The present disclosure relates to extractor cleaning machines, and more particularly, to separator configurations for extractor cleaning machines.
An extractor cleaning machine typically includes a separator for separating air from cleaning liquid prior to discharging the air.
In one embodiment, the disclosure provides a cleaning machine having a housing, a fluid distributor that dispenses fluid, a supply tank connected to the housing to supply fluid to the fluid distributor, a suction nozzle that engages a surface to be cleaned, a suction source within the housing and in fluid communication with the suction nozzle to draw fluid into the suction nozzle from the surface to be cleaned, and a recovery tank selectively mounted on the housing and in fluid communication with the suction nozzle and the suction source to store fluid drawn through the suction nozzle. The recovery tank includes a container having a bottom wall and sidewalls projecting upwardly from the bottom wall thereby defining an open top, a cover connected to the open top of the container, and an air-liquid separator extending into the recovery tank from the open top. The air-liquid separator has a vertical sidewall, a lower wall extending laterally from a lower end of the vertical sidewall toward an adjacent sidewall of the sidewalls of the container. The vertical sidewall, the lower wall, and the adjacent sidewall define a separation chamber. The vertical sidewall includes a vertical rib extending outwardly from the vertical sidewall and into the separation chamber, and the separation chamber includes a dirty fluid inlet receiving fluid from the suction nozzle through the cover, and a dirty fluid outlet directing fluid from the separation chamber into the container.
In one embodiment, the disclosure provides a cleaning machine having a housing, a fluid distributor that dispenses fluid, a supply tank connected to the housing to supply fluid to the fluid distributor, and a suction nozzle that engages a surface to be cleaned. A suction source is positioned within the housing and is in fluid communication with the suction nozzle to draw fluid into the suction nozzle from the surface to be cleaned. A recovery tank is selectively mounted on the housing and in fluid communication with the suction nozzle and the suction source to store fluid drawn through the suction nozzle. The recovery tank includes a container having a bottom wall and sidewalls projecting upwardly from the bottom wall thereby defining an open top, a cover coupled to the open top of the container, and an air-liquid separator extending into the recovery tank from the open top. The air-liquid separator has a vertical sidewall, a lower wall extending laterally from the lower end of the vertical sidewall toward an adjacent sidewall of the sidewalls of the container. The vertical sidewall, the lower wall, and the adjacent sidewall define a separation chamber. The vertical sidewall includes a rib extending outwardly from the vertical sidewall and into the separation chamber. The separation chamber includes a dirty fluid inlet receiving fluid from the suction nozzle through the cover, a first dirty fluid outlet directing fluid from the separation chamber into the container, and a second dirty fluid outlet directing fluid from the separation chamber into the container. The rib is positioned between the first dirty fluid outlet and the second dirty fluid outlet.
In one embodiment, the disclosure provides a recovery tank for a cleaning machine having a housing, a fluid distributor that dispenses fluid, a supply tank connected to the housing to supply fluid to the fluid distributor. A suction nozzle engages a surface to be cleaned, and a suction source is positioned within the housing. The suction source is in fluid communication with the suction nozzle to draw fluid into the suction nozzle from the surface to be cleaned. The recovery tank is mounted on the housing and in to be fluid communication with the suction nozzle and the suction source. The recovery tank stores fluid drawn through the suction nozzle and includes a container having a bottom wall and sidewalls projecting upwardly from the bottom wall thereby to define an open top. A cover is connected to the open top of the container. An air-liquid separator extending into the recovery tank from the open top. The air-liquid separator has a vertical sidewall, a lower wall extending laterally from the lower end of the vertical sidewall toward an adjacent sidewall of the sidewalls of the container. The vertical sidewall, the lower wall, and the adjacent sidewall define a separation chamber. The vertical sidewall includes a vertical rib extending outwardly from the vertical sidewall and into the separation chamber. The separation chamber includes a dirty fluid inlet that receives fluid from the suction nozzle through the cover, a first dirty fluid outlet that directs fluid from the separation chamber into the container, and a second dirty fluid outlet that directs fluid from the separation chamber into the container. The vertical rib is positioned between the first dirty fluid outlet and the second dirty fluid outlet.
Other aspects of the disclosure will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways.
The illustrated extractor 10 includes a base 18, a body 22 coupled to the base 18, a recovery tank 26 coupled to the body 22, a suction source 30, a fluid distribution system (not shown), a supply tank assembly 34 coupled to the body 22, two wheels 38, a suction nozzle 42 and a brush assembly 46. The recovery tank 26 includes an air-liquid separator 26 configured to separate air from the cleaning fluid drawn from the surface. The air-liquid separator 62 includes a rib 90 downstream from the inlet to the recovery tank 26 to direct a first flow path on a first side of the rib 90 and direct a second flow path on a second side of the rib 90 as described below. Other extractors within the scope of the disclosure may include a different type of base, such as including the recovery tank and or supply tank coupled to the base. In addition, other extractors may be different than the illustrated upright configuration. For example, other embodiments of the extractor may include hand held or portable extractors also known as spot cleaners.
The base 18 is movable along the surface 14 to be cleaned. In the illustrated embodiment, two wheels 38 are coupled to the base 18 to facilitate movement of the base 18 along the surface 14. In other embodiments more than two wheels can be utilized. In the illustrated embodiment, the wheels 38 are idle wheels. In other embodiments, one or both of the wheels 38 may be driven wheels.
The illustrated body 22 includes a housing and is pivotally coupled to and extends from the base 18. The body 22 is pivotable or tiltable relative to the base 18 from a generally vertical, or upright, storage position to one or more non-vertical, or inclined, operating positions. Pivoting the body 22 to an operating position facilitates moving the base 18 along the surface 14.
The recovery tank 26 is in fluid communication with the suction nozzle 42 and the suction source 30. The recovery tank 26 is configured to store cleaning fluid and any dirt extracted from the surface 14 through the suction nozzle 42. The suction source 30 is connected to the body 22 and is in fluid communication with the suction nozzle 42. The suction source 30 draws fluid into the suction nozzle 42 from the surface 14 to be cleaned.
The supply tank assembly 34 is configured to store cleaning fluid to be distributed by the extractor 10 onto the surface 14. The fluid distribution system is in fluid communication with the supply tank assembly 34 to draw cleaning fluid from the supply tank assembly 34 and distribute the fluid to the surface 14 through a distribution nozzle 42. In some embodiments, the fluid distribution system may include a pump that propels the cleaning fluid to the surface 14. In another embodiment, gravity moves the cleaning fluid through the distribution nozzle 42 to the surface 14. The body 22 supports one or more actuators that control cleaning fluid delivery from the supply tank assembly 34 through a distributor and a distribution nozzle and onto the surface 14.
With reference to
The clean air outlet 78 permits clean air to flow out of the container 50. The clean air outlet 78 is spaced from the separator 62. The float valve 58 selectively covers the clean air outlet 78 to selectively permit clean air to flow through the clean air outlet 78. When the level of dirty fluid in the container 50 is below a set level, the float valve 58 permits air flow through the clean air outlet 78. When the level of dirty fluid in the container 50 is above the set level, the float valve 58 closes the clean air outlet 78 to inhibit air flow through the clean air outlet 78.
The lower wall 86 extends laterally from a lower end of the vertical sidewall 82 toward an adjacent sidewall 70 of the container 50. The lower wall 86 includes a first portion 86A that extends from the dirty fluid inlet 74 to the rib 90, and a second portion 86B that extends from the rib 90 toward a lower wall end 98 proximate the adjacent sidewall of the container 50. The first portion includes an aperture 94. A first dirty fluid outlet is formed by the aperture 94. In the illustrated embodiment, the aperture 94 is bounded by the adjacent sidewall of the container 50. The lower wall end 98 bounded by the vertical sidewall 82 and the adjacent sidewall of the container 50 form a second dirty fluid outlet.
The vertical sidewall 82, the lower wall 86, and the adjacent sidewall of the container 50 define a separation chamber. The separation chamber receives dirty fluid through the dirty fluid inlet 74 from the suction nozzle 42 through the cover 54. The separation chamber discharges fluid out of the first dirty fluid outlet (at aperture 94) and the second dirty fluid outlet (at lower wall end 98) into the container 50.
The rib 90 extends laterally outward from the vertical sidewall 82 toward the adjacent sidewall 70 of the container 50 and into the separation chamber. In some embodiments, the rib 90 extends horizontally outward from the vertical sidewall 82 and vertically upward from the lower wall 86. The rib 90 is positioned between the first dirty fluid outlet and the second dirty fluid outlet. The rib 90 includes a first side facing toward the aperture 94 and a second side facing toward the lower wall end 98.
As shown in
The rib 90 diverts dirty fluid flow from the dirty fluid inlet 74 into the first flow path 102, the second flow path 106 and the third flow path 110. The dirty fluid is slowed down as it enters the container 50 such that fluid settles at a bottom of the container 50 and air is permitted to exit the clean air outlet 78.
This application claims priority to U.S. Provisional Patent Application No. 62/928,673, filed Oct. 31, 2019, the entire contents of which are hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62928673 | Oct 2019 | US |