This invention relates to a method and apparatus for separating a stack of folded articles, such as paper towels, napkins, facial tissues or the like, into packs having a desired number of folded articles.
There are many products, as exemplified by paper tissue, toweling and napkins, etc., which are commonly provided to consumers in stacked form as packs of folded or interfolded individual sheets. These packs of stacked sheets are often staple items which must be produced at very low cost. Producing such products at low cost typically requires the use of high-speed processes and equipment. Such processes are not limited to the production and delivery of paper products, but are widely used in the production of other products such as foil, textile, synthetic sheeting and other industries.
Such products are often formed from one or more continuous webs of materials or from one or more streams of sheets which are folded in a folding apparatus into the desired configuration and deposited in a stacking region extending downstream from the folding apparatus. The stack of sheets in the stacking region is then periodically separated into packs having a desired number of sheets.
Experience has shown that the steps of cutting individual sheets from a web or webs of material, and folding or interfolding the individual sheets to form a stack of folded sheets can be accomplished at higher speeds than subsequent downstream processes such as: separating a stack of the folded material into individual packs having a desired number of sheets; performing secondary folding of a lead or trailing sheet of each pack; and delivering the completed pack to downstream packaging equipment used to wrap or otherwise prepare the completed packs for delivery and sale.
In the past, a variety of approaches have been utilized for: separating stacks of folded sheets into packs; performing any necessary secondary folding operations; and transporting the completed packs to downstream processing equipment. Some of these prior approaches are illustrated in the following US patents which are commonly assigned to the assignee of the present invention: U.S. Pat. No. 4,770,402 to Couturier; U.S. Pat. No. 4,874,158 to Retzloff; U.S. Pat. No. 6,641,358 to Schmidt et al.; and U.S. Pat. No. 6,322,315 to Schmidt et al.
Although the apparatuses and methods taught by Couturier and in other prior approaches as exemplified by the US patents listed above have been successful and commercially viable in the past, further improvement is desirable. Specifically, it is desirable to provide a separation method and apparatus which is operable at higher speeds than can be achieved using prior approaches. Also, it is desirable to provide improved separation methods and apparatuses having a more straightforward construction and operation, ideally having fewer components, which can be produced and operated at lower cost and with higher efficiency and reliability.
Prior separating methods and apparatuses have also generally been limited to use with folded sheets issuing along a substantially vertically oriented folded sheet path to form a stack in which the successive sheets rest vertically upon one another. It is desirable to provide an improved apparatus and method for separating stacks of sheets oriented in a direction other than vertical, and particularly desirable to provide a method and apparatus for separating a horizontally-directed stack of sheets into individual packs.
The invention provides a method and apparatus for separating a stack of folded sheets by inserting a first, second, third and fourth count fingers into four successive openings in the stack, and separating the stack between the second and third count fingers. Where separation is carried out after a desired number of folded sheets have passed the third count finger, a completed pack having the desired number of sheets may be formed downstream from the third count finger.
A separation method or apparatus, according to the invention, may be utilized for separating stacks of sheets oriented vertically, horizontally, or at some other angle for horizontal and vertical. Separation, according to the invention, may also be utilized in combination with a wide variety of folding apparatuses and methods, and be performed at separation rates which are substantially higher than can be achieved with previous separating methods and apparatuses. The invention also may be practiced utilizing apparatuses which are elegantly simple in their construction and operation, to thereby provide significant advancements and advantages over prior separating apparatuses and methods. In some forms of the invention, one or more count fingers and their associated drive and guide members may be advantageously combined into a count finger cassette of compact size and rugged construction which will readily be recognized as providing a number of significant advances and advantages over prior approaches to separating stacks of folded articles into packs.
In one form of the invention, a method is provided for separating a stack of folded sheets disposed in a stacking region into completed packs having a desired number of folded sheets. The stacking region extends in a downstream direction along a folded sheet path, with the folded sheets in the stack having successive folds alternatively disposed on opposite sides of the folded sheet path, with each fold joining two successive panels of the sheet opening from one another on the opposite side of the folded sheet path to form an opening between successive folds. The method includes inserting first, second, third and fourth count fingers into the stack respectively into four successive openings in the stack, and separating the stack between the second and third count fingers to form a completed pack downstream from the third count finger.
The invention may also include moving the completed pack out of the stacking region. The invention may further include pulling the completed pack away from the remainder of the stack by moving the inserted first and second count fingers together in a downstream direction.
Some forms of the invention may include inserting the first and second count fingers into the stack at opposite transverse edges of a penultimate panel of a last folded sheet of the completed pack, downstream and upstream respectively from the penultimate panel. The third and fourth count fingers are inserted into the stack at opposite transverse edges of a second panel of a first sheet of the next pack, upstream and downstream respectively from the second panel.
Some forms of the invention may include inserting a strip finger between the second and third count fingers over the penultimate panel of the completed pack. The strip finger may then be utilized for moving the completed pack in a downstream direction as part of the process of moving the completed pack out of the stacking region. A build finger may also be positioned downstream from a first panel of the completed pack for supporting the downstream end of the completed pack. In similar fashion, in some forms of the invention, a build finger is positioned downstream from the first panel of the next pack for supporting the downstream end of the next pack.
In some forms of the invention, the completed pack is pulled away from the remainder of the stack by moving the first and second count fingers together in the downstream direction. In some forms of the invention, a separator finger may be inserted between the second and third strip fingers to facilitate pulling the completed pack away from the remainder of the stack.
In some forms of the invention, the first and second count fingers are moved away from the third and fourth count fingers in the downstream direction after all four count fingers are inserted into the four successive openings, to thereby create a gap between the second and third count fingers. A strip finger and/or build finger may then be inserted into the gap to facilitate pulling the completed pack away from the remainder of the pack and/or supporting the downstream end of the next pack. In some forms of the invention, a strip finger inserted into the stack upstream from the second count finger is moved in a downstream direction together with the first and second count fingers. In other forms of the invention, once the strip finger has been inserted upstream from the second count finger, the first and second count fingers are refracted. In some forms of the invention, after a build finger is inserted between the second and third count fingers, downstream from the first panel of the next pack, the third and fourth count fingers are retracted and the build finger is used for supporting the downstream end of the next pack.
Separation, according to the invention, may be carried out while the stack is being built in the stacking region. For example, where the stack of folded sheets is moving at a build rate in the downstream direction along the folded sheet path as folded sheets are added to an upstream end of the stack in the folding region, the four count fingers may be inserted into the moving stack in such a manner that the four count fingers continue to move in a downstream direction along the folded sheet path as the stack continues to build upstream from the count fingers in the folding region. In some forms of the invention, the first and second count fingers may then be moved away from the third and fourth count fingers in the downstream direction, after all four count fingers are inserted into the four successive openings, at a speed greater than the build rate, to thereby create a gap in the stack between the second and third count fingers.
Where the invention is practiced with a stack moving at the build rate in the downstream direction through the stacking region, the invention may also include inserting strip and/or build fingers between the second and third count fingers while the count fingers are moving in the downstream direction, and also moving the strip and/or build fingers in the downstream direction. In forms of the invention having a stack moving at the build rate through the stacking region, wherein the first and second build fingers are moved away from the third and fourth count fingers to create a gap between the second and third count fingers, strip and/or build fingers moving at the build rate or another rate of speed may be inserted into the gap formed between the second and third count fingers.
In some forms of the invention, a single set of four count fingers is utilized for performing each and every separation of the stack into packs.
In other forms of the invention, another set of four count fingers may be utilized for making the next separation in the stack, in the same manner as the separation was performed using the first set of count fingers to perform the first separation.
In some forms of the invention, each of the first, second, third and fourth count fingers is driven independently. It will be appreciated, by those having skill in the art, that even with each count finger being driven independently by a separate drive source, the present invention requires fewer drive or actuation arrangements than have been required in prior separation apparatuses and methods.
In some forms of the invention, each of the first, second, third and fourth count fingers is individually mounted for independent movement along the folded sheet path. In some forms of the invention, each of the count fingers is fixedly attached to a separate endless drive member for independent movement along a separate closed count finger path having a working segment thereof disposed in a path extending substantially parallel to the folded sheet path along at least a portion of the stacking region. In some forms of the invention, multiple ones of at least one of the first, second, third and fourth count fingers may be fixedly attached to the same endless drive members at a desired angular displacement therebetween. For example, in some forms of the invention two “first” count fingers may be attached to the same endless drive member at an angular displacement of 180 degrees from one another, to add increased flexibility and speed in practicing of the invention.
In some forms of a separation method or apparatus, according to the invention, a fold finger is provided. A method according to this aspect of the invention includes inserting the fold finger in a fold adjacent to a first panel of a next pack upstream of the completed pack. In some forms of the invention, the method according to this aspect also includes advancing the fourth count finger downstream of the next pack prior to the step of inserting the fold finger. In some forms of the invention, the method according to this aspect includes inserting the fold finger such that the fold finger is positioned upstream of the second count finger and downstream of the third count finger such that the fold finger and third finger are positioned in adjacent folds of the next pack, and thereafter advancing the fourth count finger. In some forms of the invention, the method can include inserting the fold finger upstream of the strip finger and the build finger.
In some forms, methods of separation can include directing a blast of air at the first panel of the next stack to fold the first panel of the next pack about the fold finger to place the first panel in a generally upright presentation.
In one form of the invention, a method is provided for separating a stack of folded sheets into individual packs having a desired number of sheets, while the stack is being continually built in a stacking region extending from an upstream to a downstream direction along a folded sheet path with the stack moving generally downstream at a build rate. The folded sheets in the stack have successive folds in the stack alternatively disposed on opposite sides of the folded sheet path, with each fold joining two successive panels opening from one another on the opposite side of the folded sheet path to form an opening between successive folds. The downstream end of the pack being built is supported with a build finger. When the pack being built has reached the desired number of folded sheets, first, second, third and fourth count fingers are sequentially inserted into four successive openings in the stack as the stack continues to build upstream from the third and fourth count fingers. The first and second count fingers are inserted into the stack at opposite transverse edges at a penultimate panel of a last folded sheet of the completed pack, downstream and upstream respectively from the penultimate panel. The third and fourth count fingers are inserted into the stack at opposite transverse edges of a second panel of a first sheet of the next pack, upstream and downstream respectively from the second panel, to define a completed pack downstream from the third count finger.
The count fingers are moved downstream at the build rate until all of the count fingers have been inserted. The first and second count fingers are then moved in the downstream direction, away from the third and fourth count fingers, at a speed faster than the build rate to form a gap between the second and third count fingers, and to pull the completed pack away from the remainder of the stack. In some forms of the invention, a strip finger may then be inserted into the gap between the second and third count fingers over the penultimate panel of the completed pack. The completed pack may then be moved out of the folding region using the strip finger at an upstream end of the completed pack and the build finger at the downstream end of the completed pack. The first and second count fingers may also be utilized for pulling the completed pack out of the stacking region. Alternatively, in some forms of the invention, the first and second count fingers may be retracted after insertion of the strip finger.
In some forms of the invention, the completed pack may then be removed from and/or released by the build and strip fingers, and the downstream end of the next pack may be transferred from the third and fourth count fingers to the build finger.
A method, according to the invention, may utilize any combination of the processes and steps described above. A method, according to the invention, may be repeated for separation of each complete pack from the remainder of the stack.
In some forms of the invention, the method can include inserting a fold finger into the stacking region downstream of the third and fourth count fingers and thereafter moving the fourth count finger in the downstream direction at the speed faster than the build rate. In some forms of the invention, the method can further include inserting a fold finger into the stacking region downstream of the third count finger and upstream of the fourth count finger after moving the first, second, and fourth count fingers in the downstream direction at the speed faster than the build rate.
In some forms of the invention, the method can include the step of removing the completed pack from the build and strip fingers, and directing a blast of air at a first panel of the next pack to fold the first panel about the fold finger while the completed pack is removed form the strip and build fingers. In some forms of the invention, the method can include the step transferring the downstream end of the next pack from the third count finger and the fold finger to the build finger after the step of directing the blast of air.
The invention may also take the form of an apparatus for performing any method according to the invention.
An apparatus, according to the invention, may include first, second, third and fourth count fingers configured and operatively connected for sequential insertion, starting with the first count finger and ending with the fourth count finger, into the stack, to separate the stack between the second and third count fingers into a downstream portion of the stack extending downstream from the third count finger and an upstream portion of the stack extending upstream from the third count finger. The apparatus may form a completed pack downstream from the third count finger having a desired number of folded sheets, and a next pack upstream from the third count finger. The next pack may be supported upstream from the third and fourth count fingers as additional folded sheets are added to build the next pack into a completed pack having a desired number of sheets.
The count fingers may be configured and operatively connected such that, the first and second count fingers are insertable into the stack at opposite transverse edges of a penultimate panel of a last folded sheet of a completed pack, with the first and second count fingers being insertable downstream and upstream respectively from the penultimate panel. The third and fourth count fingers may be insertable into the stack at opposite transverse edges of a second panel of a first sheet of the next pack, with the third and fourth count fingers being insertable upstream and downstream respectively from the second panel. The count fingers may be further configured and operatively connected in such a manner that the first and second count fingers are movable away from the third and fourth count fingers in the downstream direction, for pulling the completed pack away from the remainder of the stack.
The count fingers may each be individually mounted for independent movement along the folded sheet path. Each of the count fingers may be fixedly attached to a separate endless drive member for independent movement along a separate closed count finger path having a working segment thereof disposed in a portion of the count finger path extending substantially parallel to the folded sheet path along at least a portion of the stacking region. The first and third count fingers may be attached to first and third count finger endless drive members disposed on a first transverse side of the stacking region, with the working segment of the closed count finger path for the first count finger endless drive member being disposed in a substantially parallel side-by-side operating relationship to the working segment of the closed count finger path for the third count finger endless drive member. The second and fourth count fingers may be attached to second and fourth count finger endless drive members disposed on a second opposite transverse side of the stacking region, with the working segment of the closed count finger path for the second count finger endless drive member being disposed in a substantially parallel side-by-side operating relationship to the working segment of the closed count finger path for the fourth count finger endless drive member.
An endless drive member, according to the invention, may take any appropriate form including, but not being limited to a: belt, chain, cable, strap, or any functionally equivalent structure. In one form of the invention, the endless drive members take the form of synchronous belts.
In some forms of the invention, at least one of the respective first, second, third and fourth count fingers and the endless drive member to which that respective count finger is attached may be part of a count finger cassette drive arrangement having a rotatable drive element and at least one rotatable idler element mounted for rotation with respect to a cassette frame member, for moving the endless drive member and the count finger around the closed count finger path. A guide member may also be attached to the cassette frame for guiding the endless drive member along a linear path for a portion of the closed count finger path.
In forms of the invention having a count finger cassette arrangement, the count finger cassette may be operatively mounted adjacent a transverse side of the stacking region in such a manner that the linear path defined by the guide member extends parallel to the folded sheet path. The linear path may be substantially coplanar with the working segment of the count finger path, and in some forms of the invention the linear path may define the working segment of the portion of the count finger path.
In some forms of the invention, a count finger cassette may include two of the count fingers and their associated drive arrangements. In such forms of the invention, the count finger cassette may include a cassette frame, a first and a second endless drive member each having at least one count finger attached thereto. The first endless drive member and the second endless drive member are each operatively mounted to the cassette frame for independent movement along separate first and second endless drive member paths, with the first and second endless drive member paths being disposed substantially parallel to one another in a side-by-side relationship. The first endless drive member has at least one count finger attached thereto. In similar fashion, the second endless drive member also has at least one count finger attached thereto.
A count finger cassette, according to the invention, may also include first and second rotatable drive elements, operatively and respectively connect the first and second endless drive members to the cassette frame. The first and second rotatable drive elements are also adapted for attachment thereto of respective first and second drivers for rotating the rotatable drive elements about respective first and second drive axes extending substantially perpendicular to the paths of the endless drive members. The cassette may further include first and second rotatable idler elements operatively and respectively connecting the first and second endless drive members to the cassette frame for rotation about respective first and second idler element axes extending substantially perpendicular to the paths of the endless drive members.
In some forms of a count finger cassette, according to the invention, the axis of the first drive element is coaxial with the axis of the second idler element, and the axis of the second drive element is coaxial with the axis of the first idler element. The first endless drive member is operatively connected to the first drive and idler elements, and is moveable by the first drive element independently from the second endless drive member. The second endless drive member is operatively connected to the second drive and idler elements, and is moveable by the second drive element independently from the first endless drive member.
The first and second drive elements may be journaled to the cassette frame for rotation with respect to the cassette frame about the first and second drive element axes, respectively. The first and second idler elements may be journaled upon the second and first drive elements respectively, for rotation with respect to the cassette frame and also with respect to the second and first drive elements about the second and first drive element axes, respectively.
In some forms of the invention, the count fingers are operatively mounted in a first and second count finger cassette arrangement, with the first count finger cassette arrangement including the first and third count fingers, and the second count finger arrangement including the second and fourth count fingers. The first and second count finger cassette arrangements are mounted along opposite transverse sides of the folded sheet path in the stacking region, for practicing the invention.
In some forms of the invention, a plurality of count finger arrangements, each having two of the count fingers operatively attached to be driven by a separate one of the first and second drive elements are mounted with their drive element axes being aligned to form an array of count finger cassettes having their respective count fingers align substantially parallel to the drive element axes. With such an arrangement, for example, a plurality of first count finger cassette arrangements may each include a first and a third count finger, according to the invention, with the first and third count fingers being respectively aligned with one another in a timed relationship with respect to and about the drive element axes. In some forms of the invention, at least one common drive shaft may extend along one of the drive element axes to drive the drive elements disposed about the one drive element axis of a plurality of cassettes in unison with one another. In some forms of the invention, a second common drive shaft may extend along the other drive member axes for driving the plurality of other drive elements about the other of the drive element axes of the cassettes in unison. In some forms of the invention, the cassettes are supported on one or both of the drive shafts.
In some forms of the invention, at least one of the respective count fingers and the endless drive member to which the respective count finger is attached are part of a count finger cassette having a drive pulley mounted for rotation with respect to the cassette frame, the drive pulley mechanically coupled to a drive shaft for moving the endless drive member and count finger around the closed count finger path. In some forms of the invention, the count finger cassette can include a cassette frame and a first endless drive member and a second endless drive member, each operatively mounted to the cassette frame for independent movement along first and second endless drive member paths.
In some forms of the invention, the first and second endless drive member paths are disposed substantially parallel to one another in a side-by-side relationship, wherein the first endless drive member has at least one count finger attached thereto and the second endless drive member has at least one count finger attached thereto. The count finger cassette can also include a first drive pulley and a second drive pulley each operatively mounted to the cassette frame for independent rotation relative thereto. The first endless drive member being driven around a first closed count finger path by the first drive pulley, and the second endless drive member being driven around a second closed count finger path by the second drive pulley.
In some forms of the invention, the first and second drive pulleys are coaxially aligned for rotation about a common axis, and wherein each of the first and second drive pulleys has a geared portion adapted for mechanical communication with first and second drive shafts respectively, the first and second drive shafts rotatable about respective first and second drive shaft axes spaced apart from the common axis.
In some forms of the invention, the first and second drive pulleys include a driving portion concentrically arranged with the geared portion and having an outer peripheral diameter less than an outer peripheral diameter of the geared portion. The driving portion of the first drive pulley drives the first endless drive member about the first closed count finger path, and the driving portion of the second drive pulley drives the second endless drive member about the second closed count finger path.
In some forms of the invention a plurality of count finger cassettes are provided. The plurality of count finger cassettes having their common axes aligned to form an array of count finger cassettes having their respective count fingers aligned substantially parallel to the first and second drive shaft axes. The first drive shaft extends along the first drive shaft axis and is mechanically coupled to each of the plurality of count finger cassettes to drive the first drive pulley of each of the plurality of count finger cassettes. In some forms of the invention, the second drive shaft extends along the second drive shaft axis and is mechanically coupled to the plurality of count finger cassettes to drive the second drive pulley of each of the plurality of count finger cassettes.
In some forms of the invention, each of the plurality of count finger cassettes are coupled to the first and second drive shafts through a geared arrangement, with a portion of the geared arrangement coaxially mounted on the first and second drive shafts, and another portion of the geared arrangement is formed on the first and second drive pulleys.
In some forms of the invention, the apparatus further includes a plurality of air blast nozzles wherein at least one air blast nozzle of the plurality of air blast nozzles is positioned between adjacent ones of the plurality of count finger cassettes, the at least one air blast nozzle operable to direct a blast of air at a next pack upstream of the completed pack.
The invention may also take the form of a count finger cassette, for separating a stack of folded sheets into packs having a desired number of sheets. A count finger cassette, according to the invention, may include a single one of the first, second, third and fourth count fingers. Alternatively, a count finger cassette, according to the invention, may include a pair of the first, second, third and fourth count fingers.
One form of a count finger cassette, according to the arrangement includes a frame, first and second rotatable drive elements, first and second rotatable primary idler elements, first and second endless drive members each having at least one count finger extending outward therefrom, and a guide element. The frame defines first and second spaced parallel rotational axes. The first and second drive elements are respectively journaled for rotation independently from one another about the first and second rotational drive axes. The first drive element is adapted to receive a first driving input for driving the first drive element about the first drive axis. In similar fashion, the second drive element is adapted to receive a second driving input for driving the second drive element about the second drive axis.
The first primary idler element is journaled for rotation upon and independently from the second rotatable drive element about the second rotational axis. The second primary idler element is journaled for rotation upon and independently from the first rotatable drive element about the first rotational axis.
The first endless drive member is drivingly engaged with a portion of the outer peripheries of the first primary idler element and the first rotatable drive element, to thereby at least partly define a first substantially planar path for traveling the first endless drive member extending generally perpendicular to, and around the first and second rotational axes.
The second endless drive member is drivingly engaged with a portion of the outer peripheries of the second primary idler element and the second rotatable drive element, to thereby at least partly define a second substantially parallel path for travel of the second endless element extending generally perpendicular to, and around the first and second rotational axes, with the second planar path lying in a substantially side-by-side relationship to the first substantially planar path.
The guide members attached to the frame and configured for urging both the first and second endless drive members to travel substantially in parallel with one another along a substantially straight line for a portion of the respective paths of travel of the first and second endless members.
In some forms of the invention, the first and second rotatable drive elements of a cassette, according to the invention, may include respective central bores therein for passage therethrough of respective first and second drive shafts. The drive shafts are drivingly securable to the first and second drive shafts respectively. In some forms of the invention, for example, the drive shafts are keyed to their respective drive element, for example.
In some forms of a cassette, according to the invention, the cassette may include one or more additional idler elements mounted to the frame for rotation about respective additional idler element axes. The additional idler elements are operatively connected to one or the other of the first and second endless drive members for further defining the path of one or the other of the first and second endless drive members. Some forms of a cassette, according to the invention, may also include at least one separator element disposed between adjacent rotatable parts mounted for rotation about the same rotational axis.
The invention may also take the form of a folding and separating apparatus including a folding roll and a count finger cassette according to the invention. The folding roll may be rotatably mounted for rotation about a roll axis, for providing a stream of folded sheets to a stacking region located downstream from the roll. The roll may include an annular groove therein, opening outward through the periphery of the roll. The count finger cassette may have a portion thereof that is operatively disposed within the annular groove. The annular groove in the roll may define a width thereof in the axial direction of the roll axis. The portion of the count finger cassette disposed in the annular groove may have a width, in the direction of the roll axis, that is less than the width of the annular groove. The count finger cassette in such an embodiment of the invention may take the form of any count finger cassette described herein or in keeping with the scope of the invention. The count finger cassette, in such a folding and separating apparatus, may also have a width in the direction of the roll axis that is sufficiently less than the width of the annular groove to allow for entry of other elements, such as a packing finger as is known in the art for example, into the annular groove alongside the count finger cassette.
Other aspects, objects and advantages of the invention will be apparent from the following detailed description and accompanying drawings describing exemplary embodiments of the invention.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention.
The folding arrangement 102 of the exemplary embodiment 100 is a typical counter-rotating folding roll arrangement of a type well known in the art. Specifically, the folding arrangement 102 includes a first and a second folding rolls 106, 108, mounted for counter-rotation about first and second folding roll axes 110, 112. The first and second roll axes 110, 112 extend parallel to one another, and the first and second rolls 106, 108 are positioned to form a nip 114 between outer peripheries 105, 107 of the rolls 106, 108.
A stream of cut sheets, or a web of material is fed through the nip 114 and folded or interfolded by the rolls 106, 108, into a desired folded configuration, such as one of the patterns illustrated in
More specifically, the sheets folded by the folding arrangement 102 are disposed in a stacking region 116 of the separating arrangement 104. The stacking region 116 extends along a folded sheet path 118 defining a downstream direction, as indicated by arrow 120. The folded sheet path 118 may be thought of as a plane extending generally parallel to the roll axes 110, 112 through the nip 114 between the folding rolls 106, 108. In
The folded sheets in the stack 115 have successive folds A, B, C . . . n, in the stack 115 alternatively disposed on opposite sides of the folded sheet path 118. Each fold A, B, C . . . n joins two successive panels opening from one another on the opposite side of the folded sheet path to form an opening A′, B′, C′ . . . n′ between successive folds.
As will be understood from
The exemplary embodiment of the folding and separating apparatus 100 can be utilized with a variety of folded sheet configurations, three of which are illustrated in
For example,
It will be understood that the configurations shown in
The separating arrangement 104 in the first exemplary embodiment of the folding and separating apparatus 100 includes first, second, third and fourth count fingers 121, 122, 123, 124 configured and operatively connected for sequential insertion, in a manner described in more detail below, to separate the stack 115 into separate parts upstream and downstream from the third count finger 123.
In the first exemplary embodiment of the folding and separating apparatus 100, the first and third count fingers 121, 123 are part of a first (or upper in the orientation illustrated in
In
As shown in
As further indicated in
As shown in
As shown in
As shown in
As shown in
As further shown in
Although operation of the first exemplary embodiment of the folding and separating apparatus 100 has been described herein with regard to a stack 115 of material having an interfolded first and last panel 138, 136, it will be understood that the invention is not limited to use with interfolded products. It will be understood, by those having skill in the art, from the descriptions given herein, that the invention can also be practiced with efficacy for separating stacks of non-interfolded material, including but not limited to: stacks of material having perforations or lines of weakness in the panels where separation of the stack is desired; or stacked, folded or non-folded individual sheets which are not interfolded.
From an examination of
In some forms of the invention, the separator arrangement 104 can simply continue to drive the first and second count fingers 121, 122 in the downstream direction 120 at a faster rate than the third and fourth count fingers 123, 124 are being driven to complete the separation of the upstream and downstream portions 130, 134 of the stack 115 from one another. In other forms of the invention, the separator arrangement 104 will also include other elements, such as a strip finger and/or a build finger which are utilized in conjunction with the four count fingers 121, 122, 123, 124. Operation of one form of the invention utilizing strip and build fingers 144, 146 is described below in conjunction with
As shown in
It is also contemplated that grippers (not shown) holding the folded sheets to the rolls 106, 108 during the folding process will release their grip on the folded sheets substantially as the folds A, B, C . . . n reach the intersection points 103, 109 of the roll peripheries 105, 107 with the count fingers 121, 122, 123, 124 at the half-full panel distance W/2 on either side of the sheet path 118, or at an angular position along the peripheries 105, 107 just before the folds A, B, C . . . n reach the intersection points 103, 109 of the roll peripheries 105, 107.
As specifically illustrated in
Although not expressly illustrated in the drawings, it will be understood that the insertion of the third count finger 123 into the opening D′, in the manner described above in relation to
In similar fashion, it will be understood that the insertion of the second count finger 122 into the opening C′, in the manner described above in relation to
As also shown in
In similar fashion, as shown in
As will be understood by those having skill in the art, during the process of folding successive sheets, the sheets are held against the peripheries 105, 107 of the folding rolls 106, 108 by gripper arrangements (not shown), at various points along the peripheries 105, 107 of the folding rolls 106, 108. Such gripper arrangements may be mechanical, vacuum operated, or any other appropriate form known in the art. During operation of the invention, it is contemplated that the gripper arrangements release the sheets just before the folds reach the first and second points of intersection 103, 109 respectively.
As is known in the art, folded sheets sometimes have a tendency to follow the peripheries of the folding rolls for a short angular distance after the folds have been released by the gripper arrangements. The folded sheet guides 127, 129 of the invention help to guide the folded sheets into the stacking region 116. As will be appreciated from the drawings and descriptions of exemplary embodiments herein, the ability to place the folded sheet guides 127, 129 closely adjacent the first and second points of intersection 103, 109 afforded by the cassettes 126, 128, or other structures in accordance with the invention, provides considerable advantage as compared to prior structures and methods for urging separation of folded sheets from folding rolls, particularly in folding rolls operating at higher speeds.
The exemplary embodiment of a folding and separating apparatus shown in
As illustrated in
As shown in
At the point in operation of the separator arrangement 104 shown in
As shown sequentially in
As shown in
It is contemplated that in alternate embodiments of the invention, the strip and build fingers 144, 146 may be refracted for releasing the completed pack 148, rather than having the completed pack 148 be removed from between the strip and build fingers 144, 146 in the manner shown in
The count finger cassette 126 includes a frame 152, having first and second side plates 154, 156. For purposes of illustration, a portion of the second side plate 156 has been removed in
As further shown in
The four drive pulley bearings 174 are mounted in the side plates 154, 156. The four secondary idler pulley bearings 176 are pressed into the four secondary idler pulleys 172, with one of the four secondary idler pulley bearings 176 being pressed into each of the four secondary idler pulleys 172. The secondary idler pulley shafts 177 extend through the secondary idler pulley bearings 176 and the small spacer washers 182, and are fixedly attached to the first and second side plates 154, 156 at opposite ends of the secondary pulley shafts 177 by screws 179 which threadably engage the secondary idler pulley shafts 177 and secure them to the side plates 154, 156.
The frame 152 of the count finger cassette 126 defines first and second spaced parallel rotational axes 184, 186. The first and second drive elements, in the form of the first and second drive pulleys 158, 160 are respectively journaled by the drive pulley bearings 174 for rotation independently from one another about the first and second rotational drive axes 184, 186.
As shown in
The first primary idler pulley 162 is journaled for rotation upon a hub portion of the second primary drive pulley 160 about the second rotational axis 186, and one of the large spacer washers 180 is positioned between the second drive pulley 160 and the first primary idler pulley 162, so that the first primary idler pulley 162 may rotate freely and independently from the second drive pulley 160. In similar fashion, the second primary idler pulley 164 is journaled on a hub of the first drive pulley 158, and one of the large spacer washers 180 is positioned between the second primary idler pulley 164 and the first drive pulley 158 in such a manner that the second primary idler pulley 164 can rotate about the first axis 184 independently from first drive pulley 158.
As best seen in
The guide member 170 is attached to the side plates 154, 156 along a lower edge thereof, as shown in
As will be appreciated from an examination of
It will be appreciated, by those having skill in the art, that while the first and second cogged belts 166, 168 travel in substantially parallel paths in their respective planes, in other embodiments of the invention, it may be desirable to have the paths traversed by adjacent flexible drive members be of a different shape from one another. It will also be appreciated that other embodiments of the invention may use different forms of flexible guide members, such as other types of belts, chains, cables, tapes or straps, etc. It will further be appreciated that different types of drive and idler members may be utilized in other embodiments of the invention. It is also contemplated that in some embodiments of the invention a drive mechanism other than the keyed central bores 188, 190 in the drive members may be utilized. For example, a geared drive arrangement is contemplated wherein the drive members in the cassettes are driven by gear train rather that being directly mounted upon and driven by the count finger drive shafts 192, 194, 208, 210. Other drive arrangements are also contemplated within the scope of the invention.
By virtue of the construction and configuration of the exemplary embodiment of the count finger cassette 126 described above, it will be appreciated that the first and third count fingers 121, 123 may be moved independently relative to one another by rotational inputs applied respectively to the first and second drive pulleys 158, 162.
As further indicated in
The respective first and third count fingers 121, 123 in each of the first count finger cassettes 126 are aligned with one another, in such a manner that when the first count finger actuator motor 198 rotates the first count finger drive shaft 192, the keyed connection between the first count finger drive shaft 192 and the first drive pulley 158 of each of the first count finger cassettes 126 causes only the first count fingers 121 to move about the path defined by the first cogged belt 166 in unison with one another and in alignment with one another substantially parallel to the first and second rotational axes 184, 186. In similar fashion, third count fingers 123 in each of the first count finger cassettes 126 are aligned with one another, in such a manner that when the third count finger actuator motor 200 rotates the third count finger drive shaft 194, the keyed connection between the third count finger drive shaft 194 and the second drive pulley 160 of each of the first count finger cassettes 126 causes only the third count fingers 123 to move about the path defined by the second cogged belt 168 in unison with one another and in alignment with one another substantially parallel to the first and second rotational axes 184, 186.
As further shown in
The respective second count fingers 122, in each of the second count finger cassettes 128 are aligned with one another, in such a manner that when the second count finger actuator motor 212 rotates the second count finger drive shaft 208, the keyed connection 180 between the second count finger drive shaft 208 and the first drive pulley 158 of each of the second count finger cassettes 128 causes the second count fingers 122 to move about the path defined by the first cogged belt 166 of the second count finger cassettes 128 in unison with one another and in alignment with one another substantially parallel to the rotational axes of the second count finger cassettes 128.
In similar fashion, the respective fourth count fingers 124 in each of the second count finger cassettes 128 are aligned with one another in such a manner that, when the fourth count finger actuator motor 214 rotates the fourth count finger drive shaft 210, the keyed connection 190 between the fourth drive shaft 210 and each of the second count finger cassettes 128 causes the fourth count fingers 124 to move in unison with one another and in alignment with one another substantially parallel to the rotational axes of the second count finger cassette 128.
As yet further shown in
Those having skill in the art will appreciate the arrangement shown in
It will also be appreciated, by those having skill in the art, that the construction of the count finger cassettes 126, 128 described herein results in a compact and narrow structure.
With reference to
It will be further understood, that where the annular grooves 125, 131 define a width thereof in the axial direction of the roll axes 110, 112, the portion of the count finger cassette 126, 128 disposed in the annular grooves 125, 131 has a width in the direction of the roll axis 110, 112 that is less than the width of the annular grooves 125, 131, so that the rolls 106, 108 may rotate freely without contacting the sides of the count fingers 121, 122, 123, 124. Experience has shown, that in practicing the invention with a count finger cassette in accordance with the invention, the cassette can have a width which is small enough that other elements often used in folding arrangements having folding rolls, such as packer fingers for example, can also fit within and operate freely next to the count finger cassette within an annular groove in the folding roll.
Although the exemplary embodiments of the invention described herein utilize count finger cassettes having two count fingers per cassette, it will be understood that the invention may be practiced with efficacy and other embodiments having fewer or more count fingers operatively disposed within a single cassette.
The exemplary embodiment of a folding and separating apparatus shown in
The sequence of folding and separating described relative to
With reference to
At this point in operation, the fold finger 244 moves downward along direction 248 into the gap 132. More specifically, the fold finger 244 moves along direction 248 such that it is positioned adjacent to the leading fold 250 of the next pack 150, upstream of the first panel 138. Once inserted, the fold finger 244 moves substantially in unison with the next pack 150 as it continues to build along the downstream direction 120.
Although the fold finger 244 is illustrated as being inserted into the gap 132 after advancing the fourth count finger 124 such that the fold finger 244 is positioned between the third and fourth count fingers 123, 124, other sequences are contemplated. For example, the fold finger 244 can be partially inserted into the gap 132 between the second and the third count fingers 122, 123 to such an extent that the fourth count finger 124 can freely thereafter move upstream from the third count finger 123 as described above. Put another way, the fold finger 244 is not inserted into the gap 132 to such an extent that it blocks the upstream movement of the fourth count finger 124. It will be recognized that such a sequence of insertion will support the build of the next pack 150.
Once the fold finger 244 has been partially inserted, the fourth count finger 124 then moves upstream. After this upstream movement of the fourth count finger 124, the fold finger 244 may be inserted further into the gap 132 to facilitate the folding of the first panel 138 as described below relative to
Turning now to
As can also be seen at
Turning now to
With reference to
With reference to
However, the illustrated configuration of
The first count finger cassette 326 includes a frame 352 and first and second side plates 354, 356 mounted thereto. The first and second drive pulleys 358, 360 are axially aligned so that they are rotatable about a common axis 382 defined by the frame 352. As described above, one drive pulley 358 is mechanically coupled via a drive shaft gear 362 to one drive shaft 392, while the other drive pulley 360 is mechanically coupled via a drive shaft gear 364 to the other drive shaft 394.
With reference to
In a similar manner as that described above at
Also in a similar manner to that described above relative to
By virtue of the construction of the first count finger cassette 326, it will be appreciated that the first and third count fingers 321, 323 are movable independently relative to one another, in a similar manner as that of the first and third count fingers 121, 123 described above relative to
The illustrated embodiment of the first count finger cassette 326 also includes a guide member 370 at a bottom of the frame 352 for urging the first and second cogged belts 366, 368 to travel substantially in parallel with on another in a straight line over a working portion of their respective paths. The guide member 370 is also configured to maintain the separation between the first and second cogged belts 366, 368. The frame 352 also provides a tension member 377 for maintaining the appropriate tension in the cogged belts 366, 368.
Turning now to
As illustrated, there are two first count finger cassettes 326 mounted to an upper portion of the separator 304, and two like second count finger cassettes 328 mounted to a lower portion of the separator arrangement 304. The two first count finger cassettes 326 are operably coupled to the drive shafts 392, 394 such that the motion of the first cogged belt 366 of each of the first count finger cassettes 326 is synchronous and commensurate with the rotation of drive shaft 392. Likewise, the rotation of the second cogged belt 368 of each of the first count finger cassettes 326 is synchronous and commensurate with the rotation of drive shaft 394. It will be recognized that the same configuration is present relative to the second count finger cassettes 328.
Each of the first and second count finger cassettes 326, 328 are mounted to horizontal frame members 402, with the first count finger cassettes 326 mounted to the horizontal frame member 402 below the drive shafts 392, 394, and the second count finger cassettes mounted to the horizontal frame member 402 above the drive shafts 404, 406 of the lower portion of the separator arrangement 304. The horizontal frame members 402 are vertically spaced apart by vertical frame members 403 as illustrated. Each of the first and second cassettes 326, 328 are removable from the horizontal frame members 402 to effectuate their quick and efficient replacement, while leaving the adjacent cassettes 326, 328 undisturbed.
For example, in the event one of the first count finger cassettes 326 fails, it can simply be removed from the frame member 402 and decoupled from the shafts 392, 394 without the need for the removal or decoupling of any adjacent first count finger cassettes 326. The same is true for the second count finger cassettes 328.
Further, the lower horizontal frame member 402 also carries an air supply system 405 providing the nozzles 254 as described above relative to
The upper drive shafts 392, 394 are mounted to the horizontal frame members 402 via a series of pillow block bearings. One drive shaft 392 is driven by motor 408, with the other drive shaft 394 driven by motor 410. Similarly, the lower drive shafts 404, 406 are driven by motors 412, 414 respectively.
As a result, and in a substantially similar way as that described above relative to
It will be recognized from the foregoing that the second embodiment of the first and second count finger cassettes 326, 328 described above can be utilized in separator arrangements including or omitting the fold finger 244 as described above relative to
All references, including publications, patent applications, and patents cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application is a Continuation-in-Part of co-pending U.S. patent application Ser. No. 12/759,784, filed Apr. 14, 2010, the entire teachings and disclosure of which are incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
4277058 | Biggar, III | Jul 1981 | A |
4285621 | Spencer | Aug 1981 | A |
4447219 | Bunch, Jr. | May 1984 | A |
4460169 | Bartesaghi | Jul 1984 | A |
4721295 | Hathaway | Jan 1988 | A |
4736936 | Hertel et al. | Apr 1988 | A |
4770402 | Couturier | Sep 1988 | A |
4874158 | Retzloff | Oct 1989 | A |
4938465 | Marsiletti | Jul 1990 | A |
5040663 | Gould et al. | Aug 1991 | A |
5110101 | Roth | May 1992 | A |
5730695 | Hauschild et al. | Mar 1998 | A |
6290635 | Demmel et al. | Sep 2001 | B1 |
6322315 | Schmidt, V et al. | Nov 2001 | B1 |
6641358 | Schmidt, V et al. | Nov 2003 | B2 |
7264583 | Gelli et al. | Sep 2007 | B2 |
7470102 | Gendron et al. | Dec 2008 | B2 |
7997570 | De Matteis | Aug 2011 | B2 |
8240653 | Walsh et al. | Aug 2012 | B2 |
20060073007 | De Matteis | Apr 2006 | A1 |
20090208319 | De Matteis | Aug 2009 | A1 |
20110158782 | Walsh et al. | Jun 2011 | A1 |
20120190524 | Butterworth et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
1611343 | Apr 1972 | DE |
2 377 792 | Oct 2011 | EP |
Number | Date | Country | |
---|---|---|---|
20110254214 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12759784 | Apr 2010 | US |
Child | 12966666 | US |