substrate.
Contacts, illustrated as contacts 86A-D, are electrically connected to multiple electrically conductive pins 91 positioned in a contact interface region via electrical pathway 88, illustrated in
In the specific embodiments illustrated in
Internal DED body 110, as shown in
Mounting tab 80 is generally constructed from a flexible, bendable non-conductive material such as a non-conductive, flexible thermoplastic elastomer (TPE), silicone, or the like. DED 100 is generally constructed from a harder, more rigid material, and may house electrical and electronic components such as one or more accelerometer(s); one or more gyroscope(s); one or more magnetometer(s); one or more 6-axis and/or 9-axis inertial measurement units IMU(s); data processing; data storage (e.g., flash memory); data communications (e.g., Bluetooth, ANT+, wi-fi; and/or Proprietary TX/RX protocols; energy source(s) (e.g., rechargeable battery/ies); antenna/e for wireless communications; and a plurality of analog sensor inputs (for pressure, temperature, humidity, and other sensor parameters).
While specific examples of sensor systems and sensor system components, such as sensors, traces, conductive terminals and mounting bands are described with reference to a sock form factor, it will be appreciated that the features and components disclosed herein may be used with (and/or applied to) other types of wearable garments (e.g., underwear, t-shirts, trousers, tights, leggings, body suits, leotards, hats, gloves, bands, and the like), and many other types of substrates. Dedicated electronic devices having different configurations may be designed to interface with a variety of sensor systems embodied in different types of garments and other types of substrates. The type of sensor(s), garment(s), substrate(s), placement of sensor(s), DED, conductive terminal(s), and the like, may be varied for use in many different sensor system applications.
While the present invention has been described above with reference to the accompanying drawings in which specific embodiments are shown and explained, it is to be understood that persons skilled in the art may modify the embodiments described herein without departing from the spirit and broad scope of the invention. Accordingly, the descriptions provided above are considered as being illustrative and exemplary of specific structures, aspects and features within the broad scope of the present invention and not as limiting the scope of the invention. The various embodiments described herein may be combined to provide further embodiments. The described devices, systems and methods may omit some elements or acts, may add other elements or acts, or may combine the elements or execute the acts in a different order than that illustrated, to achieve various advantages of the disclosure. These and other changes may be made to the disclosure in light of the above detailed description.
In the present description, where used, the terms “about” and “consisting essentially of” mean±20% of the indicated range, value, or structure, unless otherwise indicated. It should be understood that the terms “a” and “an” as used herein refer to “one or more” of the enumerated components. The use of the alternative (e.g., “or”) should be understood to mean either one, both, or any combination thereof of the alternatives, unless otherwise expressly indicated. As used herein, the terms “include” and “have” and “comprise” are used synonymously, and those terms, and variants thereof, are intended to be construed as non-limiting. In general, in the following claims, the terms used should not be construed to limit the disclosure to the specific embodiments disclosed in the specification.
This application claims priority to U.S. Patent Application Nos. 62/099,099 and 62/163,861, filed Dec. 31, 2014 and May 19, 2015, respectively. The disclosures of these priority applications are incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/068180 | 12/30/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62163861 | May 2015 | US | |
62099099 | Dec 2014 | US |