Separation of nitrogen from hydrocarbon gas using pyrolyzed sulfonated macroporous ion exchange resin

Abstract
A method for separating N2 from a hydrocarbon gas mixture containing N2 comprising the steps of: i) providing a bed of adsorbent selective for N2; (ii) passing the hydrocarbon gas mixture through the bed of adsorbent to at least partially remove N2 from the gas mixture to produce: (a) N2-loaded adsorbent and (b) N2-depleted hydrocarbon gas mixture; iii) recovering the N2-depleted hydrocarbon gas mixture; iv) regenerating the N2-loaded adsorbent by at least partially removing N2 from the adsorbent; and v) sequentially repeating steps (ii) and (iii) using regenerated adsorbent from step (iv); wherein the adsorbent comprises a pyrolized sulfonated macroporous ion exchange resin.
Description
FIELD

The invention relates to novel adsorbents and their use in separating nitrogen (N2) gas from hydrocarbon-containing gas mixtures.


INTRODUCTION

Conventional methods of separating nitrogen (N2) from hydrocarbon gas mixtures include cryogenic and membrane-based separations techniques. See for example Ning et al., Carbon Molecular Sieve Membranes Derived from Matrimid® polyimide for Nitrogen/Methane Separation, Carbon 66 (2014) 511-522. Another technique involves the use of a porous adsorbent that selectively adsorbs nitrogen (N2) from the gas mixture. Specific examples include passing a process gas through a bed of adsorbent, e.g. zeolites, that preferentially adsorbs N2 from the process gas stream. N2 is subsequently desorbed from the adsorbent by either changing the pressure of the adsorbent bed (PSA) or heating the adsorbent (TSA). The following references describe systems employing pressure swing adsorption (PSA), vacuum swing adsorption (VSA) and temperature swing adsorption (TSA): U.S. Pat. Nos. 5,330,468, 6,423,658, 8,268,047, 8,529,664, 8,551,229, 8,444,750 and WO 2008/143964.


A variety of adsorbents have been used various gas separations including: aluminas, hydrotalcites, silicates, silica gels and clinoptilotics (U.S. Pat. No. 5,993,516). Carbonaceous adsorbents, sometimes referred to as “carbon molecular sieves,” have also been described for use in the purification of hydrogen and the removal of water, methane, sulfur, carbon dioxide, nitrogen oxides and halocarbons from various fluid mixtures. See for example: U.S. Pat. Nos. 5,059,578, 5,217,505, 5,972,834 and US2013/0220935. See also Cavenati et al., Methane Purification by PSA from Natural Gas Sources, 2nd Mercosure Congress on Chemical Engineering. Carbonaceous adsorbents are carbonized forms of carbon compounds such as coal, coke, peat, wood charcoal, net shell char, fruit nut char, coconut shell char, bone char, phenol resins, furan resins, and vinylidene chloride copolymers, see for example U.S. Pat. Nos. 5,300,468 and 5,972,834. WO2014/160624 describes the use a microporous carbon molecular sieve for separating alkenes from alkanes. The material comprises a non-melting binder and a non-porous gel type sulfonated ion exchange resin that are pyrolized a temperatures from 500 to 1000° C. Similar uses of pyrolized gel type sulfonated ion exchange resins are also discussed in: Liu, J. et al. “High throughput development of one carbon molecular sieve for many gas separations” Microporous and Mesoporous Materials (2014); Miura, K., “Preparation of novel porous carbons supporting metal nanoparticles and their applications to energy and environmental related issues” J. Ind. Eng. Chem., 11, No. 6, (2005) 797-817, and Miura, K., et al. “Control of micropore formation in the carbonized ion exchange resin by utilizing pillar effect,” Carbon 37 (1999) 1455-1461. Pyrolized sulfonated macroporous ion exchange resins are also described in the literature. See for example: Neely, J. Characterization of Polymer Carbons Derived from Porous Sulfonated Polystyrene, Carbon 19 (1980) 27-36, U.S. Pat. Nos. 4,040,990 and 4,839,331. An overview of various adsorbents and their use in gas separations are provided in: Tagliabue, et al., Natural Gas Treating by Selective Adsorption: Material Science and Chemical Engineering Interplay, Chemical Engineering Journal 155 (2009) 553-566. The search continues for new adsorbents along with more efficient methods of separating nitrogen from hydrocarbon gas mixtures.


SUMMARY

A preferred embodiment the invention includes an adsorbent along with its use in a method for separating N2 from a hydrocarbon gas including the steps of: i) providing a bed of adsorbent selective for N2; ii) passing the hydrocarbon gas mixture through the bed of adsorbent to at least partially remove N2 from the gas mixture to produce: (a) N2-loaded adsorbent and (b) N2-depleted hydrocarbon gas mixture; iii) recovering the N2-depleted hydrocarbon gas mixture; iv) regenerating the N2-loaded adsorbent by at least partially removing N2 from the adsorbent; and v) sequentially repeating steps (ii) and (iii) using regenerated adsorbent from step (iv); wherein the adsorbent includes a pyrolized sulfonated macroporous ion exchange resin. The ion exchange resin preferably includes a macroporous crosslinked copolymer matrix formed from polymerizing a reaction mixture e.g. styrene and divinylbenzene, that is subsequently pyrolized at a temperature of from 1200° C. to 1300° C. In preferred embodiments, the adsorbent has as an average micropore diameter of from 3.64 Å to 3.80 Å. A number of additional embodiments are described.





BRIEF DESCRIPTION OF THE DRAWINGS

Figure is a plot of nitrogen capacity versus pressure and corresponds to Example 1.





DETAILED DESCRIPTION

The subject adsorbent is prepared by pyrolizing a sulfonated macroporous ion exchange resin. Applicable ion exchange resin starting materials include commercially available resins such as AMBERLYST™ 15, a sulfonated macroporous type ion exchange resin available from The Dow Chemical Company. Preferred resins include a macroporous crosslinked copolymer matrix. The term “macroporous,” sometimes also referred to as “macroreticular,” refers to resins having both mesopores of from about 20 Å to about 500 Å and macropores of greater than about 500 Å. Such resins also preferably have a B.E.T. surface area of 200-600 m2/g. In distinction, gel type ion exchange resins are characterized by only having micropore sizes less than about 20 Angstroms (Å) with no effective BET surface area. Surface areas may be determined by the classic B.E.T. nitrogen adsorption method in which dried and degassed samples are analyzed on an automatic volumetric sorption analyzer. The instrument works on the principle of measuring the volume of gaseous nitrogen adsorbed by a sample at a given nitrogen partial pressure. The volumes of gas adsorbed at various pressures are used in the B.E.T. model for the calculation of the surface area of the sample. The average pore radius is calculated from the relationship between the surface area and the pore volume of the sample, assuming a cylindrical pore geometry.


Suitable macroporous copolymer matrixes as well as their preparation are further described in U.S. Pat. Nos. 4,256,840 and 5,244,926—the entire contents of which are incorporated herein by reference. In brief, applicable macroporous crosslinked matrixes may be prepared by suspension polymerization of a finely divided organic phase comprising monovinyl monomers such as styrene, crosslinking monomers such as divinylbenzene, a free-radical initiator and a phase-separating diluent. The quantity of crosslinking monomer (e.g. amount of divinylbenzene) used in the reaction mixture to prepare the crosslinked copolymer matrix is preferably less than 20 wt % (e.g. 2 to 16 wt %). The polymerization forms a crosslinked copolymer matrix that may be subsequently sulfonated as per techniques well known in the art. See for example: U.S. Pat. Nos. 2,500,149, 2,631,127, 2,664,801, 2,764,564, 3,037,052, 3,266,007, 5,248,435, 5,616,622, US2002/002267 and US2004/0006145; relevant teachings of which are incorporated herein by reference. In general, sulfonated ion resins are prepared by reacting the copolymer matrix with a sulfonation agent, such as concentrated sulfuric acid (acid which has at least about 95 weight percent sulfuric acid based upon total weight), oleum, chlorosulfonic acid or sulfur trioxide, at a temperature and for a time sufficient to achieve a desired degree of sulfonation. A preferred sulfonation agent is concentrated sulfuric acid. The amount of concentrated sulfuric acid should be sufficient to provide adequate mixing during reaction, with a weight ratio of acid to beads of from about 2:1 to about 20:1 being generally sufficient. Typically, the acid and copolymer beads are maintained at a temperature from about 0° C. to about 200° C. for a time sufficient to obtain resin having a dry weight capacity of from 4.0 to 5.0 milliequivalents per gram (meq/g) and more preferably from 4.5 to 4.9 meq/g. Sulfonation may be conducted in the presence of a swelling agent. Representative swelling agents include: methylene chloride, ethylene dichloride, dichloropropane, sulfur dioxide, benzene, toluene, xylene, ethylbenzene, isopropylbenzene, chlorobenzene, nitrobenzene, nitromethane, tetrachloroethane and tetrachloroethylene. Contrary to the teaching of U.S. Pat. No. 4,839,331, use of oleum or other techniques utilized to achieve “polysulfonation” are not preferred and should be avoided. Descriptions of such resins along with techniques for their preparation are provided in: U.S. Pat. Nos. 4,256,840, 4,419,245, 4,444,961, 4,564,644, 4,582,859, 4,623,706, 4,666,673, 5,244,926, and 6,924,317—the entire contents of which are incorporated herein by reference.


While the ion exchange resin may take a variety of forms, e.g. powder, fiber, particle, pellet, granular; the ion exchange resin is preferably provided in bead form having a particle size diameter of 1 to 1000 microns, more preferably from 200-800 microns. The beads may have a Gaussian particle size distribution or may have a relatively uniform particle size distribution, i.e. “monodisperse” that is, at least 90 volume percent of the beads have a particle diameter from about 0.9 to about 1.1 times the volume average particle diameter.


The sulfonated ion exchange resins are preferably pyrolized by heating the ion exchange resins at temperatures of from 1200° C. to 1300° C., preferably under an inert atmosphere, e.g. nitrogen or argon, and preferably at 100 kPa for a few minutes to a few hours. For example, the resins may be heated in a graphite furnace to final temperature at a rate of 10° C./minute and then maintained at final temperature from 1 to 30 minutes before being allowed to cool. U.S. Pat. Nos. 4,040,990 and 4,839,331 describe applicable methodologies but higher temperatures are required for the present invention (i.e. temperatures from 1200° C. to 1300° C., more preferably 1225° C. to 1300° C.). See also: Neely, J. Characterization of Polymer Carbons Derived from Porous sulfonated Polystyrene, Carbon 19 (1980) 27-36.


The subject adsorbent is selective for nitrogen over methane. For purposes of the present invention, “selectivity” (S) is calculated according to equation 1 and is determined by a high throughput transient adsorption technique to measure the adsorption parameters (Henry's constant and Diffusivity) of N2 and CH4 separately at 35° C. and 1034 kPa (approx. 150 psig) according to the method described by: Ruthven D M, Reyes S C, Adsorptive separation of light olefins from paraffins, Microporous Mesoporous Materials (2007), 104(1-3):59-66.









S
=



K

N





2



K

CH





4







D

N





2



D

CH





4









(
1
)







where K stands for the Henry's constant of adsorption and D stands for the diffusivity. Selectivities as reported herein agree well with separation factors (Alpha) in final mixture gas PSA adsorption tests. Alpha is calculated by the N2 and CH4 concentrations in the feed and product effluent streams. The concentrations in the feed are designated as “x”. The concentrations in the desorption step are designated as “y”.









Alpha
=


(


y

N





2


/

y

CH





4



)


(


x

N





2


/

x

CH





4



)






(
2
)







In preferred embodiments, the N2/CH4 selectivity (and separation factor “alpha”) are greater than 2, 3, 4, 5 or even 6.


In addition to selectivity, the adsorbent preferably has a relatively fast adsorption rate for nitrogen. For example, in a moving bed system, the feed gas is only exposed to the adsorbent for a limited time. As a consequence, a preferred adsorbent adsorbs N2 relatively quickly, e.g. the time required to obtain a 50% equilibrium of N2 “t0.5 N2” is less than 10 and more preferably less than 5 minutes and even more preferably less than 2 minutes.


The adsorbent also preferably has a good capacity for N2. This dictates both the adsorbent particle size as well as the residence time for both the feed gas and the adsorbent in the adsorption chamber. The N2 sorption capacity of the adsorbent should be at least 0.1 wt %, preferably at least 0.5 wt %, and more preferably at least 0.75 wt % at the conditions of operation (e.g., 20° C. and 100 kPa (approx. 760 mm Hg).


Micropore sizes below the kinetic diameter of N2 (3.64 Å) are not believed to play a significant role in separation and pore sizes larger than the kinetic diameter of the hydrocarbon gas (e.g. 3.80 Å for methane) dilute the selective capability of the adsorbent and at some point render the adsorbent non-selective or hydrocarbon selective. Meso and macropore sizes larger than 20 Å are not believed to play a role in the selectivity but do impact rates of absorption. As a consequence, one preferred embodiment of the invention utilizes adsorbents having multimodal pore size including both macropores and micropores.


The subject adsorbents also preferably have an average micropore diameter no greater than 3.8 Å, (e.g. from 3.64 Å to 3.80 Å) as measured by placing an adsorbent in a vessel and monitoring adsorption. In conducting such a measurement, the sample adsorbent should be degassed at 150° C. for 4 hrs. The sample is then cooled to 20° C. and exposed to a pure test gas at 1034 kPa (approx. 150 psig) (e.g., N2 or a hydrocarbon such as methane). Micropore size is determined by comparing the sorption properties of two gases of different kinetic diameter—a parameter for gases that is widely reported in the open literature. For example, in a system where N2 has a low t0.5 N2 (i.e., less than 30 minutes) and CH4 has a high t0.5 CH4 (i.e., greater than 2X t0.5 N2), the pore size that dominates gas transport can is in the range of 3.64 Å and 3.80 Å. This technique can be used to determine the gas transport dominant pore size range.


The adsorbent also preferably has a total microporosity of from 0.1 to 0.3 ml/g based on a skeletal density ranging from 1.0 to 2.0 g/cm3. In another embodiment, the adsorbent preferably has an average macropore diameter of from 1 to 1000 nm and a total macropore volume of at least 0.1-0.4 ml/g, both measured by mercury porosimetry.


In one embodiment the subject method includes the step of passing a pressurized hydrocarbon gas mixture through the bed of adsorbent to at least partially remove N2 from the gas mixture to produce: (a) N2-loaded adsorbent and (b) N2-depleted hydrocarbon gas mixture. The configuration of the bed is not particularly limited and both packed and fluidized beds may be used but packed moving beds are preferred. Applicable beds include a pressurizable vessel or chamber that includes one or more gas inlets and outlets along with an opening(s) for transferring adsorbent, e.g. transferring out N2-loaded adsorbent and transferring in fresh or regenerated adsorbent. Preferred operating conditions include: pressures from 400 to 1200 psi; residence times of 6 to 1800 seconds, more preferably 30 to 480 seconds; and space velocities through the bed of from 0.5 feet/second to 0.001 feet/second. Applicable hydrocarbon gas mixtures include methane and natural gas, e.g. gas mixtures containing predominantly methane with lesser quantities of heavier alkanes including propane and butane along with various impurities including nitrogen, carbon dioxide, hydrogen sulfide and various other gases. Other applicable gases include shale gas having relatively high quantities of nitrogen. In a preferred embodiment, the hydrocarbon gas mixture comprises from 2 to 40, and more preferably 5 to 20 mole percent of nitrogen (N2). In another preferred embodiment, the gas mixture comprises from 50 to 90 mole percent methane. In yet another preferred embodiment, the carbon dioxide content of the hydrocarbon gas mixture is less than 20 mol %, 15 mol %, 10 mol % or more preferably less than 5 mol %. The carbon dioxide content of the hydrocarbon gas mixture may be reduced by way of well known techniques including the use of zeolites adsorbents. After passing through the bed of adsorbent, the N2-depleted hydrocarbon gas mixture is recovered and may be subject to further treatment, transport, storage, etc.


Once the adsorbent becomes at least partially loaded with N2, the adsorbent may be removed from the bed and discarded. Alternatively, the N2-loaded adsorbent may regenerated. Regeneration involves at least partially desorbing N2 from the adsorbent. Desorbed N2 may be recovered or discarded. The process of regeneration may occur in same bed where adsorption occurred, or the adsorbent may be transferred to a separate bed (vessel). Regeneration involves exposing the adsorbent to at least one of: a) higher temperature and b) lower pressure (i.e. reduced N2 partial pressure) as compared with conditions present during the step of N2 adsorption. Applicable techniques for exposing the adsorbent to higher temperatures include heating the bed with electric or gas heaters, passing hot gas through the bed, and irradiating the adsorbent with microwave radiation (see for example U.S. Pat. Nos. 5,509,956, 5,946,816 and JP2005/194132). Irradiation with microwaves is a preferred approach. Techniques for reducing the pressure include venting the bed to an external tank or atmosphere. Pressures used during regeneration are preferably less than 70%, 50% or even 10% of the pressure used during the adsorption (loading) step. In some embodiments, vacuum pressure may even be used. The step of regeneration may be conducted as a batch, semi-batch or continuous operation and may include combinations of TSA, PSA and VSA.


In a preferred embodiment, the subject method involves the steps of:


i) providing a bed of adsorbent selective for N2;


ii) passing the hydrocarbon gas mixture through the bed of adsorbent to at least partially remove N2 from the gas mixture to produce: (a) N2-loaded adsorbent and (b) N2-depleted hydrocarbon gas mixture;


iii) recovering the N2-depleted hydrocarbon gas mixture;


iv) regenerating the N2-loaded adsorbent by at least partially removing N2 from the adsorbent; and


v) sequentially repeating steps (ii) and (iii) using regenerated adsorbent from step (iv).


In a preferred embodiment, step (i) occurs in an adsorption chamber, and step (iv) occurs in a desorption chamber, and N2-loaded adsorbent is continuously transferred from the adsorption chamber to the desorption chamber, and regenerated adsorbent is continuously transferred from the desorption chamber to the adsorption chamber. Regeneration is preferably conducted by irradiating the adsorbent with microwaves. The adsorbent is selected based on the residence time of the adsorbent and the residence time of the feed gas in the adsorption bed. In this embodiment the adsorbent is not always exposed to the feed gas for sufficient time to saturate the adsorbent with N2. The selectivity used for selection of the adsorbent can be adjusted such that the time (t) from Equation (1) can be either the residence time of hydrocarbon gas in adsorption chamber or the residence time of the adsorbent in the adsorption chamber. Control over this time (t) in this manner allows for optimization of adsorbent with feed gas that is not possible for a traditional batch process or semi-batch process. This approach also allows for higher selectivities, i.e. higher purity N2-depleted hydrocarbon gas mixture per unit time of gas treatment as the adsorbents used in the present invention have higher N2/CH4 selectivities as the time of exposure decreases. Also, the continuous process allows for adsorbents with low N2 capacity to be used as the invention does not require the adsorbents be run to saturation or even 50% of N2 saturation. While different types of adsorbents may be used in combination, they preferably form a random or homogenous mixture forming a single packed moving bed. In a preferred embodiment, a single type of adsorbent is utilized.


Many embodiments of the invention have been described and in some instances certain embodiments, selections, ranges, constituents, or other features have been characterized as being “preferred.” Characterizations of “preferred” features should in no way be interpreted as deeming such features as being required, essential or critical to the invention. Combinations of beds may be used together, include different types of carbonaceous adsorbents within a single bed, or a series of beds using different types of adsorbents.


EXAMPLES
Example 1

300 g of macroporous sulfonated ion exchange resin (AMBERLYST™ 15) were pyrolized in a retort furnace, purged with nitrogen at a flow rate 25 ft3 per minute (SCFM). The temperature was raised to 550° C. at a rate of 5° C./min and maintained for 15 min. The furnace was left to cool to room temperature and the resin was subjected to a second stage of pyrolysis in a graphite furnace under a 20 L/min flow of nitrogen. The furnace temperature was then raised at a rate of 10° C./min ramp and held at the indicated final temperature for 15 minutes. Sample 1-1: 850° C.; Sample 1-2: 1050° C., Sample 1-3: 1250° C.


The kinetics of adsorption for each sample were measured using a high throughput reactor (HTR) system installed in a triple dry box. The HTR system consists of a 6×8 array of parallel 14 milliliter stainless steel reactors which were used as sample holders. Adsorbate gases (N2 and CH4) were then injected into each cell at a controlled pressure and temperature. The kinetic adsorption measurements were performed in the following sequence: 1) Load 1.00±0.05 g of adsorbent into the 14.0 ml high throughput cells; 2) Degas at 140° C. for 12 hours by N2 purge at atmospheric pressure semi-continuously; 3) Introduce the N2 gas at 150 psi and monitor the pressure drop (for 12 hours) at 35° C.; 4) Degas at 140° C. for 24 hours by N2 purge at atmospheric pressure; and, 5) Introduce the CH4 gas at 150 psi and monitor the pressure drop (for 12 hours) at 35° C. Gas adsorption into the adsorbent is indicated by the pressure drop in the reservoir where the adsorbent is loaded. The adsorbed amount at time t, denoted as Mt is calculated from the starting pressure (P0), pressure at time t (Pt) and the reservoir volume (V) by the equation below. The adsorbed amount at equilibrium (infinite time), denoted as Minf, is similarly calculated from the starting pressure (P0), pressure at finish time (Pinf), and the reservoir volume (V). The uptake fraction (Mt/Minf) is calculated from the pressures. The relationship between Mt/Minf and time, especially the adsorption half time (t0.5) when Mt/Minf equals 0.5, is used to characterize the diffusion kinetics.










M
t

=


V
RT



(


P
0

-

P
t


)






(
3
)








M
t


M
inf


=


(


P
0

-

P
t


)


(


P
0

-

P
inf


)






(
4
)







The gas diffusivities were obtained by fitting the uptake fraction with time, using equation below, were D stands for diffusivity (cm2·s−1), t is time, r is the radius (cm) of the adsorbent, and n is integral number from 1 to infinity.











M
t


M
inf


=

1
-


6

π
2







n
=
1






1

n
2




exp
(

-



n
2



π
2


Dt


r
2



)









(
5
)







Assuming Fickian diffusion, the diffusivity ratio can also be estimated based on the adsorption half times according to equation 6.












D

N





2



D

CH





4




=



t

0.5
-

CH





4




t

0.5
-

N





2









(
6
)







The ratio of Henry's constant can be calculated from the ratio of pressure drop (equation 7), where N2 and CH4 are treated as ideal cases during the high throughput adsorption tests.











K

N





2



K

CH





4



=



(


P
0

-

P
inf


)


N





2




(


P
0

-

P
inf


)


CH





4







(
7
)







Selectivities (S) were calculated as per equation (10). As shown in Table 1, samples pyrolized at temperatures below 1050° C. showed no N2/CH4 selectivity (and in fact showed slight selectivity for methane over nitrogen). The selectivity from the high throughput screening agreed well with the separation factor (calculated via equation 2) from the packed bed pressure swing adsorption test. Adsorbents obtained from 1250° C. pyrolysis of AMBERLYST 15 precursor, showed a selectivity of 6.9 (table 1) and a separation factor of 7 (Table 2).









TABLE 1







N2 and CH4 adsorption capacity and selectivity


by high throughput screening














Pyrol-








ysis




N2/CH4


Sample
Temp.
Δ PN2
t0.5N2
Δ PCH4
t0.5CH4
Selec-


No.
(° C.)
(psi)
(min)
(psi)
(min)
tivity
















1-1
850
5
0.5
13
1.6
0.7


1-2
1050
4.6
0.6
12.7
1.5
0.6


1-3
1250
8.8
1.5
9.6
85
6.9









Example 2

300 g of macroporous sulfonated ion exchange resin (AMBERLYST™ 15) were pyrolized in a retort furnace according to the methodology described in Example 1. The furnace temperature was then raised at a rate of 10° C./min ramp and held at the indicated final temperature for 15 minutes. Sample 2-1: 1100° C.; Sample 2-2: 1200° C., Sample 2-3: 1250° C., Sample 2-3: 1300° C.


A stainless steel column (1.18 cm ID, 57.7 cm length) was packed with 10.0 g of adsorbent. Glass beads of 2 mm diameter were used to fill the rest of the space in the column. The column was heated by circulating heating fluid (Syltherm 550) from a heated bath (Neslab EX250) through a jacket made from one-inch tubing, into which the packed column was placed concentrically using reducing Tee fittings from Swagelok™. The column filled with 10.0 g of adsorbent was first purged by 200 sccm of helium at elevated temperature for 12 hours before cooling down to the adsorption temperature (20° C.). A 200 sccm of mixture gas (9 mol % N2/91 mol % CH4) at 500 psig was fed to the column for the adsorption step. After the exit gas composition became comparable to the feed composition, the feed was switched to the purge gas (200 sccm of helium at 500 psig) for the desorption step. The exit gas composition was monitored by an online mass-spectrometer. The concentration of gases was normalized on a purge-gas free basis during the adsorption and desorption steps.


Breakthrough time is defined as the time when the raffinate gas concentration reaches 5% of that in the feed. The difference (delta) between N2 and CH4's breakthrough time is a parameter showing the separation capacity of the adsorbent. The longer the delta breakthrough time, the higher is the separation capacity of the adsorbent. The separation factor is calculated using equation 2. As shown in table 2, the adsorbent from 1200° C. pyrolysis has the longest delta breakthrough time, or the highest N2/CH4 separation capacity. But the separation factor is only 4, which means a higher CH4 loss due to the less selective adsorption. The adsorbent from 1300° C. pyrolysis has a shorter delta breakthrough time than the adsorbent from 1250° C., even though the separation factor between the two are comparable. The reduced separation capacity from 1250° C. to 1300° C. is a reflection of collapse of N2 selective adsorbing micropores. So there appear to be an optimum pyrolysis window between 1200 and 1300° C. to reach a good balance between N2 capacity and separation factor.


The selectivity (equation 1) from the high throughput screening agreed well with the separation factor (equation 2) from the packed bed pressure swing adsorption test. Adsorbent obtained from 1250° C. pyrolysis of AMBERLYST™ 15 precursor, showed a selectivity of 6.9 (table 1) and a separation factor of 7 (Table 2).















TABLE 2







N2
CH4
Delta





Pyrolysis
break-
break-
break-
N2 conc.
Separation



temper-
through
through
through
in
factor


Sample
ature
time
time
time
Effluent
(Alpha)


No.
[° C.]
[min]
[min]
[min]
[%]
[—]





















2-1
1100



1.4% 
0.1


2-2
1200
11.9
8.9
3.0
28%
4


2-3
1250
10.7
8.4
2.3
40%
7


2-4
1300
9.4
7.8
1.6
40%
7









Example 3

Adsorbents were prepared, according to the method in example 1, by pyrolyzing at three different final temperatures using four different precursors: AMBERLYST™ 15, AMBERLYST 16™, AMBERLYST™ 35, AMBERLYST™ 36. The properties of the four precursors are shown in table 3. Much higher exchange capacities (sulfonation degree) were found in AMBERLYST™ 35 and AMBERLYST™ 36, which are sulfonated by a stronger sulfonation reagent oleum.


The Adsorbents were tested using the high throughput method same as example 1. As shown in table 4, the two precursors sulfonated by concentrated sulfuric acid (ion exchange capacity lower than 5 meq/g) generated adsorbent at 1250° C. pyrolysis that can separate N2/CH4. The two precursors sulfonated by oleum (ion exchange capacity higher than 5 meq/g) did not generate N2/CH4 selective adsorbent at all temperatures of pyrolysis.


The higher degree of sulfonation by oleum made a more stabilized structure that resist better pore shrinkage and collapse during the pyrolysis process. These adsorbents have always micropores that accept the larger CH4 molecules freely, therefore no N2/CH4 molecular sieving. In order to shrink the micropore to the size of 3.64 to 3.8 Å, a less stabilized structure is needed to enable enough micropore shrinkage during pyrolysis. AMBERLYST™ 15, which has the lowest level of sulfonation (exchange capacity) is best suited to make adsorbents for N2/CH4 separations.














TABLE 3








DVB
Exchange




Sulfonation
content
capacity [eq/kg
Color of the



agent
[wt %]
dry]
dried resin




















AMBERLYST 16
Sulfuric acid
12.0%
4.8
Brown


AMBERLYST 15
Sulfuric acid
18.5%
4.7
Grey


AMBERLYST 36
Oleum
12.0%
5.4
Dark black


AMBERLYST 35
Oleum
18.5%
5.0
Dark black






















TABLE 4






Pyrol-








ysis




N2/CH4



Temp.
Δ PN2
t0.5N2
Δ PCH4
t0.5CH4
Selec-


Precursor
(° C.)
(psi)
(min)
(psi)
(min)
tivity





















AMBERLYST 16
850
17.1
8.7
27.8
61
1.6


AMBERLYST 16
1050
8.2
20.2
7
19.3
1.1


AMBERLYST 16
1250
2.4
0.4
1.7
2.7
3.7


AMBERLYST 15
850
5
0.5
13
1.6
0.7


AMBERLYST 15
1050
4.6
0.6
12.7
1.5
0.6


AMBERLYST 15
1250
8.8
1.5
9.6
85
6.9


AMBERLYST 36
850
8.7
1.3
17.7
2.5
0.7


AMBERLYST 36
1050
7.6
2.7
12.8
3.3
0.7


AMBERLYST 36
1250
6.1
1.2
10.8
2.9
0.9


AMBERLYST 35
850
0.7
6.1
14.2
1.6
0.0


AMBERLYST 35
1050
5.2
0.7
13
2.3
0.7


AMBERLYST 35
1250
5.8
0.9
12
3.1
0.9








Claims
  • 1. A method for separating N2 from a hydrocarbon gas mixture containing N2 comprising the steps of: i) providing a bed of adsorbent selective for N2;ii) passing the hydrocarbon gas mixture through the bed of adsorbent to at least partially remove N2 from the gas mixture to produce: (a) N2-loaded adsorbent and (b) N2-depleted hydrocarbon gas mixture;iii) recovering the N2-depleted hydrocarbon gas mixture;iv) regenerating the N2-loaded adsorbent by at least partially removing N2 from the adsorbent; andv) sequentially repeating steps (ii) and (iii) using regenerated adsorbent from step (iv);wherein the adsorbent comprises a pyrolized macroporous sulfonated ion exchange resin having an average micropore diameter of from 3.64 Å to 3.80 Å; wherein the sulfonated macroporous ion exchange resin comprises a crosslinked macroporous copolymer matrix formed from polymerizing a reaction mixture of styrene and divinylbenzene; wherein the sulfonated macroporous ion exchange resin is pyrolized at a temperature from 1225° C. to 1300° C.; and wherein the sulfonated macroporous ion exchange resin has a dry weight capacity of from 4.5 to 4.9 milliequivalents per gram.
  • 2. The method of claim 1 wherein step (i) occurs in an adsorption chamber, and step (iv) occurs in a desorption chamber, and wherein N2-loaded adsorbent is continuously transferred from the adsorption chamber to the desorption chamber, and regenerated adsorbent is continuously transferred from the desorption chamber to the adsorption chamber.
  • 3. The method of claim 2 wherein the adsorbent located in the adsorption chamber forms a packed moving bed.
  • 4. The method of claim 1 wherein the step of regenerating the N2-loaded adsorbent comprises irradiating the adsorbent with microwaves.
  • 5. The method of claim 1 wherein the adsorbent has a N2/CH4 selectivity of greater than 5.
  • 6. The method of claim 1 wherein the adsorbent has a N2 capacity of greater than 0.5 wt %.
  • 7. The method of claim 1 wherein the adsorbent has a t0.5N2 of less than 5 minutes.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/012256 1/6/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2016/122842 8/4/2016 WO A
US Referenced Citations (142)
Number Name Date Kind
1875199 Parkman Aug 1932 A
2493911 Brandt Jan 1950 A
2495842 Gilliland Jan 1950 A
2495845 Jefferson et al. Jan 1950 A
2500149 Boyer Mar 1950 A
2527964 Robinson Oct 1950 A
2664801 Eisbein Mar 1951 A
2631127 D'Alelio Mar 1953 A
2642417 Wheaton et al. Jun 1953 A
2764564 McMaster et al. Sep 1956 A
2960480 Thielen Nov 1960 A
2992544 McMaster Jul 1961 A
3037052 Bortnick May 1962 A
3065790 Holm Nov 1962 A
3116130 Miller Dec 1963 A
3150716 Strelzoff et al. Sep 1964 A
3266007 Sullivan Aug 1966 A
3458973 Spencer et al. Aug 1969 A
3554904 Humphries Jan 1971 A
3729457 Davankov et al. Apr 1973 A
4000990 Bingham Jan 1977 A
4040990 Neely Aug 1977 A
4070446 Horikiri et al. Jan 1978 A
4191813 Reed et al. Mar 1980 A
4197133 Zweifel et al. Apr 1980 A
4224415 Meitzner et al. Sep 1980 A
4256840 Meitzner et al. Mar 1981 A
4263407 Reed, Jr. Apr 1981 A
4297220 Meitzner et al. Oct 1981 A
4322394 Mezey et al. Mar 1982 A
4333529 McCorquodale Jun 1982 A
4344486 Parrish Aug 1982 A
4382124 Meitzner et al. May 1983 A
4385133 Alberino et al. May 1983 A
4419245 Barrett et al. Dec 1983 A
4444961 Timm Apr 1984 A
4522975 O'Connor et al. Jun 1985 A
4528000 McGill et al. Jul 1985 A
4564644 Harris Jan 1986 A
4582859 Lein, Jr. et al. Apr 1986 A
4623706 Timm et al. Nov 1986 A
4655807 Ohmori et al. Apr 1987 A
4666673 Timm May 1987 A
4762543 Pantermuehl et al. Aug 1988 A
4775655 Edwards et al. Oct 1988 A
4839331 Maroldo et al. Jun 1989 A
4857084 Robbins et al. Aug 1989 A
4894339 Hanazato et al. Jan 1990 A
4950332 Stringfield et al. Aug 1990 A
4965083 Norman et al. Oct 1990 A
5021253 Dawson-Ekeland et al. Jun 1991 A
5059578 Marumo et al. Oct 1991 A
5079274 Schneider et al. Jan 1992 A
5094754 Maroldo et al. Mar 1992 A
5098880 Gaffney et al. Mar 1992 A
5104530 Maroldo Apr 1992 A
5134169 Green et al. Jul 1992 A
5141965 Pike Aug 1992 A
5167899 Jezic Dec 1992 A
5171333 Maurer Dec 1992 A
5217505 Maroldo et al. Jun 1993 A
5231115 Harris Jul 1993 A
5244926 Harris et al. Sep 1993 A
5248435 Morita et al. Sep 1993 A
5288307 Goltz et al. Feb 1994 A
5300468 Senum et al. Apr 1994 A
5330468 Burkhart Jul 1994 A
5411712 Woodmansee May 1995 A
5460725 Stringfield Oct 1995 A
5494228 Eaton et al. Feb 1996 A
5504163 Tegen et al. Apr 1996 A
5509956 Opperman et al. Apr 1996 A
5616622 Harris et al. Apr 1997 A
5683600 Kelley et al. Nov 1997 A
5779768 Anand et al. Jul 1998 A
5840099 Kratz et al. Nov 1998 A
5855650 Kalbassi et al. Jan 1999 A
5893947 Pease et al. Apr 1999 A
5946816 Smith Sep 1999 A
5972834 Ohsaki et al. Oct 1999 A
5993516 Morris et al. Nov 1999 A
6172167 Stapert et al. Jan 2001 B1
6423658 Thonnelier et al. Jul 2002 B1
6444012 Dolan Sep 2002 B1
6562110 Koros et al. May 2003 B2
6562113 Aykanian et al. May 2003 B1
6585802 Koros et al. Jul 2003 B2
6656252 Kita et al. Dec 2003 B2
6726746 Dai et al. Apr 2004 B2
6756462 Pafford et al. Jun 2004 B2
6924317 Feistel et al. Aug 2005 B2
7066986 Haben et al. Jun 2006 B2
7247191 Koros et al. Jul 2007 B2
7282153 Barrett et al. Oct 2007 B2
7297394 Khemani et al. Nov 2007 B2
7410525 Liu et al. Aug 2008 B1
7476659 Hayashi et al. Jan 2009 B2
7815987 Mickols et al. Oct 2010 B2
7882963 Mickols et al. Feb 2011 B2
7897797 Emrick et al. Mar 2011 B2
8002120 Niu et al. Aug 2011 B2
8163814 Emrick et al. Apr 2012 B2
8268047 Allie Sep 2012 B2
8444750 Deckman et al. May 2013 B2
8529664 Deckman et al. Sep 2013 B2
8551229 Hufton et al. Oct 2013 B2
8574348 Struyf et al. Nov 2013 B2
8734571 Golden et al. May 2014 B2
9108145 Kalbassi et al. Aug 2015 B2
9169367 Matteucci et al. Oct 2015 B2
9186650 Carrunthers et al. Nov 2015 B2
9579627 Liu et al. Feb 2017 B2
20020002267 Long Jan 2002 A1
20020036086 Minkkinen et al. Mar 2002 A1
20020150522 Heim et al. Oct 2002 A1
20040006145 Dimotsis et al. Jan 2004 A1
20040256597 Barrett et al. Dec 2004 A1
20050150379 Masetto Jul 2005 A1
20050211090 McCullough Sep 2005 A1
20060191410 Dolan et al. Aug 2006 A1
20080143014 Tang Jun 2008 A1
20080214743 Broos et al. Sep 2008 A1
20080282884 Kelley et al. Nov 2008 A1
20100126341 Matteucci et al. May 2010 A1
20110315012 Kuznicki et al. Dec 2011 A1
20120042689 Bresler et al. Feb 2012 A1
20120222552 Ravikovitch et al. Sep 2012 A1
20130192299 Dolan et al. Aug 2013 A1
20130220935 Isacoff et al. Aug 2013 A1
20130255490 Matteucci et al. Oct 2013 A1
20130291723 Zhou et al. Nov 2013 A1
20140338425 Kalbassi et al. Nov 2014 A1
20160122671 Matteucci et al. May 2016 A1
20160136614 Matteucci et al. May 2016 A1
20160145517 Matteucci et al. May 2016 A1
20160319210 Matteucci et al. Nov 2016 A1
20160333275 Matteucci et al. Nov 2016 A1
20160340595 Matteucci et al. Nov 2016 A1
20160340596 Matteucci et al. Nov 2016 A1
20160355743 Matteucci et al. Dec 2016 A1
20170066987 Leister et al. Mar 2017 A1
20170066988 Leister et al. Mar 2017 A1
Foreign Referenced Citations (8)
Number Date Country
1525420 Sep 1978 GB
2005194132 Jul 2005 JP
2008043964 Apr 2008 WO
2011084994 Jul 2011 WO
2015130339 Sep 2015 WO
2016018437 Feb 2016 WO
2016069316 May 2016 WO
2016122843 Aug 2016 WO
Non-Patent Literature Citations (8)
Entry
Liu et al. “High throughput development of one carbon molecular sieve for many gas separations”, Microporous and Mesoporous Materials (2014) pp. 207-216. (Year: 2014).
Cavenati et al., Methane Purification by PSA from Natural Gas Sources, 2nd Mercosure Congress on Chemical Engineering, (2005).
Liu, J. et al. “High throughput development of one carbon molecular sieve for many gas separations” Microporous and Mesoporous Materials (2014).
H. Nakagawa, et al. “Control of micropore formation in the carbonized ion exchange resin by utilizing pillar effect,” Carbon 37 (1999) 1455-1461.
Miura, K., “Preparation of novel porous carbons supporting metal nanoparticles and their applications to energy and environmental related issues” J. Ind. Eng. Chem., 11, No. 6, (2005) 797-817.
Neely, J. Characterization of Polymer Carbons Derived from Porous Sulfonated Polystyrene, Carbon 19 (1980) 27-36.
Ning et al., Carbon Molecular Sieve Membranes Derived from Matrimid® polyimide for Nitrogen/Methane Separation, Carbon 66 (2014) 511-522.
Tagliabue, et al., Natural Gas Treating by Selective Adsorption: Material Science and Chemical Engineering Interplay, Chemical Engineering Journal 155 (2009) 553-566.
Related Publications (1)
Number Date Country
20170368493 A1 Dec 2017 US
Provisional Applications (1)
Number Date Country
62108113 Jan 2015 US