1. Field
The present specification generally relates to apparatuses and methods for forming glass sheets from glass ribbons and, more particularly, to apparatuses and methods of scoring and separating glass sheets from glass ribbons.
2. Technical Background
Glass ribbons may be formed by processes such as the fusion draw process or other similar downdraw processes. The fusion draw process yields glass ribbons which have surfaces with superior flatness and smoothness when compared to glass ribbons produced by other methods. Individual glass sheets sectioned from glass ribbons formed by the fusion draw process can be used in a variety of devices including flat panel displays, touch sensors, photovoltaic devices and other electronic applications.
Glass ribbons formed by the fusion draw process often bow or curve in a lateral direction due to temperature gradients in the glass as it cools. After the glass ribbon is drawn, individual sheets of glass are sectioned from the ribbon by supporting the glass ribbon with a nosing device as the glass ribbon is scored and separated along an intended line of separation, or scoring line. When a nosing device is used to support the glass ribbon during scoring, the curved glass ribbon may be flattened when the scoring device engages with the curved glass ribbon. However, when the curved glass ribbon is flattened on the nosing device, compressive stress is introduced into the glass ribbon, which may prevent complete scoring. The contact between the scoring device and the curved glass ribbon also introduces motion in the ribbon, which may be propagated upstream of the scoring device and cause undesirable stress and warp in the ribbon. Additionally, if the scoring device does not create a vent of sufficient depth in the glass ribbon, a bending moment applied to the glass ribbon to bend the glass ribbon against the support nosing and separate a glass sheet from the glass ribbon at the score line will introduce stress in the glass ribbon in the support nosing contact area which may cause unwanted breakage or fractures of the glass sheet or the glass ribbon adjacent to the scoring line.
Accordingly, a need exists for alternative apparatuses and methods of separating glass sheets from glass ribbons to prevent unwanted breakage or fractures.
According to one embodiment, a glass substrate separation apparatus comprises a support nosing. The support nosing comprises a nosing material having a Shore hardness greater than 64 A and less than or equal to 80 A and a coefficient of friction less than or equal to 1.2 relative to a glass substrate. The apparatus also comprises a scoring device opposing the support nosing and an actuator coupled to the support nosing for engaging the support nosing with the glass substrate.
In another embodiment, a method for separating a glass sheet from a glass ribbon is provided. The method comprises drawing the glass ribbon along a conveyance pathway and directing the glass ribbon through a separation apparatus comprising a support nosing and a scoring device. The conveyance pathway is positioned between the support nosing and the scoring device. The method includes engaging a nosing material of the support nosing with at least a portion of a first surface of the glass ribbon, engaging the scoring device with a second surface of the glass ribbon along an intended line of separation, wherein the intended line of separation lies along the support nosing, and traversing the scoring device over the second surface of the glass ribbon on the intended line of separation to introduce a partial vent in the second surface of the glass ribbon. The nosing material has a sufficiently low coefficient of friction relative to the first surface of the glass such that lateral edges of the glass ribbon slide against the nosing material in a lateral direction and the first surface of the glass ribbon contacts the nosing material as the scoring device traverses over the second surface of the glass ribbon, and the nosing material has a sufficiently high hardness such that the partial vent extends across the entire width of the glass ribbon.
In another embodiment, a method for separating a glass ribbon comprises positioning the glass ribbon proximate to a support nosing and engaging the glass ribbon with the support nosing using an actuator. The support nosing comprises a nosing material having a Shore hardness from 64 A to less than or equal to 80 A and a coefficient of friction less than or equal to 1.2 relative to the glass ribbon. The method also includes scoring the glass ribbon with a scoring device positioned opposite the support nosing along an intended line of separation to form a partial vent in a surface of the glass ribbon, wherein the scoring device flattens the glass ribbon against the nosing. The method also includes applying a bending moment to the glass ribbon to propagate the vent through the thickness of the glass ribbon.
Additional features and advantages of the embodiments described herein will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate the various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.
Reference will now be made in detail to various embodiments of apparatuses and methods for separating glass sheets from glass ribbons, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
Referring now to
Still referring to
The beam 114 may be formed from a material such as steel or an elastically deformable metallic alloy. The beam 114 is attached to the support frame 112 such that the beam 114 extends in the ±x-direction past both of the support arms 116. In the embodiment depicted in
A nosing material 120 is attached to an upper surface of the beam 114 (i.e., the surface of the beam 114 facing away from the support frame 112). The nosing material 120 may be constructed from rubber, steel or any other material having the material properties discussed below. A non-limiting example of a suitable nosing material 120 can be obtained from Dajia Technology Company, Ltd under the commercial name silicone rubber. In one embodiment described herein, the nosing material 120 has a Shore hardness greater than 64 A. The Shore hardness, as used herein, refers to the hardness of the material according to the Shore “A” scale. In another embodiment, the nosing material 120 has a Shore hardness less than or equal to 80 A. In other embodiments described herein, the nosing material 120 has a Shore hardness greater than 64 A and less than or equal to 80 A. In another embodiment described herein, the nosing material 120 has a Shore hardness greater than 65 A and less than or equal to 75 A. In yet another embodiment described herein, the nosing material 120 has a Shore hardness greater than 68 A and less than or equal to 70 A.
The nosing material 120 has a coefficient of friction less than or equal to 1.2 relative to the glass ribbon 204. In some embodiments, the nosing material 120 has a coefficient of friction relative to the glass ribbon 204 less than or equal to 1.0. The coefficient of friction of the nosing material 120, as used herein, is with respect to a glass ribbon in as-formed condition prior to any surface treatment such as surface roughness modification or the like. In other embodiments, the nosing material 120 has a coefficient of friction relative to the glass ribbon 204 greater than 0.8. In another embodiment, the nosing material 120 has a coefficient of friction relative to the glass ribbon 204 greater than or equal to 0.8 and less than or equal to 1.2. In yet another embodiment, the nosing material 120 has a coefficient of friction relative to the glass ribbon 204 greater than or equal to 0.8 and less than or equal to 1.0. In different embodiments, the nosing material 120 may have a coefficient of friction of 0.8 or 0.9 or 1.0, or 1.1 relative to the glass, or any other coefficient of friction less than or equal to 1.2.
In order for the scoring device 130 to consistently create a uniform vent along an entire intended line of separation in the glass ribbon 204, the support nosing 110 opposing the scoring device 130 should have a nosing material 120 attached to the support nosing 110 that is sufficiently hard to allow the scoring device 130 to initiate a vent of uniform depth in a surface of the glass ribbon 204. The term “vent,” as used herein, refers to a defect, such as a nick, scratch, or the like, introduced into the surface of the substrate which serves as an initiation site and guide for controlled crack propagation during subsequent separation. If the nosing material 120 is not sufficiently hard, the glass ribbon 204 may flex upon contact with the scoring device 130, inducing compressive stress in the glass which increases the difficulty of initiating a vent in a surface of the glass ribbon 204. This prevents the glass sheet 205 from being cleanly separated from the glass ribbon 204. If the nosing material 120 is too hard, on the other hand, the scoring device 130 may not only initiate a vent in a surface of the glass ribbon 204, but immediately propagate the vent through the glass ribbon 204, causing uncontrolled and undesirable separation of the glass sheet from the glass ribbon. The nosing material 120 with a Shore hardness greater than 64 A and less than or equal to 80 A provides a surface hard enough to satisfactorily initiate a vent of uniform depth in a surface of the glass ribbon 204 without immediately propagating the vent through the glass ribbon 204.
The glass ribbon 204 may have a bowed or curved structure by the time the glass ribbon 204 is between the support nosing 110 and the scoring device 130, as illustrated in
In the embodiment shown in
In the embodiment of the separation apparatus 100 with the support nosing 110 depicted in
The method of using the separation apparatus 100 with support nosing 110 to separate the glass sheet 205 from the glass ribbon 204 will now be described in more detail with reference to
Referring now to the embodiment of a glass manufacturing apparatus 200 schematically depicted in
In
The contact points 148 of the passive support device 140 may be advanced towards the support nosing 110 (i.e., the passive support device is advanced in the negative z-direction) until the contact points 148 of the passive support device 140 engage with the second surface 203 of the glass ribbon 204. In this embodiment, the glass ribbon 204 is impinged between the contact points 148 of the passive support device 140 and the nosing material 120 of the support nosing 110. The contact points 148 of the passive support device 140 engage with the second surface 203 of the glass ribbon 204 along a passive support contact line which is generally offset from the support nosing contact line in an upstream direction (i.e., in the positive y-direction as schematically illustrated in
Still referring to
Depending on the thickness of the glass ribbon 204 and the resulting curvature, buckling or compressive stress can be introduced in the glass sheet 205 or glass ribbon 204 during scoring. For example, a glass ribbon 204 with a thickness less than 0.4 mm may have more curvature than a glass ribbon 204 with a thickness of 0.5 mm, which may lead to greater buckling of the ribbon during scoring. Additionally, the thickness of the glass ribbon 204 affects the ability of the glass ribbon 204 to be flattened against the nosing material 120 when the scoring device 130 applies pressure during scoring. When the glass ribbon 204 is not adequately supported by the support nosing 110, the scoring device 130 creates a compressive stress along the intended line of separation, which may result in vent loss or hackle. With a glass ribbon 204 less than 0.4 mm thick, the likelihood of vent loss or hackle is increased. In addition to buckling, breakage, and fractures, the edge quality of the glass sheet 205 is affected when the glass ribbon 204 cannot be flattened. The nosing material 120, with Shore hardness greater than 64 A and less than or equal to 80 A prevents buckling and compressive stress in the glass ribbon 204 and reduces vent loss or hackle by providing a surface opposite the scoring device 130 that allows the scoring device 130 to apply sufficient pressure during scoring. In turn, this allows the subsequently applied bending moment to propagate the vent and separate the glass sheet 205 from the glass ribbon 204.
Referring back to
Prior to bending, the glass ribbon is again bowed (i.e., the glass ribbon has some spring back following removal of the scoring device). As the bending moment is applied to the glass ribbon 204, the curvature of the glass ribbon 204 tends to flatten, assisted by the low coefficient of friction of the nosing material 120. As such, application of the bending moment to the glass ribbon 204 flattens the glass ribbon 204 against the nosing material 120 thereby reengaging the glass ribbon 204 with the support nosing 110 across the width of the ribbon. Because the low coefficient of friction allows the glass ribbon 204 to slide on the nosing material 120, uncontrolled breakage of the glass sheet 205 or the glass ribbon 204 in areas adjacent to the scribing line is prevented as the glass ribbon 204 is bent against the support nosing 110. Once the curvature of the glass ribbon 204 is almost flattened against the nosing material 120 as depicted in
Referring again to
The delivery vessel 225 supplies the molten glass 226 through a downcomer 230 into the FDM 241. The FDM 241 comprises an inlet 232, a forming vessel 235, and the pull roll assembly 240. As shown in
As the glass ribbon 204 exits the pull roll assembly 240, the molten glass solidifies. Due to the differences in the thickness of the molten glass at the edges and center of the glass ribbon 204, the center of the glass ribbon 204 cools and solidifies more quickly than the edges of the glass ribbon 204 creating a temperature gradient from the edges to the center of the glass ribbon 204. As the molten glass cools, the temperature gradient causes stresses to develop in the glass which, in turn, causes the glass to bow or curve in a lateral direction (in the direction from one edge of the glass to the other). Generally, the thinner the glass ribbon 204, the more the glass curves. Once the glass ribbon 204 has solidified, it may be conveyed into the glass separation apparatus 100 for segmentation into sheets, as described above.
While the glass separation apparatus has been described herein as being used in a fusion draw process, it should be understood that the glass separation apparatus may be used with other types of glass manufacturing apparatuses including slot draw apparatuses, or other draw down apparatuses.
A nosing material with Shore hardness 70 A, static coefficient of friction 1.004, and kinetic coefficient of friction 0.901 was obtained from Dajia Technology Company, Ltd. Specifically, the material is commercially available as silicone rubber. The nosing material was used in a glass separation apparatus with a continuous glass ribbon of less than 0.4 millimeter thickness. The apparatus was first operated with a standard nosing material having a Shore hardness of approximately 64 A, coefficient of static friction approximately 1.45, and coefficient of kinetic friction of approximately 1.29 as a control. The same apparatus was then modified to include the disclosed nosing material, holding all other variables constant. The results of the experiments, shown in
The apparatuses and methods for separating a glass sheet from a continuous ribbon of glass described herein are particularly well suited for use in conjunction with glass ribbons which have thicknesses of 0.4 mm or less. The apparatuses and methods described herein may be used to separate glass sheets from glass ribbons, such as the glass ribbons produced with the fusion draw process or similar downdraw processes. It should be understood that stresses, deformation and potential breakage of the glass ribbon during scoring can be substantially mitigated or eliminated by using a nosing material with material properties described herein. Further, breakage of the glass ribbon or the glass sheet in areas adjacent to the intended line of separation may be substantially mitigated or eliminated by using a nosing material as described herein prior to application of a bending moment such that the glass ribbon is unconstrained and free to flex as the bending moment is applied. Accordingly, it should be understood that the apparatuses and methods described herein may be utilized to reduce the occurrence of breakage, buckling, and fractures in the glass ribbon or glass sheets separated from the glass ribbon and thereby reduce waste and improve the edge quality and yield of a glass manufacturing apparatus.
It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.
In a first aspect, the disclosure provides a glass substrate separation apparatus comprising: a support nosing comprising a nosing material having a Shore hardness greater than 64 A and less than or equal to 80 A and a coefficient of friction relative to the glass substrate of less than or equal to 1.2; a scoring device opposing the support nosing; and an actuator coupled to the support nosing for engaging the support nosing with the glass substrate.
In a second aspect, the disclosure provides a method for separating a glass sheet from a glass ribbon, the method comprising: drawing the glass ribbon along a conveyance pathway; directing the glass ribbon through a separation apparatus comprising a support nosing and a scoring device, wherein the conveyance pathway is positioned between the support nosing and the scoring device; engaging a nosing material of the support nosing with at least a portion of a first surface of the glass ribbon; engaging the scoring device with a second surface of the glass ribbon along an intended line of separation, wherein the intended line of separation lies along the support nosing; traversing the scoring device over the second surface of the glass ribbon on the intended line of separation to introduce a partial vent in the second surface of the glass ribbon, wherein: the nosing material has a sufficiently low coefficient of friction relative to the first surface of the glass such that lateral edges of the glass ribbon slide against the nosing material in a lateral direction and the first surface of the glass ribbon contacts the nosing material as the scoring device traverses over the second surface of the glass ribbon; and the nosing material has a sufficiently high hardness such that the partial vent extends across the entire width of the glass ribbon.
In a third aspect, the disclosure provides a method for separating a glass ribbon comprising: positioning a glass ribbon proximate to a support nosing of a separation apparatus, the glass ribbon having a thickness; engaging the glass ribbon with the support nosing using an actuator, where the support nosing comprises a nosing material having a Shore hardness greater than 64 A and less than or equal to 80 A and a coefficient of friction less than or equal to 1.2 relative to the glass ribbon; scoring the glass ribbon with a scoring device positioned opposite the support nosing along an intended line of separation to form a partial vent in a surface of the glass ribbon, wherein the scoring device flattens the glass ribbon against the nosing; and applying a bending moment to the glass ribbon to propagate the vent through the thickness of the glass ribbon.
In a fourth aspect, the disclosure provides the separation apparatus according to the first through third aspects, wherein the nosing material has a coefficient of friction greater than or equal to 0.8 and less than or equal to 1.2 relative to the glass ribbon.
In a fifth aspect, the disclosure provides the separation apparatus according to the first through third aspects, wherein the nosing material has a coefficient of friction greater than or equal to 0.8 and less than or equal to 1.0 relative to the glass ribbon.
In a sixth aspect, the disclosure provides the separation apparatus according to the first through third aspects, wherein the nosing material has a Shore hardness greater than or equal to 68 A and less than or equal to 70 A.
In a seventh aspect, the disclosure provides the separation apparatus according to the first through third aspects, wherein the support nosing is a conformable nosing device.
In an eighth aspect, the disclosure provides the separation apparatus according to the first through third aspects, wherein the support nosing is a fixed nosing device.
In a ninth aspect, the disclosure provides the separation apparatus according to the first through third aspects, wherein the nosing material has a Shore hardness greater than 64 A and less than or equal to 80 A.
This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Application Serial No. 61/727462 filed on Nov. 16, 2012, the content of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61727462 | Nov 2012 | US |