Separator drum and compressor impeller assembly

Information

  • Patent Grant
  • 8302779
  • Patent Number
    8,302,779
  • Date Filed
    Friday, September 21, 2007
    17 years ago
  • Date Issued
    Tuesday, November 6, 2012
    12 years ago
Abstract
A fluid handling assembly is for a fluid machine that includes a casing and a shaft disposed within the casing so as to be rotatable about a central axis. An impeller is mounted on the shaft and has an inlet and a rotary separator is mounted on the shaft and has axially spaced apart inlet and outlet ends and an interior separation chamber. The separator is coupled with the impeller such that the separator and the impeller generally rotate as a single unit about the shaft axis and fluid within the separation chamber flows from the separator outlet end directly into the impeller inlet. Preferably, the separator includes a plurality of generally radially-extending blades disposed proximal to the separator inlet end and spaced circumferentially about the axis, the plurality of blades being configured to accelerate fluid flowing into the separator inlet end during rotation of the separator.
Description

The present invention relates to fluid machinery, and more particularly to combination separator and compressor devices.


Centrifugal compressors are known and typically include one or more impellers mounted on a driven shaft and configured to pressurize gas drawn into a central inlet and to discharge the fluid radially outwardly through one or more outlets located at an outer circumferential perimeter thereof. In order to properly function, only gas should be directed into the compressor inlet, such that any liquids should be removed from a fluid stream prior to entry into the compressor. As such, compressors are often used in conjunction with a separator device to remove liquids from the fluid stream prior to entry into the compressor inlet.


One type of separator is a rotary separator that uses centrifugal force to separate out heavier liquids from the gases in a fluid stream and generally includes a rotating drum with an interior flow chamber. Such separators typically utilize static swirl vanes to increase or induce circumferential motion of the fluid stream prior to entry into the drum inner chamber, so as to increase the likelihood of the liquid coming into contact with the inner surface of the drum. However, to increase the effectiveness of the compressor operations, such prior art rotary separators are typically used in combination with a “de-swirl” device which increases the pressure of the gaseous stream and “straightens” or redirects the flow to a more axial direction. That is, the flow exiting the separator drum generally flows through a plurality of static de-swirl vanes and then into the impeller inlet. Although this manner of operating a compressor has been relatively effective, the processes of swirling and then “de-swirling” the fluid flow are believed to cause unrecovered energy losses in a gaseous stream passing through the compressor.


SUMMARY OF THE INVENTION

In one aspect, the present invention is a fluid handling assembly for a fluid machine, the machine including a casing and a shaft disposed within the casing so as to be rotatable about a central axis. The fluid handling assembly comprises an impeller mounted on the shaft and having an inlet and a rotary separator mounted on the shaft. The separator has axially spaced apart inlet and outlet ends and an interior separation chamber. The separator is coupled with the impeller such that fluid within the separation chamber flows from the separator outlet end directly into the impeller inlet.


In another aspect, the present invention is a compressor comprising a casing, a shaft disposed within the casing and rotatable about a central axis, an impeller mounted on the shaft and having a central inlet, and a rotary separator mounted on the shaft. The separator has axially spaced apart inlet and outlet ends and an interior separation chamber. The separator is coupled with the impeller such that fluid within the separation chamber flows through the separator outlet end directly into the impeller inlet.


In a further aspect, the present invention is a fluid handling assembly for a fluid machine including a casing and a shaft disposed within the casing so as to be rotatable about a central axis. The fluid handling assembly comprises an impeller mounted on the shaft and having an inlet and an outlet, the impeller being configured to compress fluid flowing into the inlet and to discharge compressed fluid through the outlet. A rotary separator is mounted on the shaft and has axially spaced apart inlet and outlet ends and an interior separation chamber extending generally between the inlet and outlet ends. The separator is coupled with the impeller such that the separator and impeller rotate as a single unit about the shaft axis and the separation chamber is fluidly connected with the impeller inlet. Further, the separator is configured to remove at least a portion of liquid from fluid passing through the separation chamber from the inlet end and to discharge the fluid through the outlet end and directly into the impeller inlet.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The foregoing summary, as well as the detailed description of the preferred embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings, which are diagrammatic, embodiments that are presently preferred. It should be understood, however, that the present invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:



FIG. 1 is a broken away, perspective view of a combination separator and compressor device having a fluid handling assembly in accordance with the present invention;



FIG. 2 is an enlarged, broken-away axial cross-sectional view of the fluid handling assembly; and



FIG. 3 is a more enlarged, broken-away axial cross-sectional view of the fluid handling assembly.





DETAILED DESCRIPTION OF THE INVENTION

Certain terminology is used in the following description for convenience only and is not limiting. The words “right”, left”, “lower”, “upper”, “upward”, “down” and “downward” designate directions in the drawings to which reference is made. The words “inner”, “inwardly” and “outer”, “outwardly” refer to directions toward and away from, respectively, a designated centerline or a geometric center of an element being described, the particular meaning being readily apparent from the context of the description. Further, as used herein, the word “connected” is intended to include direct connections between two members without any other members interposed therebetween and indirect connections between members in which one or more other members are interposed therebetween. The terminology includes the words specifically mentioned above, derivatives thereof, and words of similar import.


Referring now to the drawings in detail, wherein like numbers are used to indicate like elements throughout, there is shown in FIGS. 1-3 a fluid handling assembly 10 for a fluid machine 1. The machine 1 is preferably a compressor 2 including a casing 3 and a shaft 4 disposed within the casing 3 and rotatable about a central axis 5. The fluid handling assembly 10 basically comprises an impeller 12 mounted on the shaft 4 and having a central inlet 14 and a rotary separator 16 disposed about the shaft 4. The separator 16 has axially spaced inlet and outlet ends 16a, 16b, respectively, and an interior separation chamber 18 extending generally axially between the two ends 16a, 16b. The separator 16 is coupled with the impeller 12 such that the separator 16 and impeller 12 generally rotate as a single unit about the shaft axis 5 and the separation chamber 18 is fluidly connected with the impeller inlet 14. As such, fluid flowing through the separation chamber 18 passes through the separator outlet end 16b and directly into the impeller inlet 14. Further, the separator 16 is fluidly connectable with a source SF (FIG. 1) of fluid such that fluid enters the separator inlet end 16a, the separator 16 being configured to remove at least a portion of liquid from fluid flowing through the separation chamber 18 from the inlet end 16a and to discharge the fluid through the outlet end 16 and into the impeller inlet 18.


Preferably, the impeller 12 has an end contact surface 15 located proximal to the inlet 14 and extending circumferentially about the axis 15 and the separator 16 has an end contact surface 17 located proximal to the outlet end 16b and extending circumferentially about the axis 15. The separator contact surface 17 is disposed against the impeller contact surface 13 so as to define an interface ISI, the separator outlet end 16b being sealingly coupled with the impeller 12 so as to prevent fluid flow through the interface ISI. Thereby, separated or “dried” gas is prevented from flowing outwardly through the interface ISI instead of into the impeller inlet 14, but more importantly, separated liquid externally of the separator 16 is prevented from entering the impeller inlet 14 through the interface ISI.


More specifically, the impeller 12 preferably includes a shroud 20 having a generally radially-extending outer surface 21 and central opening 22, which is preferably at least partially defined by the impeller contact surface 13, the central opening 22 at least partially defining the impeller inlet 14, as described above and in further detail below. The separator outlet end 16b is either disposed against the shroud outer surface 21, so as to extend generally about the inlet opening 14, or is preferably partially disposed within the shroud central opening 22. Most preferably, the separator outlet end 16b has an inwardly stepped or offset lip 19 extending axially toward the impeller 12 and circumferentially about the axis 5. The lip 19 at least partially provides the separator contact surface 17 and is sized to fit within the inlet opening 14 of the impeller 12 such that the separator contact surface 17 is disposed within and against the impeller contact surface 13. With this arrangement, radially-outward expansion of the separator 16 during rotation thereof causes the lip 19 to seal against the inner surface 13 of the impeller 12, to thereby substantially prevent flow through the interface ISI. However, the separator 16 may be connected with the impeller 12 in any other appropriate manner (e.g., by radial flanges on the separator 16 and/or impeller 12) or may even be integrally connected or formed with the impeller 12, as discussed below.


Referring particularly to FIG. 2, the impeller 12 is preferably generally similar to a conventional centrifugal compressor impeller and includes a hub 26 mounted on the shaft 4, a plurality of vanes 28 spaced circumferentially about the axis 5, and the shroud 20 as discussed above. Each vane 28 has a first side edge 28a connected with the hub 26 and an opposing second side edge 28b, the shroud 20 being connected with the second edges 28b of all of the vanes 28 so as to be spaced axially from the hub 26 and spaced radially outwardly from the shaft 4. The central opening 22 is spaced radially outwardly from the shaft 4 so as to define the impeller inlet opening 14, which is thus preferably generally annular. Further, the hub 26 and the shroud 20 each has inner and outer edges 27a, 27b and 31a, 31b, respectively extending circumferentially about the central axis 5 and each vane 28 has inner and outer ends 28a, 28b, respectively. Each vane inner end 28a is located generally proximal to the inner edges 27a, 31a of the hub 26 and the shroud 20, and each vane outer end 28b is located generally proximal to the outer edges 27, 31b of the hub 26 and the shroud 20. Furthermore, each vane 28 is preferably formed so as to have a generally axial inner portion 34 extending from the first end 28a and a generally radial outer portion 35 extending from the axial portion 34 to the outer end 28b, and has opposing side surfaces 36A, 36B extending between the two ends 28a, 28b and along the inner and outer blade portions 34, 35.


With this structure, the impeller 12 further has a plurality of flow channels 40, each flow channel 40 being defined between a separate one of a plurality of pairs of the vanes 28 and extending between the blade inner and outer ends 28a, 28b. Each flow channel 40 has an inlet end 33 fluidly coupled with the impeller inlet 14 and an outlet 32 defined generally between the hub and shroud outer circumferential edges 27b, 31b. As such, fluid entering the impeller inlet 14 flows through the inlet(s) 33 of at least one and preferably a plurality of the flow channels 40, and thereafter radially outwardly through one or more outlets 32 and generally beyond the hub and shroud outer edges 27b, 31b.


As mentioned above, the impeller 12 is at least generally similar to conventional centrifugal impellers, but preferably modified as follows. The hub 26 and the shroud 20 preferably each have an inlet end 26a, 20a, respectively, that has a greater axial length in comparison with conventional impellers, so as to extend through a static inlet member 64, as described below, and the blade inner ends 33 are also correspondingly axially lengthened. However, the impeller 12 may alternatively be constructed substantially identically to a conventional compressor impeller, with the inlet member 64 and/or separator 16 being appropriately modified to enable connection of the separator 16 with the impeller 12.


Referring to FIGS. 1 and 2, the separator 16 preferably includes a generally tubular body 42 having inner and outer circumferential surfaces 44, 45, the inner surface 44 defining the separator chamber 18 and being configured to separate liquid from a mixed fluid flow F contacting the surface 44 during rotation of the separator 16. As best shown in FIG. 3, the tubular body 42 includes at least one and preferably a plurality of discharge openings 46 extending generally radially between the inner and outer surfaces 44, 45 and spaced circumferentially about the axis 5. The discharge openings 46 are configured to provide a liquid discharge or outlet passage for channeling liquids out of the separator interior chamber 18. Further, the tubular body 42 preferably also includes a generally annular groove 48 extending radially outwardly from the inner surface 44, with the plurality of the discharge openings 46 preferably extending radially between the groove 48 and the outer surface 45. The annular groove 48 provides a collection trough for liquids on the separator inner surface 44, such liquid subsequently flowing out of the separator 16 through the discharge openings 46, as discussed in greater detail below.


Referring to FIGS. 2 and 3, the separator body inner surface 44 includes a generally frustaconical section 47 having a first, radially-smaller circumferential edge 47a located at least generally proximal to the separator outlet end 16b and a second, radially-larger circumferential edge 47b spaced axially from the first edge 47a. The frustaconical surface section 47 faces generally away from the outlet end 16b so as to be configured to direct liquid L contacting the surface section 47 generally radially outwardly and away from the separator outlet end 16b during rotation of the separator 16, as indicated in FIG. 3. Further, the frustaconical surface section 47 has an inside diameter that varies generally constantly along the central axis 5 from a minimum value IDMIN at the surface section first edge 47a and a maximum value IDMAX at the surface section second edge 47b, such that the surface section 47 tapers outwardly or generally widens in a direction D1 from the outlet end 16b inwardly toward the inlet end 16a. Preferably, the second or inner edge 47b of the tubular body frustaconical surface section 47 is located at a central “transition” position or point BC along the central axis 5 that is disposed generally between the body inlet and outlet ends 16a, 16b, with the groove 48 being located adjacent to the surface second, inner end 47b. However, the surface section 47 may alternatively extend substantially entirely through the body 42, such that the surface section second end 47b is located at the separator inlet end 16a.


Furthermore, the body inner surface 44 preferably further has a generally cylindrical, constant diameter section 49 extending between the central position Bc and the inlet end 16a, the cylindrical surface section 49 having an inside diameter IDS that is at least generally constant (i.e., equal to the maximum value IDMAX), as indicated in FIG. 3. Thus, the body inner surface 44 preferably formed having both the frustaconical, tapering diameter section 47 and the cylindrical, constant diameter section 49. With this surface structure, liquid contacting the tapering section 47 of the inner surface 44 during rotation of the separator 16 is directed or “forced” to flow generally toward the body central position BC, and then flows into the groove 48 and out of the separator 16, as described above.


Referring again to FIGS. 1-3, the separator 16 also preferably includes a generally tubular inner deflector member 50 mounted on the shaft 4 and disposed within the separation chamber 18. The deflector member 50 has a radially outwardly curved outer circumferential surface 53 spaced radially inwardly from the tubular body inner surface 44, such that a generally annular flow channel 49 through the rotary separator 16 is defined between the facing surfaces 44, 53. The deflector member 50 is configured to direct liquids contacting the curved outer surface 53 generally toward the separator body inner surface 44 (as indicated in FIG. 3) for subsequent removal from the separator 16 as described above. More specifically, the deflector member 50 includes a generally tubular body 51 having opposing ends 51a, 51b and a through bore 55 extending between the ends 51a, 51b, the bore 55 being sized to receive a portion of the shaft 4. Further, the deflector tubular body 51 has an enlarged central portion 51c, such that the body outer surface 53 has an outside diameter that varies between about a minimum value ODMIN proximal to each body end 51, 51b to a maximum value ODMAX within the body central portion 51c. As such, liquids contacting the deflector body 50 at directed generally radially outwardly toward the separator body inner surface 44 by the curve shape of the deflector outer surface 53.


Referring again to FIGS. 1-3, the separator 16 preferably includes a plurality of generally radially extending flow blades 52 disposed proximal to the inlet end 16a and spaced circumferentially about the axis 5. The blades 52 also extend generally parallel with the shaft axis 5 and are configured to accelerate fluid flowing into the separator inlet end 16a. More specifically, energy of the rotating shaft 4 is transferred to fluid flowing into the inlet end 16a when the fluid contacts the rotating flow blades 52, such that the blades 52 transmit momentum to the fluid. This transferred energy/momentum causes the fluid to accelerate to the speed of the rotating shaft 4, which increases the efficiency of the compression process when the separated fluid flows into the impeller 12. As such, the downstream inducer portion of a conventional impeller inlet may be eliminated.


Preferably, the separator body 42 includes an inlet member 54 providing the inlet end 16a and the preferred flow blades 52 and a generally tubular drum member 56 connected with the inlet member 54 and the impeller 12 and providing the outlet end 16b. The inlet member 54 includes an annular hub 58 mounted on the shaft 4 and a generally annular outer wall 60 spaced radially outwardly from the hub 58, the plurality of blades 52 extending radially between the hub 58 and the annular wall 60. Further, the tubular drum member 56 has a first end 56a connected with the inlet member 54, a second end 56b spaced axially from the first end 56a (which provides the separator outlet end 16b) and an connected with the impeller 12, and an inner surface providing surface a substantial portion of the separator inner surface 44, as described above. The drum member 56 includes the inwardly offset circumferential lip 19 at the second end 56b and preferably also includes a generally axially extending circumferential tongue 57 engageable with a mating, overlapping tongue 59 of the inlet member 54. As such, the drum 56 is preferably “sandwiched” between the inlet member 54 and the impeller shroud 20 so as to be axially retained thereby. Further, the inner deflector member 50 is preferably sandwiched between the inlet member hub 58 and the impeller hub 26, and thus axially retained.


Although the two-piece structure 54, 56 as described above is presently preferred, the separator 16 may alternatively be formed of a single generally tubular body or of three of more connected together members/pieces (neither shown). Further, as mentioned above, the rotary separator 16 may alternatively be integrally formed with the impeller 12 as opposed to being fixedly or removably connected. The scope of the present invention includes these and all other appropriate constructions of the separator 16 and/or the impeller 12 which function generally as described herein.


Referring to FIGS. 1 and 2, the fluid machine 1 or compressor 2 also preferably includes a static compressor inlet member 64 having a central opening 65 configured to receive at least a portion of the impeller 12 with clearance, so as to preferably avoid contact between the inlet member 64 and the impeller 12. The static member 64 is configured to partially bound the compressor first or inlet stage, and is fixedly supported by the casing 3. Further, the static member 64 preferably includes a generally disk-like circular body 66 with a generally axially-extending, circular ridge 67 extending about the central opening 65, which generally overlaps the interface ISI of the separator 16 and the impeller 12, and a generally circular groove 68 (FIG. 1) spaced radially outwardly from the ridge 67 and extending circumferentially about the axis 5. The static member groove 68 is configured to receive an end portion of a static separator member 70, as discussed below.


Referring particularly to FIG. 1, the preferred compressor 2 is preferably a “multistage” compressor that further includes at least one and preferably two or more other impellers (none shown) spaced axially from the “first stage” impeller 12, such that the first stage impeller 12 is disposed generally axially between the separator 16 and the other or “latter stage” impeller(s). The plurality of outlets 32 of the first stage impeller 12 are fluidly coupled with an inlet (not shown) of an adjacent impeller, and each latter stage impeller is at least generally similarly constructed as the inlet impeller 12. However, the combination separator compressor device 2 may alternatively include only the single impeller 12.


Preferably, the compressor 2 further comprises a static separator 70 disposed about the rotary separator 16 and having an inner circumferential separation surface 71 spaced radially outwardly from the separator so as to define a generally annular flow passage 72 fluidly coupled with the rotary separator inlet end 16a. The static separator 70 is preferably constructed such that fluid F flows through the annular flow passage 72 in a first axial direction D1, with the static member separation surface 71 being configured to remove liquid from fluid contacting the surface 71. Further, a generally annular casing inlet passage 74 is fluidly connected with the separator passage 72, preferably through a radial port 76. A plurality of fluid vanes 78 are preferably disposed within the radial port 76 and are configured to initiate swirling motion within the separator passage 72, such that the liquid flow is directed generally onto an inner surface 71 of the static separator 70. Furthermore, the static separator 70 also preferably includes a generally radially-extending wall 80 spaced axially from the separator inlet end 16a, the radial wall 80 being configured to direct fluid F exiting the annular flow passage 72 to flow generally in a second, opposing direction D2 into the separator inlet end 16a.


With the above structure, a fluid stream F first flows generally radially through the vanes 78 and is deflected to flow generally axially about in the first direction D1 within the annular inlet passage 74, such that at least larger fluid particles are preferably separated by contact with the static separator inner surface 71. Next, the fluid is directed to flow radially about the rotatable separator inlet end 16a and then axially in the opposing direction D2 into the flow blades 52, such that the fluid stream is accelerated by contact with the blades 52. Portions of flow proximal to the shaft 4 contact the rotatable deflector 50 and are directed toward the separator inner surface 44, whereas other stream portions flow directly into contact with the separator surface 44. Due to such contact with the rotating, angled surface 44, liquid in the fluid stream F first adheres to the surface 44, flows generally in the first axial direction D1 to the collection groove 48, and thereafter out of the separator 16 through the discharge openings 46. The substantially gaseous portions of the fluid stream F then flows out of the separator chamber 18 and directly into the impeller inlet 14. Any remaining small liquid droplets or mist in the gas flow stream are centrifuged out to the separator surface 44 by the swirling motion of the gas relative to the central rotational axis 5.


The fluid handling assembly 10 of the present invention provides a number of benefits over previously known separator-compressor assemblies/devices. By eliminating the static swirl and de-swirl vanes at the separator inlet and outlet, respectively, the assembly 10 reduces the total axial space (i.e., along the shaft 4) required for the various components of the combination separator and compressor device 2. Also, by connecting the rotary separator 16 with the impeller 12, such that both components 12, 16 rotate generally as a single unit, the need to seal the outlet end 16b of the rotary separator 16 against a static component of the fluid machine 1 is eliminated. Thereby, a potential flow path for the reintroduction of liquid into the separated gas stream F is also eliminated. Further, as discussed above, due to the fact that the fluid stream F flowing through the separator 16 is not swirled at the separator inlet 16a and then de-swirled prior to entry into the impeller 12, energy losses are reduced and compressor efficiency is increased.


It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as generally defined in the appended claims.

Claims
  • 1. A fluid handling assembly for a fluid machine, comprising: an impeller mounted on a shaft and having an impeller inlet; anda rotary separator mounted on the shaft and having a separator inlet end, a separator outlet end axially spaced apart from the separator inlet end, and an interior separation chamber, wherein the rotary separator is coupled with the impeller such that a fluid within the interior separation chamber flows from the separator outlet end directly into the impeller inlet.
  • 2. The fluid handling assembly of claim 1, wherein the rotary separator and the impeller rotate as a single unit about a central axis of the fluid machine.
  • 3. The fluid handling assembly of claim 1, wherein the rotary separator is configured to remove at least a portion of a liquid from the fluid flowing through the separator inlet end, the interior separation chamber, and the separator outlet end, and into the impeller inlet.
  • 4. The fluid handling assembly of claim 1, wherein: the impeller has an impeller end surface located proximal to the impeller inlet and extending circumferentially about a central axis of the fluid machine; andthe rotary separator has a separator end surface located proximal to the separator outlet end, extending circumferentially about the central axis, disposed against the impeller end surface so as to define an interface, wherein the rotary separator is sealingly coupled with the impeller at the interface.
  • 5. The fluid handling assembly of claim 1, wherein: the impeller includes a shroud having a radially-extending shroud outer surface and a shroud central opening that at least partially defines the impeller inlet; andthe separator outlet end is disposed against the radially-extending shroud outer surface, or at least partially disposed within the shroud central opening.
  • 6. The fluid handling assembly of claim 5, wherein the rotary separator further comprises: a tubular body having a tubular body inner surface; andan annular ledge spaced radially inward from the tubular body, disposed within the shroud central opening, extending axially from the tubular body, and defining the separator outlet end.
  • 7. The fluid handling assembly of claim 6, wherein: the shroud has a shroud edge surface defining the shroud central opening;the tubular body has a tubular body outer surface;the annular ledge has an outer circumferential surface spaced radially inward from the tubular body outer surface, such that a radial shoulder surface extends between the tubular body outer surface and the outer circumferential surface; andthe shroud edge surface is disposed against the radial shoulder surface.
  • 8. The fluid handling assembly of claim 1, wherein the impeller further comprises: a hub mounted on the shaft;a plurality of vanes each having a first side edge connected with the hub and a second side edge that opposes the first side edge, wherein the plurality of vanes are spaced circumferentially apart around a central axis of the fluid machine; anda shroud connected to the second side edge of each of the plurality of vanes, spaced axially from the hub and radially outward from the shaft, the shroud having a shroud central opening spaced radially outward from the shaft so as to define the impeller inlet, wherein the separator outlet end is connected with the shroud such that the interior separation chamber is fluidly coupled with the shroud central opening.
  • 9. The fluid handling assembly of claim 8, wherein: the hub and the shroud each have inner and outer edges extending circumferentially about the central axis;each of the plurality of vanes has an inner end located proximal to the inner edge of the hub and the inner edge of the shroud, and an outer end located proximal to the outer edge of the hub and the outer edge of the shroud; andthe impeller further comprises a plurality of flow channels each defined between the plurality of vanes and extending between the inner and outer ends of each of the plurality of vanes such that the fluid entering the impeller inlet flows through at least one of the plurality of flow channels and radially outward beyond the outer edge of the hub and the outer edge of the shroud.
  • 10. The fluid handling assembly of claim 1, wherein the rotary separator further comprises a separator tubular body having inner circumferential surface at least partially defining the interior separation chamber, and an outer circumferential surface, wherein the inner circumferential surface is configured to separate a liquid from the fluid contacting the inner circumferential surface during rotation of the rotary separator.
  • 11. The fluid handling assembly of claim 10, wherein the rotary separator further comprises a deflector member mounted to the shaft and having an outer surface spaced radially inward from the inner circumferential surface of the separator tubular body, wherein the deflector member is configured to direct liquids contacting the outer surface toward the inner circumferential surface.
  • 12. The fluid handling assembly of claim 11, wherein: the deflector member further comprises a deflector tubular body having opposing ends, a body outer surface, a through bore extending between the opposing ends and sized to receive a portion of the shaft, and an enlarged central portion; andthe body outer surface has an outside diameter that varies between a minimum value proximal to each of the opposing ends and a maximum value at the enlarged central portion.
  • 13. The fluid handling assembly of claim 10, wherein the separator tubular body includes at least one opening extending radially between the inner and outer circumferential surfaces and providing a liquid outlet passage for directing the liquid out of the interior separation chamber.
  • 14. The fluid handling assembly of claim 13, wherein the separator tubular body further comprises: an annular groove extending radially inward from the inner circumferential surface; anda plurality of openings extending radially between the annular groove and the outer circumferential surface and spaced circumferentially apart around a central axis of the fluid machine.
  • 15. The fluid handling assembly of claim 10, wherein the inner circumferential surface of the separator tubular body further comprises a frustoconical section facing away from the separator outlet end and having a first circumferential edge located proximal to the separator outlet end and a second circumferential edge that is radially larger than the first circumferential edge and is spaced axially from the first circumferential edge, wherein the frustoconical section is configured to direct fluid contacting the frustoconical section radially outward and away from the separator outlet end during rotation of the rotary separator.
  • 16. The fluid handling assembly of claim 1, wherein the rotary separator further comprises a plurality of blades disposed proximal to the separator inlet end and spaced circumferentially about a central axis of the fluid machine, wherein the plurality of blades are configured to accelerate the fluid flowing into the separator inlet end during rotation of the rotary separator.
  • 17. The fluid handling assembly of claim 1, wherein the rotary separator further comprises: an inlet member providing the separator inlet end and including an annular hub mounted on the shaft, an annular outer wall spaced radially outward from the annular hub, and a plurality of blades extending radially between the annular hub and the annular outer wall; anda tubular drum member having a first end connected to the inlet member, a second end spaced axially from the first end, providing the separator outlet, and connected with the impeller, and an inner circumferential surface defining the interior separation chamber and fluidly connected to the impeller inlet.
  • 18. The fluid handling assembly of claim 1, further comprising a static separator disposed about the rotary separator and having a static separator inner circumferential surface spaced radially outward from the rotary separator so as to define an annular flow passage that is fluidly coupled with the separator inlet end.
  • 19. The fluid handling assembly of claim 18, wherein the static separator further comprises a radially extending wall spaced axially apart from the separator inlet end, wherein the fluid flows through the annular flow passage in a first axial direction, and the radially extending wall is configured to direct fluid exiting the annular flow passage to flow in a second, opposing direction into the separator inlet end.
  • 20. A fluid handling assembly, comprising: an impeller mounted on a shaft and having an impeller inlet and an impeller outlet;a rotary separator mounted on the shaft and having a separator inlet end, a separator outlet end that is axially spaced apart from the separator inlet end and is attached to the impeller inlet, and an interior separation chamber extending between the separator inlet end and the separator outlet end, wherein the rotary separator and the impeller rotate on the shaft as a single unit; anda static separator defined around the rotary separator, fluidly connected with the separator inlet end, and having a static separator inner circumferential surface spaced radially apart from the rotary separator defining an annular passage therebetween, and an annular wall disposed at an axial end of the static separator such that a fluid traveling through the static separator proceeds through the static separator in a first axial direction and is turned by the annular wall to travel through the rotary separator in a second axial direction that opposes the first axial direction.
CROSS REFERENCE

This application is a United States national phase application of co-pending international patent application number PCT/US2007/020471, filed Sep. 21, 2007, which claims priority to U.S. Provisional Patent Application No. 60/846,300, filed Sep. 21, 2006, the disclosures of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2007/020471 9/21/2007 WO 00 10/16/2009
Publishing Document Publishing Date Country Kind
WO2008/036394 3/27/2008 WO A
US Referenced Citations (358)
Number Name Date Kind
815812 Gow Mar 1906 A
1057613 Baldwin Apr 1913 A
1061656 Black May 1913 A
1480775 Marien Jan 1924 A
1622768 Cook et al. Mar 1927 A
1642454 Malmstrom Sep 1927 A
2006244 Kopsa Jun 1935 A
2300766 Baumann Nov 1942 A
2328031 Risley Aug 1943 A
2345437 Tinker Mar 1944 A
2602462 Barrett Jul 1952 A
2811303 Ault et al. Oct 1957 A
2836117 Lankford May 1958 A
2868565 Suderow Jan 1959 A
2897917 Hunter Aug 1959 A
2932360 Hungate Apr 1960 A
2954841 Reistle Oct 1960 A
3044657 Horton Jul 1962 A
3191364 Sylvan Jun 1965 A
3198214 Lorenz Aug 1965 A
3204696 De Priester et al. Sep 1965 A
3213794 Adams Oct 1965 A
3220245 Van Winkle Nov 1965 A
3273325 Gerhold Sep 1966 A
3352577 Medney Nov 1967 A
3395511 Akerman Aug 1968 A
3420434 Swearingen Jan 1969 A
3431747 Hasheimi et al. Mar 1969 A
3454163 Read Jul 1969 A
3487432 Jenson Dec 1969 A
3490209 Fernandes et al. Jan 1970 A
3500614 Soo Mar 1970 A
3578342 Satterthwaite et al. May 1971 A
3628812 Larraide et al. Dec 1971 A
3672733 Arsenius et al. Jun 1972 A
3814486 Schurger Jun 1974 A
3829179 Kurita et al. Aug 1974 A
3915673 Tamai et al. Oct 1975 A
3975123 Schibbye Aug 1976 A
4033647 Beavers Jul 1977 A
4059364 Andersen et al. Nov 1977 A
4078809 Garrick et al. Mar 1978 A
4087261 Hays May 1978 A
4103899 Turner Aug 1978 A
4112687 Dixon Sep 1978 A
4117359 Wehde Sep 1978 A
4135542 Chisholm Jan 1979 A
4141283 Swanson et al. Feb 1979 A
4146261 Edmaier et al. Mar 1979 A
4165622 Brown, Jr. Aug 1979 A
4174925 Pfenning et al. Nov 1979 A
4182480 Theyse et al. Jan 1980 A
4197990 Carberg et al. Apr 1980 A
4205927 Simmons Jun 1980 A
4227373 Amend et al. Oct 1980 A
4258551 Ritzi Mar 1981 A
4259045 Teruyama Mar 1981 A
4278200 Gunnewig Jul 1981 A
4298311 Ritzi Nov 1981 A
4333748 Erickson Jun 1982 A
4334592 Fair Jun 1982 A
4336693 Hays et al. Jun 1982 A
4339923 Hays et al. Jul 1982 A
4347900 Barrington Sep 1982 A
4363608 Mulders Dec 1982 A
4374583 Barrington Feb 1983 A
4375975 McNicholas Mar 1983 A
4382804 Mellor May 1983 A
4384724 Derman et al. May 1983 A
4391102 Studhalter et al. Jul 1983 A
4396361 Fraser Aug 1983 A
4432470 Sopha Feb 1984 A
4438638 Hays et al. Mar 1984 A
4441322 Ritzi Apr 1984 A
4442925 Fukushima et al. Apr 1984 A
4453893 Hutmaker Jun 1984 A
4463567 Amend et al. Aug 1984 A
4468234 McNicholas Aug 1984 A
4471795 Linhardt Sep 1984 A
4477223 Giroux Oct 1984 A
4502839 Maddox et al. Mar 1985 A
4511309 Maddox Apr 1985 A
4531888 Buchelt Jul 1985 A
4536134 Huiber Aug 1985 A
4541531 Brule Sep 1985 A
4541607 Hotger Sep 1985 A
4573527 McDonough Mar 1986 A
4574815 West et al. Mar 1986 A
4648806 Alexander Mar 1987 A
4687017 Danko et al. Aug 1987 A
4737081 Nakajima et al. Apr 1988 A
4752185 Butler et al. Jun 1988 A
4807664 Wilson et al. Feb 1989 A
4813495 Leach Mar 1989 A
4821737 Nelson Apr 1989 A
4826403 Catlow May 1989 A
4830331 Vindum May 1989 A
4832709 Nagyszalanczy May 1989 A
4904284 Hanabusa Feb 1990 A
4984830 Saunders Jan 1991 A
5007328 Otterman Apr 1991 A
5024585 Kralovec Jun 1991 A
5043617 Rostron Aug 1991 A
5044701 Watanabe et al. Sep 1991 A
5045046 Bond Sep 1991 A
5054995 Kaseley et al. Oct 1991 A
5064452 Yano et al. Nov 1991 A
5080137 Adams Jan 1992 A
5190440 Maier et al. Mar 1993 A
5202024 Andersson et al. Apr 1993 A
5202026 Lema Apr 1993 A
5203891 Lema Apr 1993 A
5207810 Sheth May 1993 A
5211427 Washizu May 1993 A
5246346 Schiesser Sep 1993 A
5285123 Kataoka et al. Feb 1994 A
5306051 Loker et al. Apr 1994 A
5337779 Fukuhara Aug 1994 A
5378121 Hackett Jan 1995 A
5385446 Hays Jan 1995 A
5421708 Utter Jun 1995 A
5443581 Malone Aug 1995 A
5484521 Kramer Jan 1996 A
5496394 Nied Mar 1996 A
5500039 Mori et al. Mar 1996 A
5525034 Hays Jun 1996 A
5525146 Straub Jun 1996 A
5531811 Kloberdanz Jul 1996 A
5538259 Uhrner et al. Jul 1996 A
5542831 Scarfone Aug 1996 A
5575309 Connell Nov 1996 A
5585000 Sassi Dec 1996 A
5605172 Schubert et al. Feb 1997 A
5628623 Skaggs May 1997 A
5634492 Steinruck et al. Jun 1997 A
5640472 Meinzer et al. Jun 1997 A
5641280 Timuska Jun 1997 A
5653347 Larsson Aug 1997 A
5664420 Hays Sep 1997 A
5682759 Hays Nov 1997 A
5683235 Welch Nov 1997 A
5685691 Hays Nov 1997 A
5687249 Kato Nov 1997 A
5693125 Dean Dec 1997 A
5703424 Dorman Dec 1997 A
5709528 Hablanian Jan 1998 A
5713720 Barhoum Feb 1998 A
5720799 Hays Feb 1998 A
5750040 Hays May 1998 A
5775882 Kiyokawa et al. Jul 1998 A
5779619 Borgstrom et al. Jul 1998 A
5795135 Nyilas et al. Aug 1998 A
5800092 Nill et al. Sep 1998 A
5848616 Vogel et al. Dec 1998 A
5850857 Simpson Dec 1998 A
5853585 Nesseth Dec 1998 A
5863023 Evans et al. Jan 1999 A
5899435 Mitsch et al. May 1999 A
5935053 Strid Aug 1999 A
5938803 Dries Aug 1999 A
5938819 Seery Aug 1999 A
5946915 Hays Sep 1999 A
5951066 Lane et al. Sep 1999 A
5965022 Gould Oct 1999 A
5967746 Hagi et al. Oct 1999 A
5971702 Afton et al. Oct 1999 A
5971907 Johannemann et al. Oct 1999 A
5980218 Takahashi et al. Nov 1999 A
5988524 Odajima et al. Nov 1999 A
6035934 Stevenson et al. Mar 2000 A
6059539 Nyilas et al. May 2000 A
6068447 Foege May 2000 A
6090174 Douma et al. Jul 2000 A
6090299 Hays et al. Jul 2000 A
6113675 Branstetter Sep 2000 A
6122915 Hays Sep 2000 A
6123363 Burgard et al. Sep 2000 A
6145844 Waggott Nov 2000 A
6149825 Gargas Nov 2000 A
6151881 Ai et al. Nov 2000 A
6196962 Purvey et al. Mar 2001 B1
6206202 Galk et al. Mar 2001 B1
6214075 Filges et al. Apr 2001 B1
6217637 Toney et al. Apr 2001 B1
6227379 Nesseth May 2001 B1
6277278 Conrad et al. Aug 2001 B1
6312021 Thomas Nov 2001 B1
6314738 Hays Nov 2001 B1
6372006 Pregenzer et al. Apr 2002 B1
6375437 Nolan Apr 2002 B1
6383262 Marthinsen et al. May 2002 B1
6394764 Samurin May 2002 B1
6398973 Saunders et al. Jun 2002 B1
6402465 Maier Jun 2002 B1
6426010 Lecoffre et al. Jul 2002 B1
6464469 Grob et al. Oct 2002 B1
6467988 Czachor et al. Oct 2002 B1
6468426 Klass Oct 2002 B1
6485536 Masters Nov 2002 B1
6530484 Bosman Mar 2003 B1
6530979 Firey Mar 2003 B2
6531066 Saunders et al. Mar 2003 B1
6537035 Shumway Mar 2003 B2
6540917 Rachels et al. Apr 2003 B1
6547037 Kuzdzal Apr 2003 B2
6592654 Brown Jul 2003 B2
6596046 Conrad et al. Jul 2003 B2
6599086 Soja Jul 2003 B2
6607348 Jean Aug 2003 B2
6616719 Sun et al. Sep 2003 B1
6617731 Goodnick Sep 2003 B1
6629825 Stickland et al. Oct 2003 B2
6631617 Dreiman et al. Oct 2003 B1
6658986 Pitla et al. Dec 2003 B2
6659143 Taylor et al. Dec 2003 B1
6669845 Klass Dec 2003 B2
6688802 Ross et al. Feb 2004 B2
6707200 Carroll et al. Mar 2004 B2
6718955 Knight Apr 2004 B1
6719830 Illingworth et al. Apr 2004 B2
6764284 Oehman, Jr. Jul 2004 B2
6776812 Komura et al. Aug 2004 B2
6802693 Reinfeld et al. Oct 2004 B2
6802881 Illingworth et al. Oct 2004 B2
6811713 Arnaud Nov 2004 B2
6817846 Bennitt Nov 2004 B2
6837913 Schilling et al. Jan 2005 B2
6843836 Kitchener Jan 2005 B2
6878187 Hays et al. Apr 2005 B1
6893208 Frosini et al. May 2005 B2
6907933 Choi et al. Jun 2005 B2
6979358 Ekker Dec 2005 B2
7001448 West Feb 2006 B1
7013978 Appleford et al. Mar 2006 B2
7022150 Borgstrom et al. Apr 2006 B2
7022153 McKenzie Apr 2006 B2
7025890 Moya Apr 2006 B2
7033410 Hilpert et al. Apr 2006 B2
7033411 Carlsson et al. Apr 2006 B2
7056363 Carlsson et al. Jun 2006 B2
7063465 Wilkes et al. Jun 2006 B1
7112036 Lubell et al. Sep 2006 B2
7131292 Ikegami et al. Nov 2006 B2
7144226 Pugnet et al. Dec 2006 B2
7159723 Hilpert et al. Jan 2007 B2
7160518 Chen et al. Jan 2007 B2
7169305 Gomez Jan 2007 B2
7185447 Arbeiter Mar 2007 B2
7204241 Thompson Apr 2007 B2
7241392 Maier Jul 2007 B2
7244111 Suter et al. Jul 2007 B2
7258713 Eubank et al. Aug 2007 B2
7270145 Koezler Sep 2007 B2
7288202 Maier Oct 2007 B2
7314560 Yoshida et al. Jan 2008 B2
7323023 Michele et al. Jan 2008 B2
7328749 Reitz Feb 2008 B2
7335313 Moya Feb 2008 B2
7377110 Sheridan et al. May 2008 B2
7381235 Koene et al. Jun 2008 B2
7396373 Lagerstedt et al. Jul 2008 B2
7399412 Keuschnigg Jul 2008 B2
7435290 Lane et al. Oct 2008 B2
7445653 Trautmann et al. Nov 2008 B2
7470299 Han et al. Dec 2008 B2
7473083 Oh et al. Jan 2009 B2
7479171 Cho et al. Jan 2009 B2
7494523 Oh et al. Feb 2009 B2
7501002 Han et al. Mar 2009 B2
7520210 Theodore, Jr. et al. Apr 2009 B2
7575422 Bode et al. Aug 2009 B2
7578863 Becker et al. Aug 2009 B2
7591882 Harazim Sep 2009 B2
7594941 Zheng et al. Sep 2009 B2
7594942 Polderman Sep 2009 B2
7610955 Irwin, Jr. Nov 2009 B2
7628836 Baronet et al. Dec 2009 B2
7637699 Albrecht Dec 2009 B2
7674377 Crew Mar 2010 B2
7677308 Kolle Mar 2010 B2
7708537 Bhatia et al. May 2010 B2
7708808 Heumann May 2010 B1
7744663 Wallace Jun 2010 B2
7748079 McDowell et al. Jul 2010 B2
7766989 Lane et al. Aug 2010 B2
7811344 Duke et al. Oct 2010 B1
7811347 Carlsson et al. Oct 2010 B2
7815415 Kanezawa et al. Oct 2010 B2
7824458 Borgstrom et al. Nov 2010 B2
7824459 Borgstrom et al. Nov 2010 B2
7846228 Saaski et al. Dec 2010 B1
20010007283 Johal et al. Jul 2001 A1
20020009361 Reichert et al. Jan 2002 A1
20030029318 Firey Feb 2003 A1
20030035718 Langston et al. Feb 2003 A1
20030136094 Illingworth et al. Jul 2003 A1
20040007261 Cornwell Jan 2004 A1
20040170505 Lenderink et al. Sep 2004 A1
20050173337 Costinel Aug 2005 A1
20060065609 Arthur Mar 2006 A1
20060090430 Trautman et al. May 2006 A1
20060096933 Maier May 2006 A1
20060157251 Stinessen et al. Jul 2006 A1
20060157406 Maier Jul 2006 A1
20060193728 Lindsey et al. Aug 2006 A1
20060222515 Delmotte et al. Oct 2006 A1
20060230933 Harazim Oct 2006 A1
20060239831 Garris, Jr. Oct 2006 A1
20060254659 Ballott et al. Nov 2006 A1
20060275160 Leu et al. Dec 2006 A1
20070029091 Stinessen et al. Feb 2007 A1
20070036646 Nguyen et al. Feb 2007 A1
20070051245 Yun Mar 2007 A1
20070062374 Kolle Mar 2007 A1
20070065317 Stock Mar 2007 A1
20070084340 Dou et al. Apr 2007 A1
20070140870 Fukanuma et al. Jun 2007 A1
20070151922 Mian Jul 2007 A1
20070163215 Lagerstadt Jul 2007 A1
20070172363 Laboube et al. Jul 2007 A1
20070196215 Frosini et al. Aug 2007 A1
20070227969 Dehaene et al. Oct 2007 A1
20070294986 Beetz Dec 2007 A1
20080031732 Peer et al. Feb 2008 A1
20080039732 Bowman Feb 2008 A9
20080246281 Agrawal et al. Oct 2008 A1
20080315812 Balboul Dec 2008 A1
20090013658 Borgstrom et al. Jan 2009 A1
20090015012 Metzler et al. Jan 2009 A1
20090025562 Hallgren et al. Jan 2009 A1
20090025563 Borgstrom et al. Jan 2009 A1
20090151928 Lawson Jun 2009 A1
20090159523 McCutchen Jun 2009 A1
20090169407 Yun Jul 2009 A1
20090173095 Bhatia et al. Jul 2009 A1
20090266231 Franzen et al. Oct 2009 A1
20090304496 Maier Dec 2009 A1
20090321343 Maier Dec 2009 A1
20090324391 Maier Dec 2009 A1
20100007133 Maier Jan 2010 A1
20100021292 Maier et al. Jan 2010 A1
20100038309 Maier Feb 2010 A1
20100043288 Wallace Feb 2010 A1
20100043364 Curien Feb 2010 A1
20100044966 Majot et al. Feb 2010 A1
20100072121 Maier Mar 2010 A1
20100074768 Maier Mar 2010 A1
20100083690 Sato et al. Apr 2010 A1
20100090087 Maier Apr 2010 A1
20100143172 Sato et al. Jun 2010 A1
20100163232 Kolle Jul 2010 A1
20100183438 Maier et al. Jul 2010 A1
20100239419 Maier et al. Sep 2010 A1
20100239437 Maier Sep 2010 A1
20100247299 Maier Sep 2010 A1
20100257827 Lane et al. Oct 2010 A1
20110017307 Kidd et al. Jan 2011 A1
20110061536 Maier et al. Mar 2011 A1
Foreign Referenced Citations (38)
Number Date Country
2647511 Oct 2007 CA
301285 Oct 1991 EP
1582703 Oct 2005 EP
2013479 Jan 2009 EP
7838631.5 Dec 2009 EP
2323639 Sep 1998 GB
2337561 Nov 1999 GB
54099206 Jan 1978 JP
08-068501 Mar 1996 JP
8-284961 Nov 1996 JP
2002 242699 Aug 2002 JP
2004034017 Feb 2004 JP
3711028 Oct 2005 JP
2005291202 Oct 2005 JP
2009085521 Feb 2008 KR
2008012579 Dec 2008 MX
9524563 Sep 1995 WO
0117096 Mar 2001 WO
2007043889 Apr 2007 WO
2007103248 Sep 2007 WO
2007120506 Oct 2007 WO
2008036221 Mar 2008 WO
2008039446 Mar 2008 WO
WO 2008036394 Mar 2008 WO
2008039491 Apr 2008 WO
2008039731 Apr 2008 WO
2008039732 Apr 2008 WO
2008039733 Apr 2008 WO
2008039734 Apr 2008 WO
2008036394 Jul 2008 WO
2009111616 Sep 2009 WO
2009158252 Dec 2009 WO
2009158253 Dec 2009 WO
2010083416 Jul 2010 WO
2010083427 Jul 2010 WO
2010107579 Sep 2010 WO
2010110992 Sep 2010 WO
2011034764 Mar 2011 WO
Related Publications (1)
Number Date Country
20100038309 A1 Feb 2010 US
Provisional Applications (1)
Number Date Country
60846300 Sep 2006 US