The present invention will be better understood from the following detailed description of the preferred embodiment according to the present invention, taken in con junction with the accompanying drawings, in which
The following description of the preferred embodiment is provided to understand the features and the structures of the present invention.
Please refer to
Please refer to
When using the present invention, a solid target material of Tl-203 having Pb-201 is deposed in a dissolving unit 1, where a 1.6 N nitric acid, ferric ions and water for injection are added to dissolve the solid target material of Tl-203 into a solution.
A first control valve 21 is opened to suck the solution of Tl-203 having Pb-201 by a vacuum unit 2 into a first glass unit 3. The first control valve 21 is shut and ammonia is added to be mixed together. A fourth control valve 31 is opened to drop the solution of Tl-203 having Pb-201, which is mixed with ammonia, into a sedimentation unit 4 to be added with water so that a solution of Tl-203 and a solution of Pb-201 is separated.
A second control valve 22 is opened to suck the Pb-201 solution by the vacuum unit 2 from the sedimentation unit 4 into a second glass unit 5 to be added with a 8N hydrochloric acid for mixing together. A fifth control valve 51 is opened to drop the solution of Pb-201 into an ion exchange column 6 for ion exchange with resin to filter out iron from the solution of Pb-201. A sixth control valve 61 is opened to drop a pure solution of Pb-201 into a Pb-201 collection bottle 7.
Then a three way control valve 41 and a third control valve 23, which are connected with the sedimentation unit 4 are opened to suck the Tl-203 solution by the vacuum unit 2 from the sedimentation unit 4 into a third glass unit 8. The third control valve 23 is shut and the seventh control valve 81 is opened to drop the solution of Tl-203 into a TL-203 collection bottle.
Then the solution of Pb-201 in the Pb-201 collection bottle 7 is processed through a degeneration to obtain a solution of Tl-201 from the solution of Pb-201. In the end, an ion exchange is processed to obtain a Tl-201 radioisotope. Therein, the three way control valve 41 is connected with an eighth control valve 42 to control the in put of nitrogen gas.
To sum up, the present invention is a separation device of radioisotope Tl-201, where a Pb-201 solution is fast separated from a solution of a solid target material of Tl-203 to be processed through a degeneration and an ion exchange for obtaining Tl-201 radioisotope.
The preferred embodiment herein disclosed is not intended to unnecessarily limit the scope of the invention. Therefore, simple modifications or variations belonging to the equivalent of the scope of the claims and the instruction disclosed herein for a patent are all within the scope of the present invention.