Separate local RF transmit and receive coils for breast MRI system

Information

  • Patent Grant
  • 7715895
  • Patent Number
    7,715,895
  • Date Filed
    Thursday, November 21, 2002
    22 years ago
  • Date Issued
    Tuesday, May 11, 2010
    14 years ago
Abstract
A magnetic resonance imaging system for imaging human breasts, in which the system includes a main magnet providing a static magnetic field, a gradient coil insert received within the internal bore of the main magnet, the gradient coil insert including gradient coils providing a spatially varying magnetic field, a patient support table configured to support the patient within the patient opening, the patient support table including a patient support member with at least one breast opening sized and positioned so that in use the patient's breast extends through the opening and is accessible below the patient support member, an RF transmitter coil mounted on the patient support table in the vicinity of the at least one breast opening, and an RF receiver coil separate from the RF transmitter coil and mounted on the patient support table in the vicinity of the at least one breast opening.
Description
BACKGROUND

The invention relates to magnetic resonance imaging (MRI) systems, particularly MRI systems for imaging breasts.


MRI systems typically employ a main magnet that produces a static magnetic field and gradient coils that superimpose spatially varying magnetic fields on top of the static field. The gradient coils are typically formed on a cylindrical insert that fits within the bore of the main magnet. Inside of the gradient coil insert there is usually a whole-body RF transmitting coil, which often also serves as the RF receiving coil. The RF transmitting coil excites the molecules of the anatomy being imaged, and the RF receiving coil detects the response of the molecules.


Sometimes, a separate RF receiving coil is positioned locally in the vicinity of the anatomy being imaged, e.g., around a breast. One prior art system (manufactured by Caprius) used a combined transmitting/receiving RF coil localized around a breast.


SUMMARY

We have discovered that it is advantageous in breast MRI to use separate localized transmitter and receiver RF coils. Removing the RF transmitting coil from its conventional location just inside the gradient coil insert increases the interior space within the MRI bore. Moving the RF transmitter coil away from that conventional location has the disadvantage that the uniform overall RF field is lost, but it turns out to be possible to generate a uniform RF field in the vicinity of the breasts. The smaller volume over which the RF field must be produced reduces the electrical power consumption. Having the receive RF coil close to the breasts increase the accuracy of the imaging by reducing the magnitude of extraneous signals picked up by the receive coil.


In general, the invention features a magnetic resonance imaging system for imaging human breasts, in which the system comprises a main magnet providing a static magnetic field, a gradient coil insert received within the internal bore of the main magnet, the gradient coil insert comprising gradient coils providing a spatially varying magnetic field, a patient support table configured to support the patient within the patient opening, the patient support table comprising a patient support member with at least one breast opening sized and positioned so that in use the patient's breast extends through the opening and is accessible below the patient support member, an RF transmitter coil mounted on the patient support table in the vicinity of the at least one breast opening, and an RF receiver coil separate from the RF transmitter coil and mounted on the patient support table in the vicinity of the at least one breast opening.


Preferred implementations of the invention may incorporate one or more of the following features: The RF transmit coil may be further away from the breast opening than the RF receive coil. The RF transmit coil may radially surrounds the RF receive coil. The RF transmit coil may comprise a loop element and a saddle element. The saddle element may provide an X directed field and the loop element provides a Y directed field. The RF receive coil may comprise a loop element and a saddle element.


Other features and advantages of the invention will be apparent from the following detailed description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a diagrammatic perspective view of the layout of the conductors making up the RF receive coils.



FIG. 2 is a diagrammatic perspective view of the layout of the conductors making up the RF transmitter coils.



FIGS. 3-4 are perspective views (photographs) of the RF coil insert that is secured to the undersurface of the chest support member of the patient support table.





DETAILED DESCRIPTION

Descriptions of the breast MRI system in which the invention is used can be found in the application attached in the Appendix hereto. The application includes details as to the construction of the patient support table.


The RF transmit and receive coils are constructed within molded shells 200, 202 which are fastened to the undersurface of the chest support member. The shells are not structural, and serve only to support the RF coils, and screen them from view. Once installed, the coils are complete hidden inside the shells, which are made from the same molded material as the chest support member. The receive shell 202 fits laterally within the transmit shell 200.



FIGS. 3 and 4 show prototype coils formed by soldering solid copper segments together. Manufactured products will have a copper plated flexible circuit in place of the soldered copper pieces.


The transmit coil is shown diagrammatically in FIG. 2. It is laterally (radially) outside of the receive coil, where it is further away from the breasts of the patient. This is preferable to its being at the same distance from the receive coils, or to the same coil serving as both the transmit and receive coil. The physics that govern the performance of RF coils show that greater uniformity in the field generated by the transmit coil can be had by moving the coil further away from the anatomy being excited. Even greater uniformity could be achieved by moving the transmit coil to the interior surface of the gradient coil, i.e., making it a whole-body transmit coil. But this would decrease the size of the patient opening (and require a higher power coil, which would be somewhat more expensive to manufacture).


The transmit coil is made up of a loop element 210 and a saddle element 212. The saddle element 212 is shown in dashed lines, and the loop element 210 in solid lines. The loop element makes a single loop within the shell just below the chest support member. The saddle element makes two loops, one on the left side and one on the right side of the patient. The conductors cross over at one end (does not show up well in the figure) so that the current rotation direction is the same in both loops of the saddle element. The two loops of the saddle element generate a field with a predominantly X directed component, whereas the single loop of the loop element generates a field with a predominantly Y directed component.


The receive coil also has both a loop element 214 and a saddle element 216. In this case there are two loops in the loop element and two loops in the saddle element. The same notation is used in this drawing as in FIG. 2. The saddle element is shown in dashed lines, and the loop element in solid lines. The loop element does one loop around the shell just below the chest support member, and then goes down through a column 30 and does a second loop beneath base element 19. The loop elements are oriented so as to receive predominantly Y directed fields. The saddle element 216 makes two loops, each of which is half up on the shell and half down at the base element. The saddle elements are hence oriented so as to receive predominantly Y directed fields.


Other embodiments of the invention are within the following claims.

Claims
  • 1. A magnetic resonance imaging method for imaging human breasts, the method comprising placing a patient within a magnetic resonance imaging system comprising a main magnet providing a static magnetic field;a gradient coil insert received within an internal bore of the main magnet, the gradient coil insert comprising gradient coils providing a spatially varying magnetic field;a patient support table configured to support the patient within the patient opening, the patient support table comprising a patient support member with a patient support surface on which the patient is supported andplacing a breast of the patient so that the breast extends through a breast opening sized and positioned so that in use the patient's breast extends through the opening and is accessible below the patient support member;providing an RF transmitter coil mounted below the patient support surface in the vicinity of the breast opening,providing an RF receiver coil separate from the RF transmitter coil and mounted below the patient support surface in the vicinity of the breast opening, wherein the RF transmitter coil is configured to serve for RF transmitting, and the RF receiver coil is configured to serve for RF reception; andexciting molecules of the patient's breast by transmitting RF signals using the RF transmitter coil; anddetecting the response of the molecules of the patient's breast by receiving RF signals using the RF receiver coil.
  • 2. The method of claim 1 wherein the RF transmitter coil is further away from the breast opening than the RF receive coil.
  • 3. The method of claim 2 wherein the RF transmitter coil radially surrounds the RF receive coil.
  • 4. The method of claim 1 wherein the RF transmitter coil comprises a loop element and a saddle element.
  • 5. The method of claim 4 wherein the saddle element provides an X directed field and the loop element provides a Y directed field.
  • 6. The method of claim 1 wherein the RF receiver coil comprise a loop element and a saddle element.
  • 7. The method of claim 1 wherein a second breast extends through a second breast opening, and the RF transmitter coil and the RF receive coil are located so as to be in the vicinity of the first and second breast openings.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 60/332,628, filed on Nov. 21, 2001 (hereby incorporated by reference). This application incorporates by reference the disclosure of U.S. patent application entitled “Patient Support Table for Breast MRI System”, filed on even date herewith.

US Referenced Citations (21)
Number Name Date Kind
5078142 Siczek et al. Jan 1992 A
5289520 Pellegrino et al. Feb 1994 A
5363845 Chowdhury et al. Nov 1994 A
5386447 Siczek Jan 1995 A
5409497 Siczek et al. Apr 1995 A
5534778 Loos et al. Jul 1996 A
5569266 Siczek Oct 1996 A
5590655 Hussman Jan 1997 A
5678549 Heywang-Koebrunner et al. Oct 1997 A
5706812 Strenk et al. Jan 1998 A
5804969 Lian et al. Sep 1998 A
5855554 Schneider et al. Jan 1999 A
5913863 Fischer et al. Jun 1999 A
6023166 Eydelman Feb 2000 A
6163717 Su Dec 2000 A
6254538 Downey et al. Jul 2001 B1
6423076 Cardwell et al. Jul 2002 B1
6701178 Su et al. Mar 2004 B2
6850065 Fujita et al. Feb 2005 B1
20020156365 Tsekos Oct 2002 A1
20030007598 Wang et al. Jan 2003 A1
Foreign Referenced Citations (1)
Number Date Country
19626286 Jan 1998 DE
Provisional Applications (1)
Number Date Country
60332628 Nov 2001 US