SEPARATOR FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

Information

  • Patent Application
  • 20160156009
  • Publication Number
    20160156009
  • Date Filed
    November 11, 2015
    8 years ago
  • Date Published
    June 02, 2016
    8 years ago
Abstract
A separator for a nonaqueous electrolyte secondary battery according to the present disclosure includes cellulose fibers and resin particles having substituents bonded by hydrogen bonds with the cellulose fibers.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to a separator for a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery.


2. Description of the Related Art


As a separator for a nonaqueous electrolyte secondary battery, a porous film made of cellulose fibers is known (for example, see Japanese Unexamined Patent Application Publication No. 2013-99940, hereinafter referred to as Patent Literature 1). As a separator including cellulose fibers for a nonaqueous electrolyte secondary battery, a porous film made of a fibrous material, such as cellulose fibers, and inorganic particles having a plate shape, such as alumina, is known (for example, see Japanese Unexamined Patent Application Publication No. 2008-4438, hereinafter referred to as Patent Literature 2).


However, the separator for a nonaqueous electrolyte secondary battery disclosed in Patent Literature 1 may not have satisfactory air permeability. The separator for a nonaqueous electrolyte secondary battery disclosed in Patent Literature 2 may cause falling of the inorganic particles from the separator, i.e., so-called powder falling.


SUMMARY

One non-limiting and exemplary embodiment provides a separator for a nonaqueous electrolyte secondary battery that prevents the occurrence of powder falling (falling of resin particles in the separator) while ensuring satisfactory air permeability.


In one general aspect, the techniques disclosed here feature a separator for a nonaqueous electrolyte secondary battery comprising cellulose fibers and resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding.


The present disclosure can provide a separator for a nonaqueous electrolyte secondary battery that can prevent the occurrence of powder falling (falling of the resin particles in the separator) while ensuring satisfactory air permeability.


Additional benefits and advantages of the disclosed embodiments will become apparent from the specification and drawing. The benefits and/or advantages may be individually obtained by the various embodiments and features of the specification and drawing, which need not all be provided in order to obtain one or more of such benefits and/or advantages.





BRIEF DESCRIPTION OF THE DRAWING

The FIGURE is a cross-sectional view of a nonaqueous electrolyte secondary battery as an example of an embodiment of the present disclosure.





DETAILED DESCRIPTION
Underlying Knowledge Forming Basis of the Present Disclosure

A point of view of an embodiment according to the present disclosure will now be described. The present inventors have found that a separator made of cellulose fibers as in Patent Literature 1 is a dense film due to hydrogen bonds formed between the cellulose fibers and cannot thereby have satisfactory air permeability. The present inventors have also found that in a separator made of a fibrous material, such as cellulose fibers, and inorganic particles, such as alumina, as in Patent Literature 2, the binding capacity between the cellulose fibers and the inorganic particles such as alumina is low to cause powder falling, i.e., falling of the particles in the separator during production of the separator or during production of a secondary battery. The occurrence of such powder falling forms large pores in the separator. Accordingly, for example, lithium dendrites easily pass through the separator, resulting in a risk of not sufficiently preventing the occurrence of an internal short circuit. Based on these findings, the present inventors have arrived at the disclosure of each embodiment described below.


The separator for a nonaqueous electrolyte secondary battery according to a first aspect of the present disclosure includes cellulose fibers and resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding. In the first aspect, the separator is filled with the resin particles. As a result, the resin particles interposed between the cellulose fibers appropriately broaden the distance between the cellulose fibers to provide satisfactory air permeability. That is, appropriate pores that allow permeation of the electrolyte into the separator and movement of the ions in the separator are formed in the separator. In addition, since the resin has a substituent that binds to the cellulose by hydrogen bonding, the adhesiveness between the cellulose fibers and the resin particles is enhanced to prevent occurrence of powder falling, i.e., falling of the resin particles in the separator. Thus, powder falling is prevented from occurring while ensuring satisfactory air permeability, and for example, large pores are prevented from being formed in the separator. Consequently, occurrence of internal short circuits by lithium dendrites can be prevented.


In a second aspect, for example, the cellulose fibers according to the first aspect may have an average fiber diameter of 0.05 μm or less. In the second aspect, for example, fine pores are readily formed in the separator and occurrence of an internal short circuit by lithium dendrites is prevented, compared to the case of cellulose fibers having an average fiber diameter of larger than 0.05 μm.


In a third aspect, for example, the resin particles according to the first aspect or the second aspect may have a ratio of the volume average particle diameter (Dv) to the number average particle diameter (Dn) of less than 2. In the third aspect, uniform pores are formed in the separator and more satisfactory air permeability is achieved, compared to the case of having a ratio of the volume average particle diameter (Dv) to the number average particle diameter (Dn) of 2 or more and the case of using plate-shaped particles, such as alumina, as in Patent Literature 2. In the case of using the plate-shaped particles of Patent Literature 2, some of the plate-shaped particles are arranged such that the flat surfaces are parallel to the surface of the separator to cover the pores in the separator, and some of the plate-shaped particles are arranged such that the flat surfaces are vertical to the surface of the separator not to sufficiently cover the pores in the separator. Accordingly, in the separator of Patent Literature 2, it is difficult to control the diameters of the pores in a separator with the plate-shaped particles.


In a fourth aspect, for example, the resin particles according to any one of the first to third aspects may have a volume average particle diameter within a range of 50 to 500 nm. In the fourth aspect, more satisfactory air permeability is achieved or occurrence of powder falling is further prevented, compared to the case of having a volume average particle diameter not satisfying the above-mentioned range.


In a fifth aspect, for example, the resin particles according to any one of the first to fourth aspects may have a softening temperature of 200° C. or more. In the fifth aspect, the separator has an enhanced heat shrinkage resistance, compared to the case of having a softening temperature of less than 200° C.


In a sixth aspect, for example, the resin particles according to any one of the first to fifth aspects may include crosslinked acrylic resin particles. In the sixth aspect, the heat shrinkage resistance of the separator is improved.


The nonaqueous electrolyte secondary battery according to a seventh aspect comprises, for example, a positive electrode, a negative electrode, a separator for a nonaqueous electrolyte secondary battery according to any one of the first to sixth aspects interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte. In the seventh aspect, the satisfactory air permeability of the separator is ensured, and occurrence of powder falling is prevented. As a result, for example, an internal short circuit by lithium dendrites is prevented from occurring.


Embodiments according to the present disclosure will now be described in detail with reference to the drawing. The embodiments described below are mere examples, and the present disclosure is not limited thereto. The drawing referred to in the embodiments is schematic.


The FIGURE is a cross-sectional view of a nonaqueous electrolyte secondary battery 10 as an example of an embodiment of the present disclosure.


As shown in the FIGURE, the nonaqueous electrolyte secondary battery 10 includes a positive electrode 11, a negative electrode 12, a separator 20 for a nonaqueous electrolyte secondary battery (hereinafter, simply referred to as “separator 20”) interposed between the positive electrode 11 and the negative electrode 12, and a nonaqueous electrolyte (not shown). The positive electrode 11 and the negative electrode 12 are wound with the separator 20 therebetween to constitute a wound electrode group together with the separator 20. The nonaqueous electrolyte secondary battery 10 includes a cylindrical battery case 13 and a sealing plate 14. The battery case 13 accommodates the wound electrode group and the nonaqueous electrolyte. An upper insulating plate 15 and a lower insulating plate 16 are disposed on both ends in the longitudinal direction of the wound electrode group. The positive electrode 11 is connected to one end of a positive electrode lead 17. The other end of the positive electrode lead 17 is connected to a positive electrode terminal 19 disposed on the sealing plate 14. The negative electrode 12 is connected to one end of a negative electrode lead 18. The other end of the negative electrode lead 18 is connected to the bottom inside the battery case 13. The opening end of the battery case 13 is swaged to the sealing plate 14 to seal the battery case 13.


Although the FIGURE shows an example of a cylindrical battery including a wound electrode group, the application of the present disclosure is not limited to this. The battery may have any shape and may be, for example, a square battery, a flat battery, a coin battery, or a laminate film pack battery.


The positive electrode 11 contains, for example, a positive electrode active material such as a lithium-containing complex oxide. The lithium-containing complex oxide is not particularly limited, and examples thereof include lithium cobaltate, modified products of lithium cobaltate, lithium nickelate, modified products of lithium nickelate, lithium manganate, and modified products of lithium manganate. A modified product of lithium cobaltate contains, for example, nickel, aluminum, or magnesium. A modified product of lithium nickelate contains, for example, cobalt or manganese.


The positive electrode 11 necessarily contains a positive electrode active material and optionally contains a binder and an electroconductive material. Examples of the binder include polyvinylidene fluoride (PVDF), modified products of PVDF, poly(tetrafluoroethylene) (PTFE), and modified acrylonitrile rubber particles. The PTFE and rubber particles are preferably used in combination with a compound having a thickening effect, such as carboxymethyl cellulose (CMC), poly(ethylene oxide) (PEO), or soluble modified acrylonitrile rubber. Examples of the electroconductive material include acetylene black, Ketjen black, and various types of graphite.


The negative electrode 12 contains, for example, a carbon material such as graphite or a negative electrode active material such as a silicon-containing material or a tin-containing material. Examples of the graphite include natural graphite and artificial graphite. In addition, metallic lithium or a lithium alloy containing tin, aluminum, zinc, magnesium, or the like can be used.


The negative electrode 12 necessarily contains a negative electrode active material and optionally contains a binder and an electroconductive material. Examples of the binder include PVDF, modified products of PVDF, styrene-butadiene copolymers (SBRs), and modified products of SBRs. Among these binders, from the viewpoint of chemical stability, SBRs and modified products of SBRs are particularly preferred. The SBRs and modified products thereof are preferably used in combination with CMC having a thickening effect.


The nonaqueous electrolyte is not particularly limited and a nonaqueous solvent dissolving a lithium salt can be suitably used. Examples of the lithium salt include LiPF6 and LiBF4. Examples of the nonaqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). These solvents are preferably used in combination.


The separator 20 is interposed between the positive electrode 11 and the negative electrode 12 and prevents a short circuit from occurring between the positive electrode 11 and the negative electrode 12 while allowing Li ions to permeate therethrough. The separator 20 is a porous film having a large number of pores functioning as paths through which Li ions pass during charging and discharging of the nonaqueous electrolyte secondary battery 10.


The separator 20 is a porous film containing cellulose fibers and resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding. The separator 20 may contain other organic fibers, in addition to the cellulose fibers. Examples of the organic fibers other than the cellulose fibers include thermoplastic resin fibers. The separator 20 may further contain other components, such as a sizing agent, wax, an inorganic filler, an organic filler, a colorant, a stabilizer (such as antioxidant, heat stabilizer, or UV absorber), a plasticizer, an antistatic agent, and a flame retardant.


Cellulose Fibers

Examples of the cellulose fibers include natural cellulose fibers, such as coniferous wood pulp, broad-leaved wood pulp, esparto pulp, manila hemp pulp, sisal hemp pulp, and cotton pulp; and regenerated cellulose fibers obtained by organic solvent spinning of these natural cellulose fibers, such as lyocell.


The cellulose fibers are preferably fibrillated cellulose fibers from the viewpoint of, for example, control of the pore diameter, retention of nonaqueous electrolyte, and battery life. The term “fibrillation” refers to a phenomenon of, for example, loosening fibers consisting of multiple bundles of fibrils by, for example, rubbing action into the fibrils to fluff the surfaces of the fibers. Fibrillation can be achieved by beating fibers with a beating machine, such as a beater, refiner, or mill, or by fibrillating fibers with a bead mill, extruding kneader, or shearing force under high pressure.


The content of the cellulose fibers is preferably 50% by mass or more, more preferably in a range of 60% to 90% by mass, based on the total amount of the separator 20 from the viewpoint of, for example, mechanical strength of the separator 20.


The cellulose fibers preferably have an average fiber diameter of 0.05 μm or less and more preferably in a range of 0.02 to 0.03 μm. The cellulose fibers having an average fiber diameter of 0.05 μm or less can, for example, densely form pores in the separator and prevent occurrence of an internal short circuit by lithium dendrites, compared to those not satisfying the above-mentioned range. In addition, the use of two types of cellulose fibers having different average fiber diameters is also preferred. A preferred example thereof is the use of cellulose fibers A having an average fiber diameter of 0.02 μm or less and an average fiber length of 50 μm or less and cellulose fibers B having an average fiber diameter of 0.7 μm or less and an average fiber length of 50 μm or less.


Resin Particles

The resin particles may be any resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding. The substituent forming a hydrogen bond with the cellulose forms a hydrogen bond with, for example, a hydroxyl group or an oxygen atom of the cellulose, and examples thereof include hydroxyl, amino, carboxy, carbonyl, ester, thiol, urethane, amide, imide, and ether groups. Examples of the resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding include particles of acrylic resins, polyester resins, polyimide resins, polyamide resins, polyurethane resins, polyethylene glycol, polyvinyl alcohol, and polyvinylpyrrolidone. The resin preferably has an ester group, from the viewpoint of enhancing the adhesiveness between the cellulose fibers and the resin particles by easily forming a hydrogen bond between the resin and the cellulose. Specifically, the resin particles are, for example, acrylic resin particles. Examples of the acrylic resin particles include particles of polyacrylate, polymethacrylate, and copolymers thereof. In addition, from the viewpoint of enhancing the heat shrinkage resistance of the separator, the acrylic resin particles are more preferably crosslinked acrylic resin particles. In order to impart a crosslinked structure to an acrylic resin, an acrylic or methacrylic monomer having a plurality of polymerizable double bonds in a molecule, for example, ethylene glycol dimethacrylate or triethylene glycol diacrylate (hereinafter, may be referred to as 3EGA), may be used alone or in combination as a crosslinking agent. Other examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, N,N-divinyl aniline, and divinyl ether. Among these crosslinking agents, ethylene glycol dimethacrylate and triethylene glycol diacrylate are preferred. The use of ethylene glycol dimethacrylate or triethylene glycol diacrylate as a crosslinking agent probably can form a substituent (hydroxyl group) that binds to the cellulose by hydrogen bonding in the crosslinked structure to further enhance the adhesiveness between the cellulose fibers and the crosslinked acrylic resin particles.


The resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding preferably have a softening temperature of 200° C. or more, from the viewpoint of improving the heat shrinkage resistance of the separator 20. Examples of the resin particles having a softening temperature of 200° C. or more include crosslinked acrylic resin particles. The softening temperature is measured by thermomechanical analysis (TMA) described in JIS-K7196-1991.


The resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding preferably have a ratio of the volume average particle diameter (Dv) to the number average particle diameter (Dn) of less than 2, more preferably within a range of 1 to 1.5. When the value of volume average particle diameter (Dv)/number average particle diameter (Dn) of the resin particles is less than 2, the resin particles in which the resin has a substituent that binds to the cellulose have a uniform particle size distribution, compared to the case of which the ratio is higher than 2, and such resin particles are dispersed in the separator 20. Consequently, for example, pores having uniform diameters are readily formed in the separator 20, compared to the plate-shaped inorganic particles of Patent Literature 2, to provide better air permeability to the separator 20. The volume average particle diameter (Dv) and the number average particle diameter (Dn) can be measured with a laser diffraction particle size distribution analyzer (for example, LA-750, manufactured by Horiba, Ltd.) or a light scattering particle size distribution analyzer (for example, ELS-8000, manufactured by Otsuka Electronics Co., Ltd.).


The resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding preferably have a volume average particle diameter (Dv) within a range of 0.05 to 0.5 μm, more preferably 0.1 to 0.3 μm. A volume average particle diameter (Dv) of the resin particles of less than 0.05 μm is difficult to sufficiently broaden the distance between the cellulose fibers and may not provide satisfactory air permeability, compared to the case of satisfying the above-mentioned range. A volume average particle diameter (Dv) of the resin particles of higher than 0.5 μm results in a too large distance between the cellulose fibers and may not provide satisfactory air permeability or may reduce the mechanical strength, compared to the case of satisfying the above-mentioned range.


The content of the resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding is not particularly limited, and is preferably in a range of 10% to 40% by mass, more preferably 10% to 20% by mass, based on the total amount of the separator 20. If the content of the resin particles is less than 10% by mass, the distance between the cellulose fibers cannot be sufficiently broadened, and fine pores tend to be formed in the separator 20. Consequently, the resulting air permeability may not be satisfactory, compared to the case of satisfying the above-mentioned range. If the content of the resin particles is higher than 40% by mass, the resin particles tend to excessively fill the pores of the separator 20. Consequently, the resulting air permeability may not be satisfactory, compared to the case of satisfying the above-mentioned range.


Method of Preparing Resin Particles

The resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding can be prepared by, for example, adding a monomer having a substituent that binds to cellulose by hydrogen bonding, such as an acrylic acid monomer, a polymerization initiator, such as ammonium persulfate (APS), and optionally a crosslinking agent and other components to an aqueous solvent and stirring the mixture at a prescribed temperature. The particles of the resin having a substituent that binds to cellulose by hydrogen bonding are prepared as an emulsion in which the particles are dispersed in the aqueous solvent.


Other Components

The separator 20, as described above, may contain another component, in addition to the cellulose fibers and the resin particles. The component desirably has a softening temperature lower than that of the resin having a substituent that binds to the cellulose by hydrogen bonding, from the viewpoint of the shutdown function. Examples of the component having a softening temperature lower than that of the resin having a substituent that binds to the cellulose include thermoplastic resins such as polypropylene and polyethylene. The operating principle of the shutdown function is that a material constituting the separator 20 melts to occlude the pores of the separator 20, and the term “shutdown function” refers to a function of significantly increasing the resistance by an increase of the battery temperature to a certain level. This shutdown function can cut off the current by the separator 20 when the batter generates heat due to any cause to prevent further generation of heat by the battery.


The air permeability of the separator 20 is, for example, preferably within a range of 5 to 50 sec/100 cc and more preferably 5 to 20 sec/100 cc. In the separator 20, as described above, since the distance between the cellulose fibers are appropriately broadened by the resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding, the above-described satisfactory air permeability can be ensured. The air permeability of the separator 20 can be adjusted by the content and the particle diameter of the resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding and the fiber diameter of the cellulose fibers for example. The air permeability of a porous film can be determined by measuring the time necessary for 100 cc of air applied with a certain pressure to pass through the porous film in the vertical direction.


When the time indicating the air permeability of the separator 20 is longer than 50 sec/100 cc, for example, since the separator 20 has pores with a smaller pore diameter compared to the case of satisfying the above-mentioned range, the permeation of the electrolyte into the separator 20 may be decreased to deteriorate, for example, the cycling characteristics. In contrast, when the time indicating the air permeability of the separator 20 is shorter than 5 sec/100 cc, since the separator 20 has pores with a larger pore diameter compared to the case of satisfying the above-mentioned range, an internal short circuit by lithium dendrites may easily occur.


The separator 20 may have any porosity and preferably has a porosity of 30% to 70% from the viewpoint of charge and discharge performance. The porosity is the percentage of the total pore volume of the separator 20 to the volume of the separator 20.


The areal weight of the separator 20 is preferably in a range of 5 to 20 g/m2, more preferably 10 to 15 g/m2, from the viewpoint of preventing an internal short circuit by lithium dendrites. When the areal weight is within a range of 5 to 20 g/m2, the separator 20 can ensure a sufficient thickness while maintaining satisfactory air permeability, compared to the case of having an areal weight outside the above-mentioned range. Consequently, higher performance of preventing an internal short circuit can be achieved.


The maximum pore diameter of the separator 20 is preferably 0.4 μm or less, and, more preferably, in the pore size distribution of the separator 20, the volume of pores having a pore diameter of 0.05 μm or less is 50% or more of the total pore volume. A maximum pore diameter of the separator 20 of higher than 0.4 μm may reduce the mechanical strength, the density of pores, and other factors of the separator 20 to readily cause an internal short circuit by lithium dendrites, compared to the case of having a maximum pore diameter of 0.4 μm or less. When the volume of pores having a pore diameter larger than 0.05 μm is higher than 50% of the total pore volume (the volume of pores having a pore diameter of 0.05 μm or less is less than 50% of the total pore volume) in the pore size distribution of the separator 20, the mechanical strength, the density of pores, and other factors of the separator 20 are reduced to readily cause an internal short circuit by lithium dendrites, compared to the case of a separator in which the volume of pores having a pore diameter of 0.05 μm or less is 50% or more of the total pore volume.


The pore size distribution of the separator 20 is measured, for example, with a perm porometer that can measure pore diameters in accordance with a bubble point method (JIS K3832, ASTM F316-86). As the perm porometer, for example, model CFP-1500AE manufactured by Seika Corporation can be used. This perm porometer can measure pores having a pore size down to 0.01 μm by using a solvent having a low surface tension, SILWICK (20 dyne/cm) or GAKWICK (16 dyne/cm), as a test solution and pressurizing the dry air up to a measuring pressure of 3.5 MPa. The pore size distribution can be determined from the amount of air passed through at the measuring pressure.


Here, the maximum pore diameter of the separator 20 is the maximum pore diameter in the peaks observed in the pore size distribution measured as described above. The percentage (%) of the volume of pores having a pore diameter of 0.05 μm or less to the total pore volume can be determined by determining the ratio (B/A) of the peak area (B) corresponding to the pores having a pore diameter of 0.05 μm or less to the total peak area (A) in the pore size distribution.


The pore size distribution of the separator 20 measured with a perm porometer preferably widely ranges from 0.01 μm to 0.2 μm, and the distribution preferably has at least one peak within a pore diameter range of 0.01 to 0.2 μm.


The separator 20 preferably has a thickness of 5 to 30 μm from the viewpoint of ensuring the mechanical strength and other factors and also improving the charge and discharge performance of the nonaqueous electrolyte secondary battery 10. A thickness of the separator 20 of 5 μm or more increases the mechanical strength and further prevents the occurrence of an internal short circuit by lithium dendrites, compared to the case having a thickness less than 5 μm. A thickness of the separator 20 of 30 μm or less prevents the charge and discharge performance from deteriorating, compared the case of having a thickness larger than 30 μm.


Method of Producing Separator 20

The separator 20 can be produced by, for example, applying an aqueous dispersion onto one surface of a peelable substrate and drying the dispersion, where the dispersion is prepared by dispersing, for example, an emulsion containing cellulose fibers and resin particles in which the resin has a substituent that binds to the cellulose by hydrogen bonding in an aqueous solvent. Examples of the aqueous solvent include solvents containing surfactants, thickening agents, and other additives and having adjusted viscosities and dispersion states. From the viewpoint of forming pores in the separator, the aqueous dispersion may contain an organic solvent. The organic solvent has high compatibility with water, and examples thereof include glycols, such as ethylene glycol; glycol ethers; glycol diethers; and polar solvents, such as N-methyl-pyrrolidone. In addition, the use of an aqueous binder solution, such as CMC or PVA, or a binder emulsion, such as SBR, can adjust the viscosity of the slurry and enhance the mechanical strength of the separator 20. The separator 20 can be a porous film prepared by mixing, with the slurry, long fibers of a resin in an amount that does not affect the coating properties of the slurry and welding the resin fibers by thermal calendering press.


EXAMPLES

The present disclosure will now be described by Examples, but is not limited to the following Examples.


Example 1
Production of Emulsion Containing Crosslinked Acrylic Resin Particles

Methyl acrylate (MA, 30 parts by mass), n-butyl acrylate (70 parts by mass), triethylene glycol diacrylate (3EGA: crosslinking agent, 10 parts by mass), acrylic acid (5 parts by mass), an anionic surfactant (5 parts by mass), and deionized water (100 parts by mass) were mixed with a homo-mixer to prepare a monomer emulsion. Deionized water (190 parts by mass) was charged in an autoclave purged with nitrogen and provided with a dropping device and a stirrer and was heated to 70° C. with stirring. An aqueous solution prepared by dissolving an aqueous ammonium persulfate solution (0.6 parts by mass) in deionized water (10 parts by mass) was then added to the deionized water. To this mixture was dropwise added the monomer emulsion prepared above over 4 hours with stirring while maintaining the temperature at 70° C. The stirring was further continued for 3 hours while maintaining the temperature to perform polymerization. This procedure gave emulsion A-1 containing crosslinked acrylic resin particles.


Preparation of Cellulose Fiber Slurry

Cellulose fibers (3 parts by mass as the solid content) having a fiber diameter of 0.5 μm or less (average fiber diameter: 0.02 μm) and a fiber length of 50 μm or less and emulsion A-1 (0.6 parts by mass as the solid content) were dispersed in water (100 parts by mass), and an ethylene glycol solution (1 part by mass) was added thereto to prepare a cellulose fiber slurry.


Production of Separator

The cellulose fiber slurry was applied onto one surface of a peelable substrate at an areal weight of 12 g/m2, and the applied slurry was dried to produce a film containing cellulose fibers and crosslinked acrylic resin particles on the surface of the substrate. This film was compressed with a calender roll at 140° C. and was then peeled from the substrate to give a separator having a thickness of 15 μm.


Example 2

A separator was produced as in Example 1 except that emulsion A-2 containing crosslinked acrylic resin particles was prepared using 0.5 parts by mass of acrylic acid in the preparation of the emulsion and was used.


Example 3

A separator was produced as in Example 1 except that the amount of emulsion A-1 containing crosslinked acrylic resin particles used in the preparation of the cellulose fiber slurry was 1.2 parts by mass.


Example 4

A separator was produced as in Example 1 except that the amount of emulsion A-1 containing crosslinked acrylic resin particles used in the preparation of the cellulose fiber slurry was 3 parts by mass.


Example 5

A separator was produced as in Example 1 except that emulsion A-3 containing crosslinked acrylic resin particles was prepared using 0.1 parts by mass of acrylic acid in the preparation of the emulsion and was used.


Example 6

A separator was produced as in Example 1 except that emulsion A-4 containing crosslinked acrylic resin particles was prepared using 50 parts by mass of methyl acrylate (MA) and 50 parts by mass of n-butyl acrylate in the preparation of the emulsion and was used.


Example 7

A separator was produced as in Example 1 except that the cellulose fibers used in the preparation of the cellulose fiber slurry had a fiber diameter of 5 μm or less (average fiber diameter 0.02 μm) and a fiber length of 50 μm or less.


Example 8

A separator was produced as in Example 1 except that the amount of emulsion A-1 containing crosslinked acrylic resin particles used in the preparation of the cellulose fiber slurry was 4 parts by mass.


Example 9

A separator was produced as in Example 1 except that emulsion A-5 containing crosslinked acrylic resin particles was prepared using 1 part by mass of triethylene glycol diacrylate in the preparation of the emulsion and was used.


Comparative Example

A separator was produced as in Example 1 except that the emulsion containing crosslinked acrylic resin particles was not used.


Table 1 shows the compositions and physical properties of the emulsions (A-1 to A-5) containing crosslinked acrylic resin particles used in Examples 1 to 9.











TABLE 1









Emulsion containing crosslinked



acrylic resin particles













A-1
A-2
A-3
A-4
A-5

















Composition
MA
30
30
30
50
30


ratio (parts
(methyl acrylate)


by mass)
nBA
70
70
70
50
70



(n-butyl acrylate)



3EGA
10
10
10
10
1



(crosslinking agent)



AA
5
0.5
0.1
5
5



(acrylic acid)



KPS
0.6
0.6
0.6
0.6
0.6



(polymerization



initiator)


Glass transition
° C.
−20
−20
−20
25
−20


point


Gel content
%
95
95
95
95
20


MFR(φ1-
g/min
0.2
0.2
0.2
0.2
30


200° C.)


Volume
μm
0.1
0.2
0.3
0.1
0.1


average


particle


diameter









The physical properties of the emulsions (A-1 to A-5) containing crosslinked acrylic resin particles were measured as follows.


Measurement of Melt Flow Rate (MFR)

The MFR was measured under the following conditions:


Apparatus: melt flow indexer (manufactured by Yasuda Seiki seisakusho LTD.)


Load: 2.16 kgf


Temperature: 200° C.


Sample amount: 50 g


A lower value (g/min) of MFR under the conditions above means that resin particles are hard to be melted at 200° C.


Measurement of Glass Transition Point

The glass transition point was measured with a differential scanning calorimeter, “DSC-6200” (manufactured by Seiko Instruments Inc.), using 20 mg of a sample at a temperature rising rate of 10° C./min.


Gel Content

The gel content is the weight ratio of an insoluble component obtained by dissolving crosslinked acrylic resin particles in tetrahydrofuran (THF), which is a solvent capable of dissolving the noncrosslinked component, at a concentration of 1% and then filtering the solution through a membrane filter. A higher gel content means a higher degree of crosslinking of the resin particles. Resin particles having a higher degree of crosslinking are hard to be softened at high temperature.


Table 2 shows the compositions of the cellulose fiber slurries used in Examples 1 to 9 and Comparative Example and the physical properties of the separators of Examples 1 to 9 and Comparative Example.





















TABLE 2







Cellulose fiber
Exam-
Exam-
Exam-






Comparative



slurry
ple 1
ple 2
ple 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9
Example



























Composition
Water
100
100
100
100
100
100
100
100
100
100


ratio (parts by
Cellulose fiber
3
3
3
3
3
3

3
3
3


mass)
(fiber diameter:



0.5 μm or less)



Cellulose fiber






3



(fiber diameter:



5 μm or less)



Emulsion A-1
0.6

1.2
3


0.6
4



Emulsion A-2

0.6



Emulsion A-3




0.6



Emulsion A-4





0.6



Emulsion A-5








0.6



Ethylene glycol
1
1
1
1
1
1
1
1
1
1








Results of evaluation of



separator


















Areal weight
g/m2
12
12
12
12
12
12
12
12
12
12


Air permeability
s/100 cc
20
7
10
15
5
20
20
500
20
800


Tensile strength
N/mm
150
130
170
180
110
120
120
220
200
100


Piercing
N/φ1
3.9
3.5
4.3
4.4
3
3.2
3.2
4.4
4.2
2.5


strength


Bubble point
μm
300
400
300
200
500
300
800
100
300
200


Average pore
μm
60
80
60
50
80
60
100
40
60
20


diameter


Heat-resistant
%
0.2
0.3
0.2
0.2
0.3
0.2
0.2
0.2
5
0.2


shrinkage rate


(130° C.)









The physical properties of the separators of Examples 1 to 5 and Comparative Example were evaluated as follows.


Evaluation of Air Permeability

Air permeability (air resistance) was evaluated in accordance with JIS P 8117 (Paper and board—Determination of air permeance and air resistance (medium range)—Part 5: Gurley method). The air permeability was the time (sec) necessary for permeation of 100 cc of air.


Evaluation of Tensile Strength

Tensile strength (20 mm/min) was evaluated in accordance with JIS K 7127 (Plastics—Determination of tensile properties—Part 3: Test conditions for films and sheets) using a test piece of 15 mm width and 150 mm length.


Evaluation of Piercing Strength

Piercing strength (5 mm/min) was evaluated in accordance with JIS K 7181 (Plastics—Determination of compressive properties) using a test piece having a length of 15 mm or more and a piercing needle having a diameter of 1 mm.


Evaluation of Bubble Point

Bubble point was evaluated with a perm porometer. The results of the evaluation of the bubble point denote the maximum pore diameter of the separator.


Evaluation of Average Pore Diameter

The average pore diameter was evaluated with a perm porometer.


Evaluation of Heat-Resistant Shrinkage Rate

A separator piece of 50 mm square cut out in the MD (the direction parallel to the winding direction) or TD (the direction perpendicular to the winding direction) was put in liquid paraffin heated to 140° C. in advance and was retained therein for 1 hour. The separator piece was then taken out, and the shrinkage rate thereof was determined by the following calculation expression:





Shrinkage rate (%)=(the length in the MD or TD after the heat treatment/50 mm)×100.


The separators containing cellulose fibers and crosslinked acrylic resin particles of Examples 1 to 9 all had satisfactorily low air permeability, compared to the separator not containing crosslinked acrylic resin particles of Comparative Example. In the separators of Examples 1 to 9, powder falling, i.e., falling of the resin particles was prevented during the production of the separators, and satisfactory tensile strength and piercing strength were achieved. That is, in the separator of Example, powder falling is prevented from occurring while ensuring satisfactory air permeability. Consequently, for example, an internal short circuit by lithium dendrites can be prevented from occurring.


As in Examples 3, 4, and 8, in the separator containing crosslinked acrylic resin particles at a content of 1 part by mass or more based on the total amount of the separator had improved mechanical strength (piercing strength and tensile strength). Among these Examples, the separators of Examples 3 and 4, in which the content of the crosslinked acrylic resin particles was less than 4.4 parts by mass based on the total amount of the separator, had satisfactory air permeability, compared to the separator of Example 8, in which the content of the particles was 4.4 parts by mass or more. In the separator of Example 8, most of the pores of the separator were probably occluded by the crosslinked acrylic resin particles to increase the value of the air permeability, compared to the separators of other Examples. In addition, as in Examples 2 and 5, adjustment of acrylic acid in the crosslinked acrylic resin particles to less than 0.5 parts by mass allowed the crosslinked acrylic resin particles to have a volume average particle diameter larger than those of resin particles in other Examples. As a result, the separators having more satisfactory air permeability compared to those of other Examples were obtained. As in Example 6, an increase in the content of methyl acrylate raised the glass transition point of the crosslinked acrylic resin particles compared to that of the resin particles in Example 1 while showing air permeability equivalent to that of the resin particles in Example 1. A fiber diameter of cellulose of 5 μm or less, as in Example 7, raised the bubble point of the separator and increased the average pore diameter, compared to those of the separators in other Examples. Since an MFR of 30 g/min, as in the separator of Example 9, increases the heat-resistant shrinkage rate, it is preferable to adjust the MFR of the crosslinked acrylic particles to less than 30 g/min from the viewpoint of the heat-resistant shrinkage rate.

Claims
  • 1. A separator for a nonaqueous electrolyte secondary battery comprising: cellulose fibers; andresin particles having substituents bonded by hydrogen bonds with the cellulose fibers.
  • 2. The separator for a nonaqueous electrolyte according to claim 1, wherein the cellulose fibers have an average fiber diameter of 0.05 μm or less.
  • 3. The separator for a nonaqueous electrolyte secondary battery according to claim 1, wherein the resin particles have a ratio of a volume average particle diameter (Dv) to a number average particle diameter (Dn) of less than 2.
  • 4. The separator for a nonaqueous electrolyte secondary battery according to claim 1, wherein the resin particles have a volume average particle diameter within a range of 0.05 to 0.5 μm.
  • 5. The separator for a nonaqueous electrolyte secondary battery according to claim 1, wherein the resin particles have a softening temperature of 200° C. or more.
  • 6. The separator for a nonaqueous electrolyte secondary battery according to claim 1, wherein the resin particles include crosslinked acrylic resin particles.
  • 7. A nonaqueous electrolyte secondary battery comprising: a positive electrode;a negative electrode;a separator for a nonaqueous electrolyte secondary battery includingcellulose fibers and resin particles having substituents bonded by hydrogen bonds with the cellulose fibers; anda nonaqueous electrolyte.
Priority Claims (1)
Number Date Country Kind
2014-241636 Nov 2014 JP national