In the resource recovery and CO2 sequestration industries, one of the major impediments to efficiency is the number of runs needed to accomplish various well operations. One example of the above is a plug and abandonment operation. Such operations require at a minimum running and setting a mechanical plug; cementing; and testing and tagging. And these operations generally require several runs to accomplish. Runs are expensive and time consuming. If more operations could be accomplished in a single run, efficiency would be improved and monetary recovery from the well enhanced.
An embodiment of a separable tool including a mill section, a mill face disposed on the mill section and having a bore therethrough that is offset from a longitudinal axis of the mill section, a tool adapter section, and a release configuration releasably securing the mill section to the tool adapter section with the mill face disposed between the mill section and the tool adapter section.
A method for operating a wellbore system including in a single run, setting a plug in the wellbore system, releasing the plug, pumping cement, dressing the cement, and testing the cement.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
Upon separation of the mill section 12 from the tool adapter section 14, a mill face 20 (identified in
Referring now to
One non-limiting example of a particular use of the tool 10, is for a plug and abandon operation that would have taken multiple runs in the prior art. Through the use of the tool 10, the operation can be reduced to a single run. Tool 10 can accomplish several of the actions that would have required independent runs in the prior art. With the tool 10, a run on drill pipe or coil tubing, for example, delivers tool 10 to the target location to set a plug 29 (schematically illustrated with dashed lines in
Additional operations are also supported in a more efficient way through the use of the tool 10 and method hereof. For example, a casing cutter, casing spear, pulling tool, casing anchor, packoffs and casing sealing tools, punch and wash tool, a perf and wash tool, and valves associated with any of these, and combinations of tools including any of the foregoing, etc. may be made a part of the bottom hole assembly (BHA) by being connected between the string 22 and the mill section 12 at thread 32. These optional tools are schematically represented with dashed lines 36 in
Even after-run tools for additional operations have benefits in conjunction with the tool 10 and method disclosed herein because the total number of runs is still reduced by the reductions achieved with the tool 10. These include slot recovery, for example.
Also to be noted is that the tool 10 and its string 22 including any optional tools disposed thereon, may be hung off in the event that other operations require separation of the tstring from surface equipment (e.g. rig, platform, workover unit, etc.).
Finally, referring to
Set forth below are some embodiments of the foregoing disclosure:
Embodiment 1: A separable tool including a mill section, a mill face disposed on the mill section and having a bore therethrough that is offset from a longitudinal axis of the mill section, a tool adapter section, and a release configuration releasably securing the mill section to the tool adapter section with the mill face disposed between the mill section and the tool adapter section.
Embodiment 2: The tool as in any prior embodiment, wherein the mill face comprises a plurality of cutters of differing geometry or dimension.
Embodiment 3: The tool as in any prior embodiment, wherein the cutters define junk slots.
Embodiment 4: The tool as in any prior embodiment, wherein the junk slots extend longitudinally along a peripheral surface of the mill section.
Embodiment 5: The tool as in any prior embodiment, wherein the bore includes an object seat.
Embodiment 6: The tool as in any prior embodiment, wherein the release configuration is a shear member.
Embodiment 7: The tool as in any prior embodiment further including one or more of a plug, a casing cutter, a casing spear, a pulling tool, a casing anchor, packoffs and casing sealing tools, a punch and wash tool, a perf and wash tool, and valves associated with any of these, and combinations of tools including any of the foregoing.
Embodiment 8: A method for operating a wellbore system including in a single run, setting a plug in the wellbore system, releasing the plug, pumping cement, dressing the cement, and testing the cement.
Embodiment 9: The method as in any prior embodiment, wherein the releasing the plug is by hydraulic pressure or by overpull.
Embodiment 10: The method as in any prior embodiment, wherein releasing also includes spacing of components of a BHA of which the plug was a part.
Embodiment 11: The method as in any prior embodiment, wherein the pumping includes filling of a space left by the spacing.
Embodiment 12: The method as in any prior embodiment further comprising tagging the cement prior to and after dressing the cement.
Embodiment 13: The method as in any prior embodiment, wherein the testing is setting down weight on the cement.
Embodiment 14: The method as in any prior embodiment, further comprising operating one or more of a casing cutter, a casing spear, a pulling tool, a casing anchor, packoffs and casing sealing tools, a punch and wash tool, a perf and wash tool, and valves associated with any of these, and combinations of tools including any of the foregoing.
Embodiment 15: The method as in any prior embodiment, including deploying a separable tool including a mill section, a mill face disposed on the mill section and having a bore therethrough that is offset from a longitudinal axis of the mill section, a tool adapter section, and a release configuration releasably securing the mill section to the tool adapter section with the mill face disposed between the mill section and the tool adapter section.
Embodiment 16: A wellbore system comprising a borehole in a subsurface formation, a string in the borehole, a separable tool as in any prior embodiment disposed in or as a part of the string.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The terms “about”, “substantially” and “generally” are intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application. For example, “about” and/or “substantially” and/or “generally” can include a range of ± 8% or 5%, or 2% of a given value.
The teachings of the present disclosure may be used in a variety of well operations. These operations may involve using one or more treatment agents to treat a formation, the fluids resident in a formation, a wellbore, and/or equipment in the wellbore, such as production tubing. The treatment agents may be in the form of liquids, gases, solids, semi-solids, and mixtures thereof. Illustrative treatment agents include, but are not limited to, fracturing fluids, acids, steam, water, brine, anti-corrosion agents, cement, permeability modifiers, drilling muds, emulsifiers, demulsifiers, tracers, flow improvers etc. Illustrative well operations include, but are not limited to, hydraulic fracturing, stimulation, tracer injection, cleaning, acidizing, steam injection, water flooding, cementing, etc.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited.