Septal occluder and associated methods

Information

  • Patent Grant
  • 7867250
  • Patent Number
    7,867,250
  • Date Filed
    Thursday, December 19, 2002
    22 years ago
  • Date Issued
    Tuesday, January 11, 2011
    14 years ago
Abstract
Devices are provided for closing septal defects such as PFOs. The devices generally include a proximal anchor member, a distal anchor member, and a flexible center joint connecting the two anchor members.
Description
BACKGROUND OF THE INVENTION

A patent foramen ovale (PFO) as shown in FIG. 1 is a persistent, one-way, usually flap-like opening in the wall between the right atrium 10 and left atrium 12 of the heart. Since left atrial (LA) pressure is normally higher than right atrial (RA) pressure, the flap typically stays closed. Under certain conditions, however, RA pressure can exceed LA pressure creating the possibility for right to left shunting that can allow blood clots to enter the systemic circulation. In utero, the foramen ovale serves as a physiologic conduit for right-to-left shunting. After birth, with the establishment of pulmonary circulation, the increased left atrial blood flow and pressure results in functional closure of the foramen ovale. This functional closure is subsequently followed by anatomical closure of the two over-lapping layers of tissue: septum primum 14 and septum secundum 16. However, a probe-patent foramen ovale has been shown to persist in up to 35% of adults in an autopsy series. Using contrast echocardiography (TEE), a PFO can be detected in approximately 25% of adults. These numbers are different because an autopsy allows direct visual inspection of the anatomy, whereas contrast echocardiography relies on the measurement of an indirect physiologic phenomenon.


The cause of ischemic stroke remains cryptogenic (of unknown origin) in approximately 40% of cases. Especially in young patients, paradoxical embolism via a PFO is considered in the diagnosis. While there is currently no proof for a cause-effect relationship, many studies have confirmed a strong association between the presence of a PFO and the risk for paradoxical embolism or stroke. In addition, there is good evidence that patients with PFO and paradoxical embolism are at increased risk for future, recurrent cerebrovascular events.


The presence of PFO has no therapeutic consequence in otherwise healthy adults. In contrast, patients suffering a stroke or TIA in the presence of a PFO and without another cause of ischemic stroke are considered for prophylactic medical therapy to reduce the risk of a recurrent embolic event. These patients are commonly treated with oral anticoagulants, which have the potential for adverse side effects such as hemorrhaging, hematoma, and interactions with a variety of other drugs. In certain cases, such as when anticoagulation is contraindicated, surgery may be used to close a PFO. To suture a PFO closed requires attachment of septum secundum to septum primum with a continuous stitch, which is the common way a surgeon shuts the PFO under direct visualization.


Non-surgical closure of PFOs has become possible with the advent of umbrella-like devices and a variety of other similar mechanical closure designs developed initially for percutaneous closure of atrial septal defects (ASD). These devices allow patients to avoid the potential side effects often associated with anticoagulation therapies.


BRIEF SUMMARY OF EMBODIMENTS OF THE INVENTION

Various embodiments of the present invention are directed to devices for closing septal defects such as PFOs. The closure devices generally include a proximal anchor member, a distal anchor member, and a flexible center joint connecting the two anchor members. The center joint can be a suture. Alternatively, the center joint can be a flexible elastomeric layer, which can, e.g., be used to promote tissue ingrowth or for drug delivery. The flexible material can also be covered with a biocompatible glue to promote adherence to tissue or growth factors to accelerate tissue ingrowth.


In accordance with some embodiments of the invention, the closure device is formed of bioresorbable components such that substantially no permanent foreign body remains in the defect.


In accordance with further embodiments of the invention, mechanisms are provided to collapse the closure device for facilitating device delivery, removal and/or repositioning.


These and other features will become readily apparent from the following detailed description wherein embodiments of the invention are shown and described by way of illustration. As will be realized, the invention is capable of other and different embodiments and its several details may be capable of modifications in various respects, all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature and not in a restrictive or limiting sense.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a portion of the heart illustrating a PFO;



FIG. 2 illustrates a deployed PFO closure device with bioresorbable components in accordance with one or more embodiments of the invention;



FIG. 3 illustrates the PFO closure device of FIG. 2 in a collapsed state for passage through a delivery catheter or sheath;



FIG. 4 illustrates a closure device deployed to close a PFO in accordance with one or more further embodiments of the invention;



FIG. 5 illustrates a closure device deployed to close the PFO in accordance with one or more further embodiments of the invention;



FIGS. 6A and 6B are front and side views, respectively, of a PFO closure device in accordance with one or more further embodiments of the invention;



FIGS. 7A and 7B are front and side views, respectively, of a PFO closure device in accordance with one or more further embodiments of the invention;



FIGS. 8A and 8B are side and front views, respectively, of the PFO closure device of FIG. 6 deployed to close a PFO;



FIG. 9A illustrates a closure device having a retrieval mechanism in accordance with one or more further embodiments of the invention in a collapsed state for passage through a catheter or sheath;



FIG. 9B is a front view of the FIG. 9A device;



FIGS. 9C-E illustrate deployment of the FIG. 9A device;



FIGS. 9F-H illustrate removal of the FIG. 9A device;



FIG. 10A illustrates a closure device having a retrieval mechanism in accordance with one or more further embodiments of the invention in a collapsed state for passage through a catheter or sheath;



FIG. 10B is a front view of the FIG. 10A device;



FIGS. 11A and 11B illustrate an anchor member with an elastic hinge in accordance with one or more further embodiments of the invention;



FIG. 12 illustrates a PFO closure device made from a single material in accordance with one or more further embodiments of the invention;



FIG. 13 illustrates a PFO closure device having inflatable anchor members in accordance with one or more further embodiments of the invention;



FIG. 14 illustrates a PFO closure device with a wire connecting the proximal and distal anchor members in accordance with one or more further embodiments of the invention;



FIG. 15 illustrates a PFO closure device having a frame member in accordance with one or more further embodiments of the invention;



FIG. 16 illustrates a PFO closure device having frame anchor members in accordance with one or more further embodiments of the invention;



FIG. 17 illustrates a PFO closure device having frame anchor members in accordance with one or more further embodiments of the invention;



FIG. 18 illustrates the FIG. 17 device in a collapsed state for passage through a catheter or sheath;



FIG. 19 illustrates a frame anchor member having metal and polymer components in accordance with one or more further embodiments of the invention;



FIGS. 20A and 20B illustrate a PFO closure device having anchor members formed from a rolled material in accordance with one or more further embodiments of the invention in rolled and unrolled positions, respectively;



FIGS. 21A and 21B illustrate an alternate PFO closure device having anchor members formed from a rolled material in accordance with one or more further embodiments of the invention in rolled and unrolled positions, respectively;



FIG. 22A illustrates a closure device having frame anchor members and a generally “X” shaped joint member in accordance with one or more further embodiments of the invention;



FIG. 22B illustrates the proximal anchor member of the FIG. 22A device;



FIG. 22C illustrates the FIG. 22A device in a deployed state;



FIG. 23 illustrates a closure device having frame anchor members having a generally “+” shaped frame structure in accordance with one or more further embodiments of the invention; and



FIG. 24 illustrates a closure device having frame anchor members having a generally “G” shaped frame structure in accordance with one or more further embodiments of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS

Various embodiments of the present invention are directed to methods and devices for closing septal defects such as PFOs, primarily by eliciting a healing response at the defect.


As shown in FIG. 2, a PFO closure device 18 in accordance with one or more embodiments of the present invention includes a distal anchor component or member 20 (which can be placed on the left atrial side of the PFO), a proximal anchor member 22 (to fix the device in place), a proximal attachment point 24 (for attachment and release from a catheter), and a central connecting member 26 (which can, e.g., be a simple suture in accordance with this embodiment).


In some embodiments, the distal anchor, the proximal anchor, and the connecting member are bioresorbable. These components can be fabricated from either a single bioresorbable polymer or by a laminated composite of two or more materials to provide a unique mix of properties such as, e.g., anchor members having stiff centers and flexible edges, and blood contacting surfaces having controlled porosity or surface texture to promote fast and thorough endothelialization, while minimizing thrombosis. In addition, the tissue contacting surface of the anchors can be designed to provide added stability by, e.g., being roughened.


The distal anchor 20 is an elongated, preferably generally cylindrical, thin bar-like member with rounded, arcuately shaped ends. The tissue contacting surface of the anchor can be generally flattened to increase tissue surface contact. In size, the distal anchor component might, e.g., be 15-30 mm long and 2 mm in diameter with a circular cross-section. The proximal anchor 22 can be of similar dimensions and shape, although it can be shorter in overall length.


Other distal and proximal anchor structures are also possible. For example, the anchors can be formed of a generally flat material rolled to form a cylindrical shape as described below with respect to the embodiments of FIGS. 20 and 21.


For delivery and deployment, the distal anchor 20 and proximal anchor 22 are positioned to be generally aligned in a longitudinal, end-to-end manner within a delivery sheath or catheter 28 as shown in FIG. 3. These components, with the flexible connecting member 26 traverse the catheter or delivery sheath in this longitudinal orientation. The catheter or delivery sheath is inserted between septum primum and septum secundum into the left atrium 18, and the distal anchor component 20 is ejected. Then, the catheter or delivery sheath 28 is withdrawn into the right atrium, and the proximal anchor 22 is ejected. The flexible central connecting member 26 extends between septum primum and septum secundum to join the distal anchor 20 and the proximal anchor 22. Once ejected, the distal anchor and proximal anchor generally self-orientate to be essentially perpendicular to the axis of the central connecting member and in generally parallel planes to one another. The exact orientation will be governed by the individual patient anatomy.


An alternate delivery method for this device can be to deploy it directly through the septum primum as opposed to through the PFO.


The method of attaching the central connecting member 26 to the anchor and stop mechanism 22 to permit the distal anchor and the proximal anchor to be drawn together could be, e.g., via a friction fit or via a slip knot on the central connecting member. If a slip knot is used, the free end of the suture proximal to the knot can be held remotely and released after the knot has been placed in the appropriate location.


In one or more alternate embodiments of the invention shown in FIG. 4, the central connecting member 26 is mounted to permit free sliding movement of the proximal anchor 22 relative to the central connecting member 26. A biasing spring 30, which may be an expandable coil spring, can be formed at the outer end of the central connecting member 26 to bias the proximal anchor toward the distal anchor when both are deployed from the catheter or sheath.


In the embodiments illustrated in FIGS. 4 and 5, a metallic component may be used as the central connecting member 26 in order to provide an appropriate stop and apply compression force to the proximal anchor 22. The metallic component could be a piece of shape memory wire that has one end molded or laminated into the distal anchor component 20. In FIG. 4, the proximal anchor 22 slides on the central connecting member 26, and once it is deployed, the biasing spring 30 formed on the end of the shape memory wire expands to bias the proximal anchor 22 toward the distal anchor 20.


In the FIG. 5 embodiment, a shape memory wire forms a hook type anchor 32 made from two wires that exit through the center of the proximate anchor and curve in opposite directions when expanded to draw the proximate anchor toward the distal anchor.


While the embodiments of FIGS. 4 and 5 can leave a permanent foreign body when the bioresorbable components dissolve (if, e.g., a metallic component is used as the central connecting member 26), one advantage of these devices is that no thrombogenic tissue scaffold (usually a vascular material) is placed on the left atrial side. Thrombus forming on the LA side of a PFO closure device can be released into the systemic circulation causing an embolic event within the coronary arteries, cerebral circulation, or distally in the vasculature, and most vascular graft materials utilized to close PFOs are highly thrombogenic.


The PFO closure devices may need to be capable of x-ray visualization and use with radiopaque fillers or marker bands fabricated from noble metals such as platinum or gold. These markers can be attached using a variety of common methods such as, e.g., adhesive bonding, lamination between two layers of polymer, or vapor deposition.



FIGS. 6A and 6B illustrate a closure device 50 in accordance with one or more further embodiments of the invention. The device 50 includes proximal and distal anchor members 52, 54 connected with a flexible (and preferably stretchable elastomeric) center joint or connecting element 56. The anchor members 52, 54 are preferably cylindrical in shape with rounded ends. In size, the distal anchor member 54 might, e.g., be about 15-30 mm long and about 2 mm in diameter with a circular cross-section. The proximal anchor 52 can be of similar dimensions and shape, although it can be shorter in overall length. The anchor members 52, 54 are preferably made from a rigid (preferably bioresorbable) polymer (regular or shape memory), or biological tissue. Biocompatible metal can also be used.


Other distal and proximal anchor structures are also possible. For example, the anchors can be formed of a generally flat material rolled to form a cylindrical shape as described below with respect to the embodiments of FIGS. 20 and 21.


The center joint 56 of the FIG. 6 device (as well as the center joints of the devices shown in FIGS. 7-10, 12-18, and 21-24) are preferably elastomeric and resilient and are made from thrombogenic or inflammatory materials including, e.g., polyester, biological tissue, bioresorbable polymer, small diameter springs (e.g., Nitinol), or spongy polymeric material. Alternatively, the center joint can be made of multiple strands of material 58 such as, e.g., polymer fibers as shown in the closure device 60 of FIGS. 7A and 7B. The center joint can be textured, porous or in a form of a single or double-sided hook material such as Velcro. These kinds of surfaces produce inflammatory responses and therefore, promote faster tissue ingrowth and faster defect closure. The entire device or parts of it can be made from bioresorbable polymers.



FIGS. 8A and 8B are front and side views, respectively, of the device 50 in a PFO defect. The proximal and distal anchor members 54, 52 are longer than the defect width, thereby inhibiting the device from being embolized.


In accordance with further embodiments of the invention, a closure device can include a delivery/removal mechanism to facilitate device delivery, removal or repositioning. A device 70 shown in FIGS. 9A and 9B includes a removal string 72 and a delivery string 74. The removal string is movably secured and slides freely inside of the proximal anchor member 76. The string extends from one end of the proximal member 76 and is fixed to an opposite end of the distal anchor member 78. By pulling on the free end of the removal string 72, the whole device 70 can be collapsed and pulled into the delivery sheath 79 as shown in FIG. 9A. The strings can, e.g., be sutures or wires such as Nitinol wire.


The delivery and removal strings are manipulated separately in order to deploy or remove the device. FIGS. 9C-E illustrate device deployment using the delivery string 74, which is preferably attached generally to the center of the proximal anchor member 76. The delivery sheath 79 containing the device 70 is first inserted between the septum primum and septum secundum into the left atrium as shown in FIG. 9C. As shown in FIG. 9D, the distal anchor 78 is then ejected from the delivery catheter 79. Tension is then applied to the delivery string 74, and the delivery sheath is withdrawn into the right atrium and the proximal anchor 76 is ejected. Applying tension to the delivery string enables the proximal anchor 76 to be properly deployed in the right atrium, and keeps the anchor 76 from being ejected into the left atrium. Upon successful deployment of the device 70, both strings are released and the delivery system is withdrawn. No tension is applied to the removal string during delivery.



FIGS. 9F-H illustrate removal of the device 70. As shown in FIG. 9F, tension is applied to the removal string, while the delivery sheath 79 is moved toward the device 70. The applied tension causes the proximal anchor 76 to be withdrawn into the delivery sheath as shown in FIG. 9G. The distal anchor 78 is also withdrawn into the delivery sheath as further tension is applied to the removal string. The device can then be redeployed if desired or removed.


Alternatively, the delivery string 74 can be omitted, and the removal string 72 be used for both device deployment and removal. The delivery sheath 79 containing the closure device is first inserted between the septum primum and septum secundum into the left atrium in a similar manner to that shown in FIG. 9C. The distal anchor 78 is then ejected from the delivery catheter 79 in a similar manner to that shown in FIG. 9D. Tension is applied to the removal string 72, and the delivery sheath is withdrawn into the right atrium, and the proximal anchor 76 is ejected. Applying tension to the removal string enables the proximal anchor 76 to be properly deployed in the right atrium, and keeps the proximal anchor 76 from being ejected into the left atrium. The elasticity of the center joint connecting the anchor members helps properly position the proximal anchor at the defect. Upon successful deployment of the closure device, the string 72 is released and the delivery system is withdrawn.


As shown in FIGS. 10A and 10B, in another embodiment, strings 80 (suture, Nitinol wire, etc.) are attached to both ends of the proximal anchor member 82 of a closure device 84. Both anchor members are flexible and can fold as shown in FIG. 10A in order to be delivered to or removed from the defect.


In accordance with a further embodiment of the invention, as shown in FIGS. 11A and 11B, each of the proximal and distal anchor members can include two elements 90 separated by an elastic hinge 92. The elastic hinge 92 can facilitate folding of the members as shown in FIG. 11B. The hinge 92 can be molded or made from a material such as, e.g., Nitinol or other shape memory materials, which can be a different material from the elements 90.


In accordance with some embodiments of the invention, an entire closure device can be made from a single sheet of a material as shown, e.g., in the closure device 100 of FIG. 12. Two opposite ends of the sheet can be rolled to form the proximal and distal anchor members. Glue or heat bonding can be used to maintain the rolled-up configuration of the anchor members 102, 104.


As shown in FIG. 13, in accordance with some further embodiments of the invention, one or both anchor members 110, 112 of a closure device 114 can be inflatable. The anchor members can be inflated with, e.g., saline or other physiological fluid during or before the delivery of the device. A tube 116 can communicate with cavities in the anchor members. An inlet 118 can be provided at one of the members for introducing fluid therein.


In accordance with some further embodiments of the invention, a wire 120 such as, e.g., an S-shaped wire, can be provided to connect the proximal and distal anchor members 122, 124 of a device 126 as shown in FIG. 14. The wire can be used to provide additional clamping force while the device is in a PFO defect. Other wire shapes are also possible.


In accordance with further embodiments of the invention, one or more frame structures can be used as the anchor members of a closure device. For example, FIG. 15 shows a closure device 130 having a frame structure 132. Also, FIG. 16 shows a closure device 136 having frames 138, 139. The frames can be, e.g., a metal (e.g., Nitinol wire) or polymer frame.



FIGS. 17-19 illustrate closure devices in accordance with some further embodiments of the invention. A closure device 140 shown in FIG. 17 includes anchor members 142, 144 having a frame structure. The frame shape can be polygonal as shown in the figure or it can alternatively be a circular shape. Other frame shapes are also possible as, e.g., will be described below with respect to FIGS. 22-24.


A recovery suture can be attached to opposite ends of the proximate anchor member 142 to collapse the anchors for delivery in a catheter 146 as shown in FIG. 18 or for retrieval or repositioning. The anchor members can be made from a metal, preferably Nitinol, or polymers. Alternatively, as shown in FIG. 19, an anchor member 148 can include both metal and polymer components.


In accordance with one or more further embodiments of the invention, the distal and proximal anchors can be formed of a flat sheet-like member rolled to form a cylindrical shape as shown, e.g., in the device 170 of FIG. 20A. The anchors 172, 174 can unroll to form sheet-like members when deployed as shown generally in FIG. 20B. The sheet-like member can be made of a material having shape memory properties such as, e.g., shape memory polymeric materials. Alternately, the sheet-like member can include metal struts made of shape memory metals such as, e.g., Nitinol or Nitinol alloys. The shape memory materials allow the device to be delivered in a delivery sheath or catheter with the anchors in the rolled configuration of FIG. 20A. The anchors attain the sheet-like geometry of FIG. 20B once deployed due to their shape memory properties. The anchor members 172, 174 can be connected to each other with a connecting member 176, which can, e.g., be a suture similar to that used in the FIG. 2 device.



FIGS. 21A and 21B illustrate a closure device 180 having rolled anchor members 182, 184, which are similar to the anchor members 172, 174 of the device of FIGS. 20A and 20B. The anchors 182, 184 are connected to each other by a connecting member or joint 186, which can be a sheet of flexible material similar to the connecting members previously described with respect to FIGS. 6 and 7.



FIG. 22A illustrates a closure device 200 in accordance with one or more further embodiments of the invention. The device 200 includes distal and proximal anchor members 202, 204, each of which has a polygonal or circular frame structure. The anchor members are connected by a connecting member 206, which can be made from a flexible material similar to that previously described in connection with FIGS. 6 and 7. The connecting member 206 can be made of two sheets of flexible material connected at their centers, generally forming an “X” shape in the side view of the device. As shown in FIG. 22B, the proximal anchor member 204 can include one or more recovery wires or sutures attached to the frame structure for use in device deployment of recovery. FIG. 22C illustrates the device 200 as deployed.



FIGS. 23 and 24 illustrate closure devices 220, 230, respectively, in accordance with further embodiments of the invention. Each device 220, 230 includes distal and proximal anchor members having a frame structure. The anchor members are connected by a flexible joint 222, which can be made from a flexible material similar to that previously described in connection with FIGS. 6 and 7. The FIG. 23 device 220 includes distal and proximal anchor members 224, 226 generally having a “+” shape. The FIG. 24 device 230 includes distal and proximal anchor members 232, 234 generally having a “G” shape.


The closure devices described herein can optionally be used along with suturing or stapling techniques where the anchors or flexible joints of the devices can be sewn or stapled to septum primum or secundum for better dislodgment resistance. Also, the flexible joint can, if desired, be covered with biocompatible glue to adhere to the tissue or can be loaded with drugs or growth factors to promote healing. The glue and also certain drugs can also optionally be stored in any cavities in the anchor members (e.g., in the cylindrical members of FIGS. 6 and 7) and released after deployment. Noble metal markers can also be attached to the closure devices for a better x-ray visualization.


The various closure devices described herein can include a number of advantageous features. The closure devices preferably have an atraumatic shape to reduce trauma during deployment or removal. In addition, the devices can be self-orienting for ease of deployment. Furthermore, because of the flexible center joint, the devices generally conform to the anatomy instead of the anatomy conforming to the devices, which is especially useful in long tunnel defects. In addition, the devices can preferably be repositioned or/and removed during delivery. The devices also generally have a relatively small profile after deployment. The flexible center joint of the devices can encourage faster tissue ingrowth and therefore, faster defect closure. Furthermore, there are generally no exposed thrombogenic components on the left and right atrial sides. The devices can also advantageously include bioresorbable components, which can disappear over time.


Other benefits of the devices can include possible use of a relatively small diameter delivery sheath, use of reduced or no metal mass in the device, ease of manufacturing, cost effectiveness, and overall design simplicity.


Having described preferred embodiments of the present invention, it should be apparent that modifications can be made without departing from the spirit and scope of the invention.

Claims
  • 1. A septal occluder, comprising: a proximal generally cylindrically shaped anchor member having an axial length and an outer surface for deployment proximate a first end of a septal defect;a distal generally cylindrically shaped anchor member having an axial length and an outer surface for deployment proximate a second end of said septal defect; anda flexible connection layer, having a width and a length, fixedly attached to said proximal anchor member along a proximal attachment line and fixedly attached to said distal anchor member along a distal attachment line, the proximal attachment line extending in an axial direction on the outer surface of the proximal anchor member, the distal attachment line extending in an axial direction on the outer surface of the distal anchor member, and at least one of the distal attachment line and proximal attachment line being along the width of the flexible connection layer;said proximal and distal anchor members and said flexible connection layer comprising one or more bioresorbable materials.
  • 2. The septal occluder of claim 1 wherein said proximal and distal anchor members each have a first end and a second end and wherein each of the first ends and second ends are rounded.
  • 3. The septal occluder of claim 1 wherein said proximal and distal anchor members each comprise a cylindrical structure formed by rolling a layer of material.
  • 4. The septal occluder of claim 1 wherein said proximal and distal anchor members are inflatable.
  • 5. The septal occluder of claim 1 wherein said septal occluder is collapsible for passage through a catheter or sheath.
  • 6. The septal occluder of claim 5 wherein said occluder can be collapsed with the proximal and distal anchor members being in a generally aligned, end to end arrangement for passage through a catheter or sheath.
  • 7. The septal occluder of claim 1 wherein said proximal and distal anchor members are collapsible for deployment or removal.
  • 8. The septal occluder of claim 7 wherein the proximal and distal anchor members are generally foldable.
  • 9. The septal occluder of claim 8 wherein each anchor member includes two elements separated by an elastic hinge.
  • 10. The septal occluder of claim 1 further comprising a removal string attached to the septal occluder to facilitate removal of the septal occluder from the septal defect.
  • 11. The septal occluder of claim 10 wherein said removal string is slidingly mounted in said proximal anchor member and attached to said distal anchor member.
  • 12. The septal occluder of claim 10 wherein said removal string is mounted to slide through said proximal anchor member.
  • 13. The septal occluder of claim 10 further comprising a delivery string to facilitate deployment of the septal occluder at the septal defect.
  • 14. The septal occluder of claim 1 wherein said septal occluder is formed from a layer of material having opposite ends rolled to form the proximal and distal anchor members.
  • 15. The septal occluder of claim 1 further comprising a wire connecting said proximal and distal anchor members to provide clamping force to close the defect.
  • 16. The septal occluder of claim 15 wherein said wire has a serpentine configuration.
  • 17. The septal occluder of claim 1 wherein said flexible connection layer comprises a layer of elastomeric material.
  • 18. The septal occluder of claim 1 wherein said flexible connection layer comprises a layer of material made from thrombogenic or inflammatory materials.
  • 19. The septal occluder of claim 1 wherein said flexible connection layer comprises a layer of material that is porous or textured.
  • 20. The septal occluder of claim 1 wherein said flexible connection layer comprises a layer of material that is covered with a biocompatible glue to promote adherence to tissue.
  • 21. The septal occluder of claim 1 wherein said flexible connection layer comprises a layer of material that is covered with growth factors to accelerate tissue ingrowth.
  • 22. The septal occluder of claim 1, wherein at least one of said proximal and distal anchor members is configured to move pivotally relative to said flexible connection layer.
  • 23. A septal defect closure device, comprising: an elongated proximal anchor member, having a length along a longitudinal axis longer than its transverse dimension for deployment proximate a first end of a septal defect;an elongated distal anchor member, having a length along a longitudinal axis longer than its transverse dimension, for deployment proximate a second end of said septal defect; anda flexible layer having a width and a length, said flexible layer being fixedly attached to said proximal anchor member at a first connection location and fixedly attached to said distal anchor member at a second connection location, wherein at least one of the first and second connection locations forms a juncture line along the width of the flexible layer and along a portion of an axial length of the corresponding anchor member.
  • 24. The device of claim 23 wherein said flexible layer comprises thrombogenic or inflammatory materials.
  • 25. The device of claim 23 wherein said flexible layer is porous or textured.
  • 26. The device of claim 23 wherein said flexible layer is covered with a biocompatible glue to promote adherence to tissue.
  • 27. The device of claim 23 wherein said flexible layer is covered with growth factors to accelerate tissue ingrowth.
  • 28. The device of claim 23 wherein said flexible layer comprises a resilient elastomeric material.
  • 29. The device of claim 23 wherein said flexible layer comprises a plurality of fibers connecting the anchor members.
  • 30. The device of claim 23 wherein said proximal and distal anchor members each have a generally cylindrical shape with rounded ends.
  • 31. The device of claim 23 wherein a side of each anchor member for contacting a tissue surface is generally flattened to increase surface contact.
  • 32. The device of claim 23 wherein said proximal and distal anchor members each comprise a cylindrical structure formed by rolling a layer of material.
  • 33. The device of claim 23 wherein said proximal and distal anchor members are inflatable.
  • 34. The device of claim 23 wherein said device is collapsible for passage through a catheter or sheath.
  • 35. The device of claim 34 wherein said occluder can be collapsed with the proximal and distal anchor members being in a generally aligned, end to end arrangement for passage through a catheter or sheath.
  • 36. The device of claim 23 wherein said proximal and distal anchor members are collapsible for deployment or removal.
  • 37. The device of claim 36 wherein the proximal and distal anchor members are generally foldable.
  • 38. The device of claim 37 wherein each anchor member includes two elements separated by an elastic hinge.
  • 39. The device of claim 23 further comprising a removal string attached to the device to facilitate removal of the device from the septal defect.
  • 40. The device of claim 39 wherein said removal string is slidingly mounted in said proximal anchor member and attached to said distal anchor member.
  • 41. The device of claim 39 wherein said removal string is mounted to slide through said proximal anchor member.
  • 42. The device of claim 39 further comprising a delivery string to facilitate deployment of the device at the septal defect.
  • 43. The device of claim 23 wherein said device is formed from a layer of material having opposite ends rolled to form the proximal and distal anchor members.
  • 44. The device of claim 23 further comprising a wire connecting said proximal and distal anchor members to provide clamping force to close the defect.
  • 45. The device of claim 44 wherein said wire has a serpentine configuration.
  • 46. A septal defect closure device, comprising: a generally cylindrically shaped proximal anchor member for deployment proximate a first end of a septal defect, the proximal member has a length along an axial dimension that is greater than the transverse dimension and an outer surface;a distal anchor member having an outer surface for deployment proximate a second end of said septal defect;a flexible connection layer, having a width and a length, fixedly attached to said proximal anchor along a proximal attachment line and fixedly attached to said distal anchor member along a distal attachment line,wherein the flexible connection layer is fixedly attached to the proximal anchor member during delivery of the device to the septal defect,wherein the proximal attachment line extends in an axial direction on the outer surface of the proximal anchor member, the distal attachment line extends in an axial direction on the outer surface of the distal anchor member, and at least one of the distal attachment line and proximal attachment line being along the width of the flexible connection layer; anda removal string extending from said proximal anchor member to facilitate collapsing and removal of the device from the septal defect.
  • 47. The device of claim 46 wherein said removal string is slidingly mounted in said proximal anchor member and attached to said distal anchor member.
  • 48. The device of claim 46 wherein said removal string is mounted to slide through said proximal anchor member.
  • 49. The device of claim 46 further comprising a delivery string to facilitate deployment of the device at the septal defect.
  • 50. The device of claim 46 wherein said proximal and distal anchor members are collapsible for deployment or removal.
  • 51. The device of claim 50 wherein the proximal and distal anchor members are generally foldable.
  • 52. The device of claim 51 wherein each anchor member includes two elements separated by an elastic hinge.
  • 53. The device of claim 46 wherein a delivery string is attached to the proximal anchor member at a generally central location on the proximal anchor member.
  • 54. The device of claim 46 wherein said removal string is usable for both removal and deployment of the device.
  • 55. The device of claim 46, wherein at least one of said proximal and distal anchor members is configured to move pivotally relative to said flexible connection layer.
  • 56. An apparatus for closing a septal defect, comprising: a delivery system including a sheath having a tip positionable at the defect; anda septal occluder collapsible for delivery through the sheath for deployment at the septal defect, the septal occluder comprising:a proximal anchor member, having an outer surface, axial length and a transverse dimension, and the axial length is longer than the transverse dimension, for deployment at a first end of the septal defect;a distal anchor member having an outer surface for deployment at a second end of said septal defect; anda flexible connection layer, having a width and a length, fixedly attached to said proximal anchor member along a proximal attachment line and fixedly attached to said distal anchor member along a distal attachment line, said proximal and distal anchor members and said flexible connection layer comprising one or more bioresorbable materials,wherein the proximal attachment line extends in an axial direction on the outer surface of the proximal anchor member, the distal attachment line extends in an axial direction on the outer surface of the distal anchor member, and at least one of the distal attachment line and proximal attachment line being along the width of the flexible connection layer.
  • 57. The apparatus of claim 56, wherein at least one of said proximal and distal anchor members is configured to move pivotally relative to said flexible connection layer.
  • 58. An apparatus for closing a septal defect, comprising: a delivery system including a sheath having a tip positionable at the defect; anda septal occluder collapsible for delivery through the sheath for deployment at the septal defect, the septal occluder comprising:an elongated proximal anchor member for deployment at a first end of the septal defect;an elongated distal anchor member for deployment at a second end of said septal defect; anda flexible layer having a width and a length, said flexible layer being fixedly attached to said proximal anchor member at a first connection location and fixedly attached to said distal anchor member at a second connection location, wherein at least one of the first and second connection locations forms a juncture line along the width of the flexible layer and along a portion of an axial length of the corresponding anchor member and wherein the flexible layer includes filaments disposed along at least a portion of the axial length of the corresponding anchor member.
  • 59. An apparatus for closing a septal defect, comprising: a delivery system including a sheath having a tip positionable at the defect; anda septal occluder collapsible for delivery through the sheath for deployment at the septal defect, the septal occluder comprising:a proximal anchor member having an outer surface, an axial length and a transverse dimension, the axial length being longer than the transverse dimension, for deployment at a first end of the septal defect;a distal anchor member for deployment proximate a second end of said septal defect;a flexible connection layer, having a width and a length, fixedly attached to said proximal anchor along a proximal attachment line extending in an axial direction on the outer surface of the proximal anchor member, and fixedly attached to said distal anchor member along a distal attachment line, wherein at least one of the distal attachment line and proximal attachment line being along the width of the flexible connection layer; anda removal string extending from said proximal anchor member to facilitate collapsing and removal of the occluder from the septal defect into the delivery sheath if desired.
  • 60. The apparatus of claim 59, wherein at least one of said proximal and distal anchor members is configured to move pivotally relative to said flexible connection layer.
  • 61. A septal occluder, comprising: a proximal anchor member having an outer surface, an axial length and a transverse dimension,wherein the axial length is larger than the transverse dimension for deployment proximate a first end of a septal defect;a distal anchor member for deployment proximate a second end of said septal defect; anda flexible connection layer, having a width and a length, fixedly attached to said proximal anchor member along a proximal attachment line along an axial direction on the outer surface of the proximal anchor member, and fixedly attached to said distal anchor member along a distal attachment line, at least one of the distal attachment line and proximal attachment line being along the width of the flexible connection layer;said proximal and distal anchor members and said flexible connection layer comprising one or more plastic materials.
  • 62. The septal occluder of claim 61 wherein said proximal and distal anchor members are elongated.
  • 63. The septal occluder of claim 61 wherein said proximal and distal anchor members each have a generally cylindrical shape with rounded ends.
  • 64. The septal occluder of claim 61 wherein a side of each anchor member for contacting a tissue surface is generally flattened to increase surface contact.
  • 65. The septal occluder of claim 61 wherein said proximal and distal anchor members each comprise a cylindrical structure formed by rolling a layer of material.
  • 66. The septal occluder of claim 61 wherein said proximal and distal anchor members are inflatable.
  • 67. The septal occluder of claim 61 wherein said septal occluder is collapsible for passage through a catheter or sheath.
  • 68. The septal occluder of claim 67 wherein said occluder can be collapsed with the proximal and distal anchor members being in a generally aligned, end to end arrangement for passage through a catheter or sheath.
  • 69. The septal occluder of claim 61 wherein said proximal and distal anchor members are collapsible for deployment or removal.
  • 70. The septal occluder of claim 69 wherein the proximal and distal anchor members are generally foldable.
  • 71. The septal occluder of claim 70 wherein each anchor member includes two elements separated by an elastic hinge.
  • 72. The septal occluder of claim 61 further comprising a removal string attached to the septal occluder to facilitate removal of the septal occluder from the septal defect.
  • 73. The septal occluder of claim 72 wherein said removal string is slidingly mounted in said proximal anchor member and attached to said distal anchor member.
  • 74. The septal occluder of claim 72 wherein said removal string is mounted to slide through said proximal anchor member.
  • 75. The septal occluder of claim 72 further comprising a delivery string to facilitate deployment of the septal occluder at the septal defect.
  • 76. The septal occluder of claim 61 wherein said septal occluder is formed from a layer of material having opposite ends rolled to form the proximal and distal anchor members.
  • 77. The septal occluder of claim 61 further comprising a wire connecting said proximal and distal anchor members to provide clamping force to close the defect.
  • 78. The septal occluder of claim 77 wherein said wire has a serpentine configuration.
  • 79. The septal occluder of claim 71 wherein said flexible connection layer comprises a layer of elastomeric material.
  • 80. The septal occluder of claim 61 wherein said flexible connection layer comprises a layer of material made from thrombogenic or inflammatory materials.
  • 81. The septal occluder of claim 61 wherein said flexible connection layer comprises a layer of material that is porous or textured.
  • 82. The septal occluder of claim 61 wherein said flexible connection layer comprises a layer of material that is covered with a biocompatible glue to promote adherence to tissue.
  • 83. The septal occluder of claim 61 wherein said flexible connection layer comprises a layer of material that is covered with growth factors to accelerate tissue ingrowth.
  • 84. The septal occluder of claim 61, wherein at least one of said proximal and distal anchor members is configured to move pivotally relative to said flexible connection layer at least one of the first and second connection locations.
RELATED APPLICATION

The present application is based on and claims priority from U.S. Provisional Patent Application Serial No. 60/340,858 filed on Dec. 19, 2001 and entitled PATENT FORAMEN OVALE (PFO) CLOSURE DEVICE WITH BIORESORBABLE COMPONENTS.

US Referenced Citations (276)
Number Name Date Kind
3294631 Mancusi Dec 1973 A
3824631 Burstein et al. Jul 1974 A
3874388 King et al. Apr 1975 A
3875648 Bone Apr 1975 A
3924631 Mancusi, Jr. Dec 1975 A
4006747 Kronenthal et al. Feb 1977 A
4007743 Blake Feb 1977 A
4149327 Hammer et al. Apr 1979 A
4425908 Simon Jan 1984 A
4610674 Suzuki et al. Sep 1986 A
4626245 Weinstein Dec 1986 A
4696300 Anderson Sep 1987 A
4710192 Liotta et al. Dec 1987 A
4836204 Landymore et al. Jun 1989 A
4840623 Quackenbush Jun 1989 A
4902508 Badylak et al. Feb 1990 A
4915107 Rebuffat et al. Apr 1990 A
4917089 Sideris Apr 1990 A
4956178 Badylak et al. Sep 1990 A
5021059 Kensey et al. Jun 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5078736 Behl Jan 1992 A
5106913 Yamaguchi et al. Apr 1992 A
5108420 Marks Apr 1992 A
5149327 Oshiyama Sep 1992 A
5167363 Adkinson et al. Dec 1992 A
5167637 Okada et al. Dec 1992 A
5171259 Inoue Dec 1992 A
5192301 Kamiya et al. Mar 1993 A
5222974 Kensey et al. Jun 1993 A
5226879 Ensminger et al. Jul 1993 A
5236440 Hlavacek Aug 1993 A
5245023 Peoples et al. Sep 1993 A
5245080 Aubard et al. Sep 1993 A
5250430 Peoples et al. Oct 1993 A
5257637 El Gazayerli Nov 1993 A
5275826 Badylak et al. Jan 1994 A
5282827 Kensey et al. Feb 1994 A
5284488 Sideris Feb 1994 A
5304184 Hathaway et al. Apr 1994 A
5312341 Turi May 1994 A
5312435 Nash et al. May 1994 A
5316262 Koebler May 1994 A
5334217 Das Aug 1994 A
5350363 Goode et al. Sep 1994 A
5350399 Erlebacher et al. Sep 1994 A
5354308 Simon et al. Oct 1994 A
5411481 Allen et al. May 1995 A
5413584 Schulze May 1995 A
5417699 Klein et al. May 1995 A
5425744 Fagan et al. Jun 1995 A
5433727 Sideris Jul 1995 A
5451235 Lock et al. Sep 1995 A
5478353 Yoon Dec 1995 A
5480353 Garza, Jr. Jan 1996 A
5480424 Cox Jan 1996 A
5486193 Bourne et al. Jan 1996 A
5507811 Koike et al. Apr 1996 A
5534432 Peoples et al. Jul 1996 A
5540712 Kleshinski et al. Jul 1996 A
5562632 Davila et al. Oct 1996 A
5577299 Thompson et al. Nov 1996 A
5601571 Moss Feb 1997 A
5618311 Gryskiewicz Apr 1997 A
5620461 Muijs Van De Moer et al. Apr 1997 A
5626599 Bourne et al. May 1997 A
5634936 Linden et al. Jun 1997 A
5649950 Bourne et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5663063 Peoples et al. Sep 1997 A
5683411 Kavteladze et al. Nov 1997 A
5690674 Diaz Nov 1997 A
5693085 Buirge et al. Dec 1997 A
5702421 Schneidt Dec 1997 A
5709707 Lock et al. Jan 1998 A
5717259 Schexnayder Feb 1998 A
5720754 Middleman et al. Feb 1998 A
5725552 Kotula et al. Mar 1998 A
5733294 Forber et al. Mar 1998 A
5733337 Carr, Jr. et al. Mar 1998 A
5741297 Simon Apr 1998 A
5776162 Kleshinski Jul 1998 A
5776183 Kanesaka et al. Jul 1998 A
5797960 Stevens et al. Aug 1998 A
5800516 Fine et al. Sep 1998 A
5810884 Kim Sep 1998 A
5823956 Roth et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5853420 Chevillon et al. Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5861003 Latson et al. Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5879366 Shaw et al. Mar 1999 A
5893856 Jacob et al. Apr 1999 A
5902319 Daley May 1999 A
5904703 Gilson May 1999 A
5919200 Stambaugh et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5928250 Koike et al. Jul 1999 A
5955110 Patel et al. Sep 1999 A
5976174 Ruiz Nov 1999 A
5989268 Pugsley, Jr. et al. Nov 1999 A
5993475 Lin et al. Nov 1999 A
5993844 Abraham et al. Nov 1999 A
5997575 Whitson et al. Dec 1999 A
6010517 Baccaro Jan 2000 A
6024756 Huebsch et al. Feb 2000 A
6030007 Bassily et al. Feb 2000 A
6056760 Koike et al. May 2000 A
6071998 Muller et al. Jun 2000 A
6077291 Das Jun 2000 A
6077880 Castillo et al. Jun 2000 A
6079414 Roth Jun 2000 A
6080182 Shaw et al. Jun 2000 A
6096347 Geddes et al. Aug 2000 A
6106913 Scardino et al. Aug 2000 A
6113609 Adams Sep 2000 A
6117159 Huebsch et al. Sep 2000 A
6126686 Badylak et al. Oct 2000 A
6132438 Fleischman et al. Oct 2000 A
6143037 Goldstein et al. Nov 2000 A
6152144 Lesh et al. Nov 2000 A
6165183 Kuehn et al. Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6171329 Shaw et al. Jan 2001 B1
6174322 Schneidt Jan 2001 B1
6174330 Stinson Jan 2001 B1
6187039 Hiles et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6206895 Levinson Mar 2001 B1
6206907 Marino et al. Mar 2001 B1
6214029 Thill et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6221092 Koike et al. Apr 2001 B1
6227139 Nguyen et al. May 2001 B1
6228097 Levinson et al. May 2001 B1
6231561 Frazier et al. May 2001 B1
6245080 Levinson Jun 2001 B1
6245537 Williams et al. Jun 2001 B1
6261309 Urbanski Jul 2001 B1
6265333 Dzenis et al. Jul 2001 B1
6270515 Linden et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6287317 Makower et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6306150 Levinson Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6312446 Huebsch et al. Nov 2001 B1
6316262 Huisman et al. Nov 2001 B1
6319263 Levinson Nov 2001 B1
6322548 Payne et al. Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6334872 Termin et al. Jan 2002 B1
6342064 Koike et al. Jan 2002 B1
6344048 Chin et al. Feb 2002 B1
6344049 Levinson et al. Feb 2002 B1
6346074 Roth Feb 2002 B1
6348041 Klint Feb 2002 B1
6352552 Levinson et al. Mar 2002 B1
6355052 Neuss et al. Mar 2002 B1
6356782 Sirimanne et al. Mar 2002 B1
6364853 French et al. Apr 2002 B1
6371904 Sirimanne et al. Apr 2002 B1
6375625 French et al. Apr 2002 B1
6375671 Kobayashi et al. Apr 2002 B1
6379342 Levinson Apr 2002 B1
6379368 Corcoran et al. Apr 2002 B1
6387104 Pugsley, Jr. et al. May 2002 B1
6398796 Levinson Jun 2002 B2
6402772 Amplatz et al. Jun 2002 B1
6419669 Frazier et al. Jul 2002 B1
6426145 Moroni Jul 2002 B1
6436088 Frazier et al. Aug 2002 B2
6440152 Gainor et al. Aug 2002 B1
6460749 Levinson et al. Oct 2002 B1
6482224 Michler et al. Nov 2002 B1
6488706 Solymar Dec 2002 B1
6494888 Laufer et al. Dec 2002 B1
6508828 Akerfeldt et al. Jan 2003 B1
6514515 Williams Feb 2003 B1
6548569 Williams et al. Apr 2003 B1
6551303 Van Tassel et al. Apr 2003 B1
6551344 Thill Apr 2003 B2
6585755 Jackson et al. Jul 2003 B2
6596013 Yang et al. Jul 2003 B2
6599448 Ehrhard, Jr. et al. Jul 2003 B1
6610764 Martin et al. Aug 2003 B1
6623508 Shaw et al. Sep 2003 B2
6623518 Thompson et al. Sep 2003 B2
6626936 Stinson Sep 2003 B2
6629901 Huang Oct 2003 B2
6666861 Grabek Dec 2003 B1
6669722 Chen et al. Dec 2003 B2
6689589 Huisman et al. Feb 2004 B2
6712804 Roue et al. Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6726696 Houser et al. Apr 2004 B1
6828357 Martin et al. Dec 2004 B1
6838493 Williams et al. Jan 2005 B2
6867247 Williams et al. Mar 2005 B2
6867248 Martin et al. Mar 2005 B1
6867249 Lee et al. Mar 2005 B2
6921410 Porter Jul 2005 B2
7318833 Chanduszko Jan 2008 B2
20010010481 Blanc et al. Aug 2001 A1
20010014800 Frazier et al. Aug 2001 A1
20010034537 Shaw et al. Oct 2001 A1
20010034567 Allen et al. Oct 2001 A1
20010037129 Thill Nov 2001 A1
20010039435 Roue et al. Nov 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20010041915 Roue et al. Nov 2001 A1
20010044639 Levinson Nov 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020010481 Jayaraman Jan 2002 A1
20020019648 Akerfeldt et al. Feb 2002 A1
20020026208 Roe et al. Feb 2002 A1
20020029048 Miller Mar 2002 A1
20020032459 Horzewski et al. Mar 2002 A1
20020032462 Houser et al. Mar 2002 A1
20020034259 Tada Mar 2002 A1
20020035374 Borillo et al. Mar 2002 A1
20020043307 Ishida et al. Apr 2002 A1
20020052572 Franco et al. May 2002 A1
20020058989 Chen et al. May 2002 A1
20020077555 Schwartz Jun 2002 A1
20020095174 Tsugita et al. Jul 2002 A1
20020096183 Stevens et al. Jul 2002 A1
20020099389 Michler et al. Jul 2002 A1
20020107531 Schreck et al. Aug 2002 A1
20020111537 Taylor et al. Aug 2002 A1
20020111637 Kaplan et al. Aug 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020120323 Thompson et al. Aug 2002 A1
20020128680 Pavlovic Sep 2002 A1
20020129819 Feldman et al. Sep 2002 A1
20020164729 Skraly et al. Nov 2002 A1
20020169377 Khairkhahan et al. Nov 2002 A1
20020183786 Girton Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020183823 Pappu Dec 2002 A1
20020198563 Gainor et al. Dec 2002 A1
20030004533 Dieck et al. Jan 2003 A1
20030023266 Welch et al. Jan 2003 A1
20030028213 Thill et al. Feb 2003 A1
20030045893 Ginn Mar 2003 A1
20030050665 Ginn Mar 2003 A1
20030055455 Yang et al. Mar 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030059640 Marton et al. Mar 2003 A1
20030065379 Babbas et al. Apr 2003 A1
20030100920 Akin et al. May 2003 A1
20030120337 Van Tassel et al. Jun 2003 A1
20030139819 Beer et al. Jul 2003 A1
20030171774 Freudenthal et al. Sep 2003 A1
20030191495 Ryan et al. Oct 2003 A1
20030195530 Thill Oct 2003 A1
20030204203 Khairkhahan et al. Oct 2003 A1
20040044361 Franzier et al. Mar 2004 A1
20040073242 Chanduszko Apr 2004 A1
20040176799 Chanduszko et al. Sep 2004 A1
20040210301 Obermiller Oct 2004 A1
20040234567 Dawson Nov 2004 A1
20050025809 Hasirci et al. Feb 2005 A1
20050043759 Chanduszko Feb 2005 A1
20050113868 Devellian May 2005 A1
20050267523 Devellian et al. Dec 2005 A1
20050273135 Chanduszko et al. Dec 2005 A1
20050288786 Chanduszko Dec 2005 A1
20060122647 Callaghan et al. Jun 2006 A1
20060265004 Callaghan et al. Nov 2006 A1
20070010851 Chanduszko et al. Jan 2007 A1
20070167981 Opolski Jul 2007 A1
Foreign Referenced Citations (50)
Number Date Country
9413645 Oct 1994 DE
0362113 Apr 1990 EP
0474887 Mar 1992 EP
0839549 May 1998 EP
1 013 227 Jun 2000 EP
1 046 375 Oct 2000 EP
1 222 897 Jul 2002 EP
WO 9625179 Aug 1996 WO
WO 9631157 Oct 1996 WO
WO-9807375 Feb 1998 WO
WO-9808462 Mar 1998 WO
WO-9816174 Apr 1998 WO
WO-9829026 Jul 1998 WO
WO-9851812 Nov 1998 WO
WO-9905977 Feb 1999 WO
WO-9818864 Apr 1999 WO
WO-9918862 Apr 1999 WO
WO-9918864 Apr 1999 WO
WO-9918870 Apr 1999 WO
WO-9918871 Apr 1999 WO
WO-9930640 Jun 1999 WO
WO 0027292 May 2000 WO
WO 0044428 Aug 2000 WO
WO-0121247 Mar 2001 WO
WO-0130268 May 2001 WO
WO 0149185 Jul 2001 WO
WO-0178596 Oct 2001 WO
WO-0217809 Mar 2002 WO
WO 0224106 Mar 2002 WO
WO-03024337 Mar 2003 WO
WO-03053493 Jul 2003 WO
WO-03059152 Jul 2003 WO
WO-03063732 Aug 2003 WO
WO 03077733 Sep 2003 WO
WO-03082076 Oct 2003 WO
WO-03103476 Dec 2003 WO
WO-2004032993 Apr 2004 WO
WO-2004037333 May 2004 WO
WO-2004043266 May 2004 WO
WO-2004043508 May 2004 WO
WO-2004052213 Jun 2004 WO
WO-2005006990 Jan 2005 WO
WO-2005018728 Mar 2005 WO
WO-2005027752 Mar 2005 WO
WO-2005074813 Aug 2005 WO
WO-2005092203 Oct 2005 WO
WO-2005110240 Nov 2005 WO
WO-2005112779 Dec 2005 WO
WO-2006036837 Apr 2006 WO
WO-2006102213 Sep 2006 WO
Related Publications (1)
Number Date Country
20030191495 A1 Oct 2003 US
Provisional Applications (1)
Number Date Country
60340858 Dec 2001 US