This invention relates generally to carbon nanotubes, and specifically to methods for separating bundled carbon nanotubes from individual nanotubes using liquid-liquid extraction methods.
Single-wall carbon nanotubes (SWNT), commonly known as “buckytubes,” have unique properties, including high strength, stiffness, thermal and electrical conductivity. SWNT are hollow, tubular fullerene molecules consisting essentially of sp2-hybridized carbon atoms typically arranged in hexagons and pentagons. Single-wall carbon nanotubes typically have diameters in the range of about 0.5 nanometers (nm) and about 3.5 nm, and lengths usually greater than about 50 nm. Background information on single-wall carbon nanotubes can be found in Yakobson et al., American Scientist, 1997, 85, 324-37 and Dresselhaus, et al., Science of Fullerenes and Carbon Nanotubes, 1996, San Diego: Academic Press, Ch. 19.
Because of their unique physical and chemical properties, SWNTs have excited researchers with regard to their potential utility in microelectronic and biomedical applications. Several methods are currently available for producing SWNTS. Unfortunately, post-production SWNTs still require separation and sorting to capture nanotubes having specific, desired properties. These separation and sorting methods are complicated by two major factors. The first complication is that nanotubes lack solubility in water and most common solvents. Many common solvents cannot offer sufficient solvation forces to suspend SWNTs yielding low degrees of solubility. These suspensions consist of many small bundles and relatively few individual SWNTs. These difficulties arise from the strong propensity of single-wall carbon nanotubes to rope together in “bundles” that are strongly held together by van der Waals forces. The bundling phenomenon aggregates different types of single-wall carbon nanotubes together in aligned bundles and holds them together with a sizable tube-to-tube binding energy of up to about 500 eV/micron.
A second complication to separation and sorting is that synthesized carbon nanotube samples generally contain random mixtures of metallic and semiconducting types of nanotubes with assorted diameters. SWNT synthesis typically results in 30-40 different (n,m) chirality types (approximately ⅓ metallic and ⅔ semiconducting). When electrically contacted while in bundled aggregates, the carbon nanotubes experience sizable perturbations from their otherwise pristine electronic structure that complicates the differentiation between different types of nanotubes.
The inability to obtain individually dispersed SWNTs has limited nanotube applications leading researchers to develop a multitude of functionalization schemes to achieve nanotube suspensions. For example, attempts to exploit the chemical diversity within mixtures of nanotubes, either through sidewall functionalization or end-group derivatization have not been successful in separating bundled nanotubes from individual nanotubes, rather, bundles of nanotubes with significantly altered electronic properties are largely produced.
The conventional method to disperse individual nanotubes in aqueous solutions is by high-shear homogenization in various surfactant solutions, ultrasonication, and ultimately ultracentrifugation to separate bundled nanotubes from individually-dispersed nanotubes. However, ultracentrifugation is an expensive and time-consuming approach to the removal of SWNT bundles most applicable to analytical scales.
The adsorption of particles at interfaces and emulsion stabilization has been known for a century, Pickering, J. Chem. Soc. Trans. 1907, 91, 2001-21. These systems have recently gained renewed interest because of their ability to self-assemble particles at the interface, to separate particles, such as ampicillin and phenylglycine crystal mixtures in water/alkanol systems, and to prepare unique porous structures. Of particular importance, these systems have demonstrated the large-scale separation of bioparticles achieving efficiencies greater than centrifugation. Free energy changes induced by changes in wetting and interfacial area are often used to describe particle adsorption from the bulk solution to the interface.
Most research on Pickering emulsions has focused on spherical particles rather than carbon nanotubes. Wang et al., Langmuir, 2003, 19, 2091 discloses SWNT-based stabilization of emulsions. Bare nanotubes were used as amphiphobic surfactants that stabilized toluene/water emulsions for months. Later, DNA-wrapped SWNTs were shown to stabilize emulsions for the synthesis of colloidal particles. Stabilized emulsions were also seen in length-based separations of functionalized SWNTs.
More recently, researchers have begun to use SWNT-based Pickering emulsions for other applications. Asuri et al., J. Am. Chem. Soc., 2006, 128, 1046-7 discloses interfacial SWNTs decreased transport limits and improved catalytic activity of two-phase reactions leading to increased bio-reactivity. Others have used polymerization reactions or nanotube interactions to prepare nanotube capsules that can be used as catalyst supports, controlled release capsules, and lubricating additives.
None of the aforementioned methods have been applied to the separation of bundled SWNTs from individual SWNTs in aqueous suspensions. In view of the foregoing, a simpler, more scalable method of separating bundled nanotubes from individual nanotubes is necessary and would be extremely useful.
The present invention provides methods for separating carbon nanotubes. In certain embodiments, methods are provided for removing bundled nanotubes from a mixture of individual and bundled nanotubes in aqueous suspensions using interfacial trapping. In other embodiments, methods are provided for separating carbon nanotubes by type or size.
In one embodiment of the subject invention, bundled nanotubes are separated from individual, dispersed nanotubes in aqueous mixtures via two-phase extraction using, for example, toluene and Gum Arabic solutions. The separation methods of the invention are capable of treating quantities of individual and bundled nanotube mixtures in excess of one kilogram and are scalable to even larger volumes. Furthermore, the separation methods produce a population of individual carbon nanotubes of suitable purity for many applications, including further separation into populations by size or type.
For example, embodiments of the invention include the step of encouraging target nanotubes (either by size and/or type) to aggregate into bundles in solution. Such bundles of target nanotubes would then be separated from non-target individual nanotubes using the methods of the invention. According to the subject invention, the target nanotubes can be aggregated into bundles either during or following separation of bundled nanotubes from individual nanotubes.
In one related embodiment of the invention, following production of a stable suspension of individual carbon nanotubes target individual carbon nanotubes (either a specific size and/or type) are forced to aggregate by mixing with additives or reactants for separations. For example, Niyogi et al., J. Am. Chem. Soc. 2007, 129, 1898-9 has disclosed that salts can be added to SDS-suspended SWNT solutions to induce aggregation. This salt addition has been shown to induce diameter or (n,m) type selective aggregation. These aggregated nanotubes are then separated using the interfacial trapping described herein or using the separation methods described in Ziegler, International publication number WO2008/057070.
Embodiments of the invention are directed to methods for sorting and separating carbon nanotubes by selecting interfacial trapping in aqueous or organic suspensions. In one embodiment, the invention provides methods for sorting and separating bundled carbon nanotubes from individual nanotubes. The separation method preferentially traps carbon nanotube bundles at the interface of a two-phase mixture because of changes in free energy. Although the separation is not necessarily absolute, separation of bundles from individual carbon nanotubes occurs to a large extent. By using a suspension-phase comprising individual carbon-nanotubes as the starting mixture, a subsequent separation leads to a suspension-phase that is more highly enriched in individual nanotubes.
The subject invention can be applied to various types of carbon nanotubes including, but not limited to, single-walled carbon nanotubes (SWNTs), double walled carbon nanotubes (DWNTs), triple walled carbon nanotubes (TWNTs), few walled carbon nanotubes (FWNTs), and multi wall carbon nanotubes (MWNTs). Single-walled carbon nanotubes (SWNTs) are readily sorted and separated in accordance with an embodiment of the subject invention.
As illustrated in
In a related embodiment, the invention provides methods for sorting and separating carbon nanotubes by size and/or (n,m) type, simultaneous to or following separation of carbon nanotubes into bundled and individual nanotubes. In these embodiments, separation of carbon nanotubes into bundled and individual nanotubes can be performed using any known technique that enables dispersion of individual nanotubes. For example combination of methods according to embodiments of the invention described herein can be combined with methods those commonly used in the art (i.e., centrifugation to remove bundled from individual nanotubes followed by an aggregating step). For example, as illustrated in
According to embodiments of the invention, SWNTs are dispersed in a surfactant solution via shear mixing, ultrasonication, or a combination thereof In some embodiments, the surfactant in the solution used for dispersion is capable of wrapping, encapsulating, or otherwise isolating the nanotubes into individual nanotubes.
In some embodiments, the surfactants for separating nanotube bundles from individual nanotubes can be ionic surfactants. Ionic surfactants can be anionic or cationic. Examples of anionic surfactants include, but are not limited to SARKOSYL® NL surfactants (SARKOSYL® is a registered trademark of Ciba-Geigy UK, Limited; other nomenclature for SARKOSYL NL surfactants include N-lauroylsarcosine sodium salt, N-dodecanoyl-N-methylglycine sodium salt and sodium N-dodecanoyl-N-methylglycinate), polystyrene sulfonate (PSS), sodium dodecyl sulfate (SDS), sodium dodecyl sulfonate (SDSA), sodium dodecylbenzenesulfonate (SDBS), sodium alkyl allyl sulfosuccinate (TREM) and combinations thereof. Examples of cationic surfactants that can be used, include, but are not limited to, dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB), cetyltrimethylammonium chloride (CTAC) and combinations thereof.
Examples of nonionic surfactants that can be used to disperse nanotubes in a solvent include, but are not limited to, SARKOSYL® L surfactants (also known as N-lauroylsarcosine or N-dodecanoyl-N-methylglycine), BRIJ® surfactants (BRIJ® is a registered trademark of ICI Americas, Inc.; examples of BRIJ surfactants are polyethylene glycol dodecyl ether, polyethylene glycol lauryl ether, polyethylene glycol hexadecyl ether, polyethylene glycol stearyl ether, and polyethylene glycol oleyl ether), PLURONIC® surfactants (PLURONIC® is a registered trademark of BASF Corporation; PLURONIC surfactants are block copolymers of polyethylene and polypropylene glycol), TRITON®-X surfactants (TRITON® is a registered trademark formerly owned by Rohm and Haas Co., and now owned by Union Carbide; examples of TRITON-X surfactants include, but are not limited to, alkylaryl polyethether alcohols, ethoxylated propoxylated C8-C10 alcohols, t-octylphenoxypolyethoxyethanol, polyethylene glycol tert-octylphenyl ether, and polyoxyethylene isooctylcyclohexyl ether), TWEEN® surfactants (TWEEN® is a registered trademark of ICI Americas, Inc; TWEEN surfactants include, but are not limited to, polyethylene glycol sorbitan monolaurate (also known as polyoxyethylenesorbitan monolaurate), polyoxyethylene monostearate, polyoxyethylenesorbitan tristearate, polyoxyethylenesorbitan monooleate, polyoxyethylenesorbitan trioleate, and polyoxyethylenesorbitan monopalmitate), polyvinylpyrrolidone (PVP) and combinations thereof.
In some embodiments of the invention, to achieve separation of individual SWNTs from bundled SWNTs, the surfactant can be a non-ionic surfactant. Non-ionic surfactants that can be used to separate bundled SWNTs from individual SWNTs include, but are not limited to a polysacharide, Tween, Triton, Pluronics, Brij, DNA, and steroid-based surfactants. In one embodiment the surfactant in the solution is Gum Arabic.
In embodiments of the invention where separation of SWNTs that differ by size and/or type, an additive is included to induce aggregation of SWNTs. The additive can be any known salt including, but not limited to, LiF, LiCl, LiBr, LiI, LiNO3, LiCH3COO, Li2SO4, Li2CO3, NaF, NaCl, NaBr, NaI, NaNO3, NaCH3COO, Na2SO4, Na2CO3, KF, KCl, KBr, KI, KNO3, KCH3COO, K2SO4, K2CO3, RbF, RbCl, RbBr, RbI, RbNO3, RbCH3COO, Rb2SO4, Rb2CO3, CsF, CsCl, CsBr, CsI, CsNO3, CsCH3COO, Cs2SO4, Cs2CO3, MgF2, MgCl2, MgBr2, MgI2, Mg(NO3)2, Mg(CH3COO)2, MgSO4, MgCO3, CaF2, CaCl2, CaBr2, CaI2, Ca(NO3)2, Ca(CH3COO)2, CaSO4, CaCO3, and ErCl3. In other embodiments, the additive is bromine. In other embodiments, the additive is a substance that induces a chemical reaction on the nanotube sidewall to encourage aggregation of SWNTs by type, such as those described in Ziegler, International publication number WO2008/057070.
Following dispersal of SWNTs into a surfactant solution, one or more solvents are provided to form a two-phase mixture. The solvents are immiscible with water, for example, an organic solvent. Organic solvents that can be used in accordance with the subject invention include, but are not limited to, heptane, hexane, chloroform, carbon tetrachloride, toluene, cyclohexane, benzene, and xylene.
The resulting two-phase mixture is agitated by either vigorous shaking of the vessel or a vortex mixer to yield an emulsion at the interface of the aqueous and organic solution-phases. The emulsion is stabilized by the bundled nanotubes.
In embodiments of the invention for separating SWNTs by type or by bundle, non-ionic and ionic surfactants, such as those described above, or mixtures thereof can be added to assist in the removal of SWNTs in suspension. Surfactants can be used that form micellular assemblies with SWNTs in an appropriate solvent medium. Mixtures of surfactants can be used that contain at least one surfactant capable of forming micellular assemblies with SWNTs in an appropriate solvent medium. Anionic, cationic or nonionic surfactants can be used in an appropriate solvent medium. Water can be used as a solvent medium.
Other surfactants that can be used in accordance with embodiments of the invention for aggregating SWNTs by size and/or type include, but are not limited to N-alkyl-amines such as N-alkyl-surfactant amine (e.g., octadecylamine (ODA)); primary, secondary, and tertiary amines with varying numbers of carbon atoms and functionalities in their surfactant alkyl chains (e.g., butyl-, sec-butyl-, tert-butyl-, pentyl-, hexyl-, heptyl-, octyl-, nonyl-, decyl-, dodecyl-, tetradecyl-, hexadecyl-, eicosadecyl-, tetracontyl-, pentacontyl-amines, 10,12-pentacosadiynoylamine, 5,7-eicosadiynoylamine, and combinations comprising one or more of the foregoing amines); and alkyl-aryl amines (e.g., benzyl amine, aniline, phenethyl amine, N-methylaniline, N,N-dimethylaniline, 2-amino-styrene, 4-pentylaniline, 4-dodecylaniline, 4-tetradecylaniline, 4-pentacosylaniline, 4-tetracontylaniline, 4-pentacontylaniline, and combinations comprising one or more of the foregoing amines).
In some embodiments of the invention, when separating SWNTs by type or by bundle, a second solvent can be added to assist in the removal of SWNTs in suspension. Solvents that can be used include, but are not limited to, heptane, hexane, chloroform, ethyl acetate, methylene chloride, tetrahydrofuran, diethyl ether, carbon tetrachloride, toluene, cyclohexane, benzene, and xylene.
In some embodiments of the invention, when separating SWNTs by type or by bundle, the nanotubes can be initially dispersed in an organic surfactant solution rather than an aqueous phase. In these embodiments, an aqueous phase would be added to the organic surfactant solution to form a two-phase mixture followed by agitating the two-phase mixture to form an emulsion at the interface between the two-phase mixture.
Depending on the volume ratios of the surfactant/solvent solutions, the emulsions produced following agitation of the two-phase mixture are either droplets of water in a continuous oil phase (i.e. water-in-oil (w/o) emulsions) or oil-in-water (o/w) emulsions. For example, a high volume ratios of toluene/water yield water-in-oil (w/o) emulsions results in a high concentration of dispersed individual nanotubes in suspension. However, the fraction of individual to bundled SWNTs in the suspension-phase is very high in oil-in-water (o/w) emulsions.
Because aqueous single-walled carbon nanotube suspensions exhibit strong fluorescence, indicative of a population of suspended individual nanotubes, fluorescence spectra in combination with absorbance spectra can be used to assess whether the separation method should be repeated to further extract bundled carbon nanotubes remaining in solution.
The following examples illustrate procedures for practicing embodiments of the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.
Nanotube suspensions were prepared with a given mass (typically 6 mg) of raw SWNTs (Rice HPR 145.1) and mixed with 200 mL of an aqueous Gum Arabic surfactant solution (1 wt. %) by high-shear homogenization (IKA T-25 Ultra-Turrax) for 1 hour and ultrasonication (Misonix S3000) for 10 minutes according to previous reported preparations. This yields a solution containing individual nanotubes surrounded by surfactant as well as nanotube bundles. Toluene was added to the aqueous SWNT suspension and the mixture was shaken vigorously for 30 seconds to increase interfacial area and trap SWNT bundles at the interface.
Vis-NIR absorbance spectra (Applied NanoFluorescence Nanospectrolyzer) are shown in
Fluorescence spectra provide a sensitive probe to the aggregation state of the aqueous phase. Higher intensity peaks in the spectra indicate improved dispersion since metallic nanotubes inside a bundle interrupts the electronic excitation of adjacent semiconducting nanotubes within the bundle. Fluorescence spectra of the aqueous phase were recorded (Applied NanoFluorescence Nanospectrolyzer) after steady state was achieved (30-60 min) as shown in
Typically, bundled nanotubes do not exhibit fluorescence because of the presence of metallic SWNTs. Additionally the fluorescence intensity of individually suspended SWNTs decay as the volume fraction increases because of energy-transfer self-quenching mechanisms. Selective removal of SWNT bundles from the solution would allow more individual, semiconducting SWNTs to be excited and result in increased fluorescence intensities. Therefore, the fluorescence intensity increases seen in
To further improve the quality of the suspensions, a second interfacial trapping step is introduced. The SWNT suspension was first mixed with toluene at a volume ratio of R=0.1 since o/w emulsions were the most effective at removing bundled nanotubes from the aqueous phase. The aqueous phase was separated from the oil and interphase and then mixed again with toluene at a volume ratio of R=0.1. As seen in
Without being bound to any specific theory, this example describes the preferential trapping of SWNT bundles at the interface via minimization of free energy.
1Calculation based on peak near 660 nm
2Distribution determined from AFM and SIMAGIS image analysis
3Calculation based on intensity from (11, 3) nanotubes and aggregation peak (~270 cm−1)
4Calculation based on fluorescence intensity from (7, 6) nanotubes and absorbance at 662 nm
For this example, for a cylindrical particle of radius (R) and length (L) with parallel orientation to the interface, the reduction in interfacial area between the oil and water phases is given by:
ΔAow=(2R sin θ)L (1)
If the interface is assumed to be planar and the weight of the nanotube is ignored, the change in energy of inserting the SWNT at the interface from the bulk aqueous phase is given by:
where γpo, γpw, and γow are the interfacial tensions at the particle-oil, particle-water, and oil-water interface, respectively. If ΔE is negative, the particle will be in a stable position at the interface. The interfacial tensions are related to the contact angle through Young's equation:
γpo−γpw=γow cos θ (3)
Finally, the change in energy for inserting a single nanotube or bundle at the oil-water interface is given by:
The contact angle will be similar for individual nanotubes and bundles because of their similar hydrophilicity and γow is fixed in the system. Therefore, in aqueous SWNT suspensions the change in energy of inserting a particle at the interface depends on R and L. The change in energy from equation (4) is minimized when particles with larger radius and length are at the interface. For example, it is estimated that ΔE is approximately −200 kT for an individual nanotube and −4500 kT for a bundle of the same length containing 7-10 nanotubes. Short length multi-walled nanotubes display lower emulsion stabilities. Therefore, SWNT bundles will preferentially exist at the interface yielding an effective separation.
Absorbance spectra are shown in
The fluorescence and absorbance data provide insight into the structure of the aqueous phase and the changes induced by the interfaces. Fluorescence intensities greater than the control sample at higher mass loadings seen in
Adjusting the hydrophilicity of the particles had significant effects on the contact angle and their ability to stabilize the emulsions. Individual and bundled nanotubes are coated with hydrophilic surfactants provide higher stabilization of o/w emulsions. Therefore, while bundles have a greater change in free energy there is still a substantial driving force for individual nanotubes to stabilize o/w emulsions. In contrast, individual nanotubes have a smaller driving force to w/o interfaces with nanotube bundles being the primary constituent of the interface. This suggests that the system contains a small fraction of uncoated (hydrophobic) or poorly coated nanotube bundles that stabilize w/o emulsions.
The fluorescence intensity provides a measure of the concentration of individually suspended SWNTs while the absorbance provides a measure of the overall concentration of SWNTs. Dividing the fluorescence by the absorption, therefore, provides an estimate of the fraction of individual SWNTs in suspension. This ratio does not provide a quantitative measure of the fraction of individual SWNTs. Therefore, it is only used to compare dispersion characteristics between samples.
All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.
The present application claims the benefit of U.S. Provisional Application Ser. No. 60/971,717, filed Sep. 12, 2007, which is hereby incorporated by reference herein in its entirety, including any figures, tables, or drawings.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/76272 | 9/12/2008 | WO | 00 | 9/13/2010 |
Number | Date | Country | |
---|---|---|---|
60971717 | Sep 2007 | US |