This invention relates to inkjet printing mechanisms, and more particularly, to a discrete key device for establishing detachable printer component compatibility with a printer.
An ink-jet printer produces images and text on a page by firing drops of ink from the printheads of one or more ink cartridges while the cartridges move back and forth across the page. Examples of ink-jet printers include plotters, facsimile machines, and typical computer-attached ink-jet printers. The page on which a printer prints may be any sheet of material, such as paper, Mylar, foils, transparencies, card stock, etc.
The ink supply of an ink-jet printer is limited. Thus, many cartridges are designed to be detachably secured and replaceable. A user simply replaces the old, empty ink cartridge with a new, full ink cartridge. In these so-called cartridge-type printers, the cartridges can be manufactured as a unit that includes a printhead and an ink reservoir (referred to as an “ink/printhead cartridge” herein). Thus, these types of ink/printhead cartridges are seated in a carriage that travels back and forth across the page during printing operation.
Alternatively, in some designs commonly known as off-axis printers, the ink reservoir is a container that may be disconnected from the printhead, which remains installed on the carriage while the container is replaced. In the typical off-axis printer, only a printhead moves across the page, while the ink reservoir is stationary and secured to the base of the printer. Ink is delivered to an inlet port in the printhead via a flexible, ink delivery tube that extends from the stationary ink reservoir. Typically, the ink reservoir is mounted to the printer chassis and may be replaced or refilled when empty. Off-axis printers may be equipped either with a single printhead for monochromatic printing, or with several printheads for color printing. Of course, for color printing, several reservoirs and associated tubes are required, with one set used for each color.
In the ink-delivery systems of off-axis printers, the ink-delivery tube may be permanently connected to the printhead, but this would prevent replacement of the printhead. The printhead may suffer mechanical breakdown or simply wear-out after firing millions of drops of ink. Therefore, the printheads of a typical ink-jet printer are designed to be replaced, as necessary. Similarly, the supply of ink in reservoirs or containers used in cartridge-type or off-axis type printers may be replenished in refill stations that are peripheral components of the printer system.
Irrespective of the nature of the removable ink-jet printer component (ink cartridge, reservoir or printhead, for example), it is desirable to ensure that those components are accurately connected in the printer. That is, a component such as an ink/printhead cartridge must be properly seated in the carriage. Also, in instances where a carriage is designed to carry more than one ink/printhead cartridge, it is important that an ink/printhead cartridge having the correct print characteristic, such as ink color, be installed in the proper position in the carriage, so that the printer controller can precisely control the printing of drops of that color.
This proper seating and positioning requirement also applies to off-axis printers, especially where several reservoirs and associated ink-delivery tubes are involved.
In the past, various mechanical latches, datum features, and/or electrical identification techniques have been employed for ensuring that a replaceable printer component, such as an ink/printhead cartridge, ink reservoir, or printhead, is operably installed in the correct location in the printer. For example, the replaceable printer component may include a unique pattern of tabs associated with that particular component, thereby defining a key that is operably engaged with corresponding mating slots in the base on the printer to which that component is properly installed. The mating slots are typically integrally molded into the base, and they preclude a printer component that has a different pattern of tabs from being inserted into that particular base.
The working components of the printer, such as the carriage assembly and the like are often common components among a family of printers sold by a manufacturer. For example, a manufacturer may sell two similar printers, one having the ability to print in color and a virtually identical model, but that only prints in black and white. Similarly, a manufacturer may offer a variety of printer qualities, which necessarily require improved printheads and higher quality of ink in some models.
Despite the improvements of these known devices that ensure a correct printer component is inserted into a correct corresponding base on the printer, they offer several drawbacks. For example, all of these different printers in the family of related printers typically have the same carriage assembly, and related operating mechanical and electrical components. However, in order for a manufacturer to use these common components in such similar printers while still providing a key system to ensure only proper printer components are installed in the correct locations, each configuration of the family of printers requires a unique base having a different integrally molded pattern of slots. Manufacturing such individual base components necessarily increases the cost of production and related inventory management of these unique components. Also, the shape and angles of the molded key components necessarily increase the complexity, and therefore the related expense of the molds.
Moreover, should the manufacture, customer, or service technician ever wish to change the configuration of a printer, say for example, to convert a black and white printer into a color printer, or upgrade a printer with improved components, the old base assemblies having the old printer component key patterns must be replaced with new base assemblies having the new printer component key patterns. In practice, these bases are operably engaged with many related components, and their removal and replacement is difficult and time consuming.
Accordingly, despite the available improvements offered by traditional removable printer cartridge key devices to ensure that a proper cartridge is inserted into a proper base, there remains a need for an economical, easy to manufacturer, and easy to install key device that is unique for a particular printer configuration, but also allows a common cartridge base to be used for a plurality of printer configurations. In addition to other benefits that will become apparent in the following disclosure, the present invention fulfills these needs.
The present invention is a separable key element having a unique pattern of slots to receive a particular printer cartridge. The key element is operably secured to the component base assembly during assembly of the printer. The base assembly is common to all printers in a family of printers.
In a preferred embodiment, the key element includes a component base-mounting slot for operably engaging a substantially planar wall of the base, and the wall and slot have a unique mating key pattern, thereby preventing an improper key element from being installed into an incorrect location on the base.
Similarly, each key element also preferably includes a label tab for securing an appropriate identifying label thereon. The label tab assists the component installer by informing the installer which particular component belongs in that particular base. More preferably, the label tab is a unique shape that only conforms with the shape of the correct label to be inserted thereon, thereby reducing the likelihood of an improper label being inserted on the label tab during manufacturing.
An inkjet printer 20 having a separable key element 22a, 22b for establishing removable printer component, such as an ink reservoir 24a, 24b, compatibility with the printer 20 is shown in
A. General Assembly
While it is apparent that the printer components may vary from model to model, the typical inkjet printer 20, shown in
In the print zone 34, the media sheets receive ink from a printhead 32. Each printhead 32 has bottom surface 38 comprising an orifice plate with a plurality of nozzles formed therethrough in a manner well known to those skilled in the art. The illustrated printheads 32 are thermal inkjet printheads, although other types of printheads may be used, such as piezoelectric printheads. The printheads 32 typically include a plurality of resistors that are associated with the nozzles. Upon energizing a selected resistor, a bubble of gas is formed ejecting a droplet of ink from the nozzle and onto a sheet of paper in the print zone 34 under the nozzle.
The printheads 32 are transported by the carriage 30, which may be driven by a conventional drive belt/pulley and motor arrangement (not shown) along a guide rod 40. The guide rod 40 defines a scanning direction or scanning axis along which the printheads 32 traverse over the print zone 34. The printheads 32 selectively deposit one or more ink droplets on a print media page located in the print zone 34 in accordance with instructions received via a conductor strip from a printer controller (not shown), such as a microprocessor which may be located within chassis 26. The controller may receive an instruction signal from a host device, which is typically a computer, such as a personal computer. The printhead carriage motor and the paper handling system drive motor operate in response to the printer controller, which may operate in a manner well known to those skilled in the art. The printer controller may also operate in response to user inputs provided through a keypad. A monitor coupled to the host computer may be used to display visual information to an operator, such as the printer status or a particular program being run on the computer. Personal computers, their input devices, such as a keyboard and/or a mouse device, and monitors are all well known to those skilled in the art.
In particular, the print medium is fed from print media input stack in input tray through a print medium feed mechanism (not shown). The print medium is then advanced by rollers (not shown) in a direction perpendicular to a guide rod 40, while the print carriage 30 containing printheads 32 is moved back and forth on guide rod 40. Preferably, and shown in
B. Carriage Assembly—On-Axis Ink Reservoirs
As best shown in
One known way to pivotally secure these mounting portions 50, 52 together includes extending a shaft 64 from the pivot point 56 on one of the mounting portions 50, 52 into a mating hole received on the other of the mounting portions 50, 52. As best shown in
The printhead mounting-portion 52 includes a guide rod-engaging portion 70 for operably engaging the guide rod 40 and the printhead mounting-portion 52 for operably receiving at least one detachable printhead 32 therein. Preferably, the carriage 30 shown in
The ink reservoir-mounting portion 50 is sized and shaped to operably receive at least one detachable ink reservoir 24a, 24b therein. In particular, the ink reservoir-mounting portion 50 preferably includes a forward flange 72, rearward flange 74, left flange 76, and right flange 78 defining an ink reservoir chamber 80 therein. More preferably, the ink reservoir-mounting portion 50 includes at least one internal flange 82 defining a plurality of ink reservoir chambers 80a, 80b therein. The carriage 30 shown in
The chambers of ink in the detachable ink reservoirs 24a, 24b are in fluid communication with their respective printheads 32a–d and in electrical communication with the printer controller when the ink reservoirs 24a, 24b and printheads 32a–d are properly installed in the carriage 30 and the ink reservoir-mounting portion 50 and the ink reservoir-mounting portion 50 is in the engaged position 58 (
The pivoting connection between the ink reservoir-mounting portion 50 and the printhead mounting-portion 52 permits easy access to the printheads 32a–d for maintenance, service, or replacement. In particular, the carriage 30 can be positioned along the guide rod 40 to permit easy access to the carriage 30 through an access door 94 (
With the carriage 30 so positioned, the servicer lifts the ink reservoir-mounting portion 50 causing it to pivot about pivot point 56 and move to the open position 60, thereby exposing the printhead mounting-portion 52 and providing access to the printheads 32a–d.
Preferably, the ink supply from the ink reservoirs 24a, 24b to the printheads 32a–d is stopped when the carriage 30 is not in the engaged position 58 (
Preferably, a rod 98 is positioned adjacent to each channel 92 and operably extends from the ink reservoir-mounting portion 50 to the printhead mounting-portion 52. As best shown in
Preferably, the fluid cannels 92 include interlocking nozzles 100 and mating recesses 102 on the ink reservoir-mounting portion 50 and the printhead mounting-portion 52 that interlock together when the ink reservoir-mounting portion 50 is in the engaged position 58 (
As best shown in
Preferably, a latching mechanism 112 is provided to secure the ink reservoir-mounting portion 50 in its engaged position 58 (
As best shown in
To release the ink reservoir-mounting portion 50 from its engaged position 58, a user simply lifts the lever arm 118 of the handle 114 in the direction of arrow 132 (
C. Detachable Printer Component Installation
Preferably, the printer 20 includes one or more devices to facilitate and ensure that the detachable printer components, such as the ink reservoirs 24a, 24b, are properly installed, seated and aligned in their appropriate mounting portions 50, 52.
Detachable printer components, such as the ink reservoirs 24a, 24b of the present embodiment, can be installed into the ink reservoir-mounting portion 50 through a mechanism and procedure commonly referred to as a “toe-heel” installation. This term originates from the similar appearing procedure for putting a conventional ski boot in a ski binding. Namely, the skier first places their toe in a front binding on a ski then steps down on the ski to secure a rear binding around the heel portion of the boot. To facilitate understanding of this installation process in a printer 20, the following example is offered for the ink reservoirs 24a, 24b of the present invention. It should be appreciated by those skilled in the art that the principles of this procedure would work equally well with any other type of removable printer component, such as a traditional ink/printhead cartridge, printhead 32, or an off-axis mounted ink reservoir.
In particular, the ink reservoirs 24a, 24b each have a defined shape, such as rectangle defining a leading, toe end 140 and a rearward-mounting end 142. The ink reservoirs 24a, 24b are slightly smaller than the shape of their corresponding ink reservoir chambers 80a, 80b. Left and right toe-end guides 146a, 146b (only 146a is shown) extend from the left and right sides 148a, 148b of each ink reservoir 24a, 24b, and slidably engage guide rails 150 aligned along the respective left and right sides 148a, 148b of the corresponding ink reservoir chambers 80a, 80b, the guide rails 150 lead to toe-end guide receptacles 152 toward the rear end 154 of the ink reservoir chambers 80a, 80b for operably securing the toe-end guides 146a, 146b therein. Front tabs (not shown) extend from the ink reservoirs 24a, 24b to operably engage mating tab mounting chambers 155 received in the ink reservoir chambers 80a, 80b.
The rearward-mounting end 142 of the ink reservoirs 24a, 24b preferably includes left and right rearward mounting end guides 158a, 158b sized to slidably engage respective mating slots 160a, 160b received on the respective side walls of the ink reservoir chambers 80a, 80b. A lever 162, operably secured toward the lower portion 164 of the rearward-mounting end 142 of the ink reservoirs 24a, 24b is biased to an extended position 166 (shown in
Each ink reservoir 24a, 24b is installed into its respective ink reservoir chamber 80a, 80b by the installer first placing the toe end 140 into the respective ink reservoir chamber 80a, 80b such that the left and right toe-end guides 146a, 146b slidably engage guide rails 150. The user slides the toe end 140 of the ink reservoir 24a, 24b toward the toe-end guide receptacles 152. When the toe-end guides 146a, 146b are seated in their respective receptacle 152, the user then presses down on the upper surface 172 of the ink reservoir 24a, 24b toward the rearward-mounting end 142, causing the left and right rearward mounting end guides 158a, 158b to slidably engage their respective mating slots 160a, 160b, and thereby properly positing the ink reservoirs 24a, 24b into their respective ink reservoir chambers 80a, 80b.
As best shown in
However, if an installer attempts to install an ink reservoir 24a, 24b in another manner besides using the toe-heel installation process, the cover 180 blocks the toe end 140 of the ink reservoir 24a, 24b from entering the respective ink reservoir chambers 80a, 80b, thereby alerting the installer of the improper installation. For example, if an installer would first attempt to secure the notch 168 extending from the lever 162 to the lip 170 on the forward flange 72, and then attempt to lower the toe end 140 of the ink reservoir 24a, 24b into the respective ink reservoir chamber 80a, 80b, the mounting portion cover 180 blocks the toe end 140 of the ink reservoir 24a, 24b from entering the respective ink chamber 80a, 80b, thereby alerting the installer of the improper installation method. Similarly, if the installer attempts insert an ink reservoir 24a, 24b into the ink reservoir chamber 80a, 80b simply by maintaining the bottom surface 190 of the ink reservoir parallel to the lower surface 192 of the respective ink reservoir chamber 80a, 80b, the mounting portion cover 180 blocks the toe end 140 of the ink reservoir 24a, 24b from entering into the respective ink reservoir chambers 80a, 80b.
More preferably, as best shown in
The cover 180 is preferably a contrasting color from the ink reservoir-mounting portion 50 and printhead mounting-portion 52 of the carriage 30. The contrast in color between these components makes the cover 180 appear more readily to an installer, thereby alerting the installer of this obstacle to improper installation of the ink reservoirs.
As best shown in
One known effective spring design for such a purpose is a beam spring 210 shown in
Known preferable materials for constructing the spring 210 include high yield stainless steel and beryllium copper. The specific shape of the spring may be changed to optimize its force and displacement characteristics. A particularly effective beam shape is a triangle having a wide base toward the c-shaped mounting portion 216 that narrows at it approaches the distal end 220 of the spring. A similarly shaped portion of material may be removed from the beam portion as shown in
The spring 210 facilitates installation of each ink reservoir 24a, 24b by encouraging a toe-heel installation of each ink reservoir 24a, 24b. Preferably, with an ink reservoir 24a resting in the uninstalled position 212 of
Also, should an installer improperly latch the lever 162 as described, the spring 210 will urge the rearward-mounting end 142 of the ink reservoir 24a upward, thereby visually alerting the user of the improper installation. Preferably, the printer chassis 26 includes defined stops (not shown) that operably engage the rearward-mounting end 142 when the ink reservoir 24a is in its uninstalled position 212 shown in
D. Separable Key Element
Preferably, the printer includes one or more separable key elements 22a, 22b as best shown in
In general, each detachable printer component, such as the ink reservoirs 24a, 24b shown in
For a given printer 20, the correct location and orientation of the removable printer components are defined. For example, an ink reservoir containing black ink must be installed in an ink cartridge chamber that is in fluid communication with a black ink channel and related printhead. If a different color of ink were inadvertently placed in the channel and the corresponding printhead, these components Would become contaminated and no longer function as designed. Accordingly, it is important that the correct ink supply be mounted in the correct ink chamber.
Each key element 22a, 22b includes a unique pattern of slots 224a–f to receive one of the available unique patterns of identifying tabs 220a–f therethrough, and preclude a different pattern of identifying tabs 220a–f from passing therethrough. The key element 22 is operably secured to the ink reservoir-mounting portion 50 adjacent to the space occupied by the tabs 220a–c on one of the ink reservoirs 24a when that ink reservoir 24a is in its installed position on the ink reservoir-mounting portion 50.
Preferably, and as best shown in
As best shown in
Preferably, each display surface includes a unique shape or orientation. For example, the display surface 244 on one key element 22b can have a flat bar 252 on the left side of the display surface and a rounded right side, while the display surface 244 on another key element 22a may place the flat bar 252 on the right side and have a rounded left side. Accordingly, the likelihood that an assembler may place the wrong label 246a, 246b, on the display surface 244 is reduced, because the correct label for each display surface 244 can have the same shape corresponding to the display surface to which it is correctly attached.
The foregoing key elements 22a, 22b may be detachably secured to the printer 20. Accordingly, a family of printers can rely on the same basic carriage 30 and the like to build a variety of different printers having different functionality. Configuration control for a given printer installation is regulated by the manufacture selecting the appropriate key elements 22a, 22b for that particular printer configuration.
Moreover, should the manufacture, customer, or service technician ever wish to change the configuration of a printer, say for example, to convert a black and white printer into a color printer, or upgrade a printer with improved components, after the appropriate printer components are replaced to accommodate the new printer configuration the key elements 22a, 22b need only be changed in order to re-key the ink reservoir chambers to accept the new ink reservoirs.
E. Alternative Embodiments
Even though the foregoing description has focused on the installation and positioning of an ink reservoir in an ink reservoir mounting portion of a carriage, it can be appreciated that the basic concepts of this invention will work equally well with other detachable printer components such as printheads, ink/printhead cartridges, and the like. Thus, having here described preferred embodiments of the present invention, it is anticipated that other modifications may be made thereto within the scope of the invention by individuals skilled in the art. Thus, although preferred and alternative embodiments of the present invention have been described, it will be appreciated that the spirit and scope of the invention is not limited to those embodiments, but extend to the various modifications and equivalents as defined in the appended claims.
This application is a continuation of U.S. patent application Ser. No. 09/919,649 filed on Jul. 31, 2001, which issued as U.S. Pat. No. 6,729,714 on May 4, 2004.
Number | Name | Date | Kind |
---|---|---|---|
4853708 | Walters | Aug 1989 | A |
4907019 | Stephens | Mar 1990 | A |
5406320 | Durst et al. | Apr 1995 | A |
5519422 | Thoman et al. | May 1996 | A |
5563638 | Osborne | Oct 1996 | A |
5621441 | Waschhauser et al. | Apr 1997 | A |
5684518 | Nobel et al. | Nov 1997 | A |
5949459 | Gasvoda et al. | Sep 1999 | A |
5959647 | Claramunt et al. | Sep 1999 | A |
6003985 | Bekki | Dec 1999 | A |
6139135 | Becker et al. | Oct 2000 | A |
6183077 | Hmelar et al. | Feb 2001 | B1 |
6203135 | Murcia et al. | Mar 2001 | B1 |
6209983 | Osborne et al. | Apr 2001 | B1 |
6290346 | Santhanam et al. | Sep 2001 | B1 |
6729714 | Sturgeon et al. | May 2004 | B1 |
Number | Date | Country |
---|---|---|
0778148 | Jun 1997 | EP |
1053875 | Nov 2000 | EP |
08-090788 | Apr 1996 | JP |
10-083113 | Mar 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20040201645 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09919649 | Jul 2001 | US |
Child | 10835859 | US |