Sequential delivery of two-part prosthetic mitral valve

Information

  • Patent Grant
  • 11039921
  • Patent Number
    11,039,921
  • Date Filed
    Monday, June 12, 2017
    6 years ago
  • Date Issued
    Tuesday, June 22, 2021
    2 years ago
Abstract
Apparatus and methods are described herein for use in the transvascular delivery and deployment of a prosthetic mitral valve. In some embodiments, an apparatus includes a prosthetic heart valve that includes an inner frame and an outer frame couplable to the inner frame via sutures. The prosthetic heart valve is movable between a first configuration for delivery and a second configuration when implanted in a heart. When in the first configuration, the inner frame can be disposed axially proximal of the outer frame and loosely coupled together via the sutures. When in the second configuration, the inner frame and outer frame are disposed in a nested configuration and can be secured together with the sutures. In some embodiments, the sutures are secured with slip knots. In some embodiments, a delivery device can be used to secure the slip knots and sutures to the prosthetic valve.
Description
BACKGROUND

Embodiments are described herein that relate to devices and methods for use in the delivery and deployment of prosthetic valves.


Prosthetic heart valves can pose particular challenges for delivery and deployment within a heart. Valvular heart disease, and specifically, aortic and mitral valve disease, is a significant health issue in the United States (US); annually approximately 90,000 valve replacements are conducted in the US. Traditional valve replacement surgery involving the orthotopic replacement of a heart valve is considered an “open heart” surgical procedure. Briefly, the procedure necessitates surgical opening of the thorax, the initiation of extra-corporeal circulation with a heart-lung machine, stopping and opening the heart, excision and replacement of the diseased valve, and re-starting of the heart. While valve replacement surgery typically carries a 1-4% mortality risk in otherwise healthy persons, a significantly higher morbidity is associated to the procedure largely due to the necessity for extra-corporeal circulation. Further, open heart surgery is often poorly tolerated in elderly patients. Thus elimination of the extra-corporeal component of the procedure could result in reduction in morbidities and cost of valve replacement therapies could be significantly reduced.


While replacement of the aortic valve in a transcatheter manner is the subject of intense investigation, lesser attention has been focused on the mitral valve. This is in part reflective of the greater level of complexity associated to the native mitral valve apparatus, and thus, a greater level of difficulty with regards to inserting and anchoring the replacement prosthesis. A need exists for delivery devices and methods for transcatheter mitral valve replacements.


Some known delivery methods include delivering a prosthetic mitral valve through an apical puncture site. In some such procedures, the valve is placed in a compressed configuration within a lumen of a delivery catheter of, for example, 34-36 Fr (i.e., an outer diameter of about 11-12 mm). Delivery of a prosthetic valve to the atrium of the heart can also be accomplished, for example, via a transfemoral approach, transatrially directly into the left atrium of the heart, or via a jugular approach. In such cases, it is desirable for the prosthetic valve to have a small outer perimeter or profile to allow insertion through a smaller delivery catheter of, for example, 28 Fr (i.e., an outer diameter of about 9 mm). Such a small outer perimeter or profile may also be desirable for delivery of a prosthetic heart valve via a transapical approach.


Thus, a need exists for prosthetic heart valves that can have a small profile during delivery while still maintaining the size and characteristics needed to perform their desired function within the heart.


A need also exists for devices and methods for delivering and deploying a prosthetic heart valve within a heart, with the valve disposed within a small diameter delivery sheath and then moving the valve to an expanded configuration within the heart.


SUMMARY

In some embodiments, an apparatus includes a prosthetic heart valve that includes an inner frame and an outer frame coupleable to the inner frame via sutures. The prosthetic heart valve is movable between a first configuration for delivery and a second configuration when implanted in a heart. The inner frame and the outer frame can be moved between a first position relative to each other in which the outer frame is disposed substantially axially proximal of the inner frame and a second position relative to each other in which the inner frame is nested substantially within the outer frame. The prosthetic heart valve is in the first configuration when the inner frame and the outer frame are in the first position and in the second configuration when the inner frame and the outer frame are in the second position.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A and 1B are schematic illustrations of a portion of a prosthetic heart valve, according to an embodiment, shown within a delivery sheath in a first configuration and a second configuration, respectively.



FIGS. 2A-2C are schematic illustrations of the portion of the prosthetic heart valve of FIGS. 1A and 1B, shown in a first, second, and third stage of deployment from a delivery system, respectively.



FIG. 2D is a schematic illustration of a portion of the prosthetic heart valve of FIGS. 1A and 1B, shown in an alternative stage of deployment from a delivery system.



FIGS. 3-5 are front, bottom, and top views of a prosthetic heart valve according to an embodiment.



FIG. 6 is an opened and flattened view of the inner frame of the prosthetic heart valve of FIGS. 3-5, in an unexpanded configuration.



FIGS. 7 and 8 are side and bottom views, respectively, of the inner frame of FIG. 6 in an expanded configuration.



FIG. 9 is an opened and flattened view of the outer frame of the valve of FIGS. 3-5, in an unexpanded configuration.



FIGS. 10 and 11 are side and top views, respectively, of the outer frame of FIG. 9 in an expanded configuration.



FIGS. 12-14 are side, front, and top views of an assembly of the inner frame of FIGS. 6-8 and the outer frame of FIGS. 9-11.



FIG. 15A is a schematic illustration of a distal end view of a delivery device according to an embodiment.



FIG. 15B is a schematic illustration of a side view of a portion of the delivery device of FIG. 15A.



FIG. 16A is a schematic illustration of a delivery device shown partially in cross-section, according to an embodiment, and a prosthetic heart valve, shown in a first configuration.



FIG. 16B is a schematic illustration of the prosthetic heart valve of FIG. 16A shown in a second configuration.



FIG. 17 is a flowchart of a method of delivering and deploying a prosthetic heart valve within a heart of a patient.





DETAILED DESCRIPTION

Apparatus and methods are described herein for prosthetic heart valves, such as prosthetic mitral valves, that can be configured to be moved to an axially extended configuration for sequential delivery of two portions of the prosthetic valve to within a heart of a patient. As described herein, in some embodiments, a prosthetic valve includes an outer frame and an inner frame. The prosthetic valve can be disposed within a delivery sheath in a compressed or collapsed configuration and such that the outer frame is axially separated from the inner frame. The prosthetic mitral valve can be formed with, for example, a shape-memory material. During deployment within a heart, the outer frame and the inner frame can be brought together into a substantially nested configuration and coupled to maintain the nested configuration. In some embodiments, slip knots can be used to secure the inner frame to the outer frame.


The delivery sheath can be used to deliver the prosthetic valve to within a patient's heart using a variety of different delivery approaches for delivering a prosthetic heart valve (e.g., a prosthetic mitral valve) where the prosthetic valve would enter the heart through the atrium of the heart. For example, the prosthetic valves described herein can be delivered transapically if desired, such as described in International Application No. PCT/US16/27770 (the '770 PCT application). In another example, the prosthetic valves described herein can be delivered using a transfemoral delivery approach as described in International Application No. PCT/US16/12305 (the '305 PCT application) incorporated by reference above or via a transatrial approach, such as described in U.S. Provisional Patent Application Ser. No. 62/220,704, entitled “Apparatus and Methods for Transatrial Delivery of Prosthetic Mitral Valve,” filed Sep. 18, 2015 (“the '704 provisional application”), which is incorporated herein by reference in its entirety. In another example, a valve as described herein can be delivered via a transjugular approach, via the right atrium and through the atrial septum and into the left atrium as described in U.S. Provisional Patent Application Ser. No. 62/305,678, entitled “Apparatus and Methods for Delivery of Prosthetic Mitral Valve,” filed Mar. 9, 2016 (“the '678 provisional application”), which is incorporated herein by reference in its entirety. After the delivery sheath has been disposed within the left atrium of the heart, the prosthetic mitral valve can be moved distally out of the delivery sheath such that the inner frame is first delivered from the delivery sheath and the outer frame is delivered subsequently. The inner frame can then be positioned relative to the outer frame such that the inner frame is nested within the outer frame. The prosthetic mitral valve can then be positioned within a mitral annulus of the heart.


In some embodiments, an apparatus includes a prosthetic heart valve that includes an inner frame and an outer frame coupled to the inner frame via sutures. The prosthetic valve is movable between a first configuration and a second configuration when implanted in a heart. The inner frame and the outer frame can be moved between a first position relative to each other in which the outer frame is disposed substantially axially proximal of the inner frame and a second position relative to each other in which the inner frame is substantially nested within the outer frame. In some embodiments, the outer frame can be disposed at a non-zero distance from the inner frame when in the first configuration. Sutures including slip knots coupled thereto can be used to secure the inner frame to the outer frame in the nested configuration. The prosthetic valve is in the first configuration when the inner frame and the outer frame are in the first position and in the second configuration when the inner frame and the outer frame are in the second position.


In some embodiments, a delivery system includes an outer delivery sheath that defines a lumen and a delivery device movably disposable within the lumen of the delivery sheath. The delivery device includes an inner sheath movably disposable within the lumen of the delivery sheath and defining a lumen, and at least one suture tube coupled to a tube positioning member that is movably disposed within the lumen of the inner sheath. Each of the suture tubes can receive therein a suture coupled to a prosthetic heart valve where the suture includes a sliding or slip knot. The suture tubes can be used to push the sliding knots to secure an inner frame of the prosthetic heart valve to an outer frame of the prosthetic heart valve, as described in more detail below. The delivery system can be used to deliver and deploy the prosthetic heart valve into a heart. The prosthetic heart valve can be placed in the lumen of the outer frame such that the inner frame and outer frame are collapsed or compressed. The outer frame and the inner frame are movable relative to each other between a first configuration in which the outer frame is disposed substantially axially proximal of the inner frame and a second configuration in which the inner frame is substantially nested within the outer frame. The prosthetic heart valve is disposed within the lumen of the delivery sheath with the outer frame and the inner frame in the first configuration.


In some embodiments, a method to deliver and deploy the heart valve using the delivery system described above includes inserting a distal end portion of the delivery sheath into a left atrium of a heart. The prosthetic mitral valve can be moved distally out of the delivery sheath causing the prosthetic mitral valve to at least partially assume a biased expanded configuration. The inner frame and/or the outer frame can then be moved relative to the other to transition the inner frame and the outer frame into the second configuration. For example, in some embodiments, the inner frame and the outer frame are loosely coupled together in the first configuration with sutures that include sliding knots or slip knots. To move the inner frame and outer frame to the second configuration, the sliding knots can be moved distally out of the delivery sheath along the sutures using the suture tubes while also pulling the sutures proximally relative to the sliding knots such that the inner frame is pulled proximally into the second position. The sliding knots can be used to secure the inner frame to the outer frame in the second configuration. The prosthetic mitral valve can then be positioned within a mitral annulus of the heart in a desired orientation.



FIGS. 1A and 1B are schematic illustrations of a portion of a prosthetic heart valve 100, according to an embodiment, shown disposed within a lumen of a delivery sheath 126 and within a delivery sheath 126′, respectively. FIGS. 2A-2D are schematic illustrations of a portion of a delivery system with the prosthetic heart valve 100 of FIGS. 1A and 1B shown in different stages of deployment from the delivery system. The prosthetic heart valve 100 (also referred to herein as “prosthetic valve” or “valve”) can be, for example, a prosthetic mitral valve. The valve 100 includes an outer frame 120 and an inner frame 150. The outer frame 120 and the inner frame 150 can each be formed as a tubular structure and in the same or similar manner as described in more detail below for prosthetic valve 200 with reference to FIGS. 3-14. The outer frame 120 and the inner frame 150 can be coupled together via sutures 102 as described in more detail below. Additionally, in some embodiments, the outer frame 120 can include pre-formed atrial pockets. The valve 100 can also include other features, such as those described with respect to FIGS. 3-14 below. For illustration purposes, only the inner frame 150 and the outer frame 120 are discussed with respect to FIGS. 1A-2D.


The outer frame 120 is configured to have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed or constrained) and, when released, return to its original (expanded or undeformed) shape. For example, the outer frame 120 can be formed of materials, such as metals or plastics, having shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used. The inner frame 150 can be formed from a laser-cut tube of Nitinol®. The inner frame 150 can also have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original (expanded or undeformed) shape. Further details regarding the inner frame 150 and the outer frame 120 are described below with respect to valve 200 and FIGS. 3-14.


The valve 100 can be delivered and deployed within a heart (e.g., left atrium) using a variety of different delivery approaches including, for example, a transfemoral delivery approach, as described in the '305 PCT application, a transatrial approach, as described in the '704 provisional application, a transapical approach, as described in the '770 PCT application, or a transjugular approach, as described in the '678 provisional application. As described above, in some situations, it may be desirable to use a smaller delivery sheath and, when delivering a prosthetic valve to the heart, the size of the prosthetic valve during delivery should be sized accordingly. Thus, it is desirable to have a prosthetic valve that can be reconfigured between a biased expanded configuration for implantation in the heart (e.g., within a native mitral annulus) and a delivery configuration that has a smaller outer perimeter or profile to allow for delivery within the lumen of the delivery sheath. The prosthetic valve 100 and the embodiments of a prosthetic valve described herein can be constructed and formed to achieve these desired functions and characteristics.


More specifically, the valve 100 can have a biased expanded configuration (as shown in FIGS. 2B and 2C) and a compressed or collapsed configuration (as shown in FIGS. 1A, 1B, and 2A). The expanded configuration allows the valve 100 to function when implanted within the heart. The valve 100 can be moved to the compressed or collapsed configuration for delivery of the valve 100 to the heart of a patient.


As shown in FIG. 1A, the valve 100 can be delivered to the heart of a patient within a delivery sheath 126 in an axially extended configuration. More specifically, the inner frame 150 can be disposed within the delivery sheath 126 substantially distally of the outer frame 120. In some embodiments, the inner frame 150 can be disposed entirely distally of a distal end of the outer frame 120. In other words, the inner frame 150 is disposed at a non-zero distance from the outer frame 120. In other embodiments, the inner frame 150 can be disposed within the delivery sheath 126 such that the proximal end of the inner frame 150 is in abutting contact with the distal end of the outer frame 120. In other embodiments, the inner frame 150 can be disposed such that a portion of the inner frame 150 is within the outer frame 120, but the inner frame 150 is not within the outer frame 120 to the same extent as when the inner frame 150 is nested within the outer frame 120 when the valve 100 is fully assembled. The inner frame 150 can be coupled to the outer frame 120 via sutures 102. When the valve 100 is in the extended configuration, the sutures 102 extend from the inner frame 150 to the outer frame 120 and then proximally from the outer frame 120 into a delivery device 181 (see FIGS. 2A-2D), as described in more detail below.


With the valve 100 in the axially extended configuration, the valve 100 can be placed within a lumen of the delivery sheath 126 (as shown in FIG. 1A) for delivery of the valve 100 to the left atrium of the heart. When placed within the lumen of the delivery sheath 126, the valve 100 can be moved to a collapsed or compressed configuration in which the outer diameter or outer perimeter of the valve 100 is reduced. Said another way, the outer frame 120 and the inner frame 150 can each be moved to a collapsed or compressed configuration in which the outer diameter of each of the outer frame 120 and the inner frame 150 are reduced. Because the valve 100 is in the axially extended configuration, the valve 100 is able to be placed within a smaller delivery sheath 126 than would otherwise be possible. For example, for comparison purposes, FIG. 1B illustrates the valve 100 placed within a lumen of a delivery sheath 126′ where the outer frame 120 and the inner frame 150 of the valve 100 are disposed in a nested configuration rather than an axially extended configuration within the delivery sheath 126′. As shown in FIG. 1B, an outer diameter of the valve 100 is reduced compared to the valve 100 in an uncompressed configuration (such as is shown in FIGS. 2B and 2C), but not to as small of a diameter as for the valve 100 when placed in a delivery sheath 126 when in the axially extended configuration (shown in FIG. 1A). Thus, in FIG. 1A, the valve 100 has an overall outer perimeter or outer diameter D1 and in FIG. 1B, the valve 100 has an overall outer perimeter or outer diameter D2, which is greater than D1.


Thus, by disposing the outer frame 120 and the inner frame 150 in the axially extended configuration, the valve 100 can be collapsed into a smaller overall diameter, i.e. placed in a smaller diameter delivery sheath 126, than would be possible if the outer frame 120 and the inner frame 150 of the valve 100 were merely nested and collapsed radially (as shown in FIG. 1B). This is because when the inner frame 150 is nested within an interior of the outer frame 120, the outer frame 120 must be collapsed around the inner frame 150. For example, in some embodiments, the inner frame 150 and the outer frame 150 are disposed concentrically when nested together. In the axially extended configuration, the inner frame 150 and the outer frame 120 are arranged axially with respect to each other (i.e., the inner frame is not nested or is only partially nested within the outer frame 150), such that the outer frame 120 can be collapsed without needing to accommodate all of the structure of the inner frame 150 inside it. In other words, with the inner frame 150 disposed mostly inside or nested within the outer frame 120, the layers or bulk of the frame structures cannot be compressed to as small a diameter. In addition, if the frames are nested, the structure is less flexible, and therefore, more force is needed to bend the valve, e.g. to pass through tortuous vasculature or to make tight turns in the left atrium after passing through the atrial septum to be properly oriented for insertion into the mitral valve annulus.


As noted above, FIGS. 2A-2C are schematic illustrations of a portion of a delivery system with the prosthetic heart valve 100 of FIGS. 1A and 1B shown in various stages of deployment. As shown in FIG. 2A, the valve 100 is disposed in the axially extended configuration within the delivery sheath 126. Said another way, when the valve 100 is disposed within the delivery sheath 126, the outer frame 120 and the inner frame 150 are in a collapsed or compressed configuration and axially extended or spaced relative to each other.


As shown in FIG. 2A, the outer frame 120 and the inner frame 150 are coupled via sutures 102. Although four sutures 102 are shown, any suitable number of sutures 102 can be used to couple the outer frame 120 to the inner frame 150. The sutures 102 can be securely attached to the inner frame 150 via any suitable method. Additionally, the outer frame 120 can include apertures (not shown) through which the sutures 102 can be movably disposed. Each of the sutures 102 includes and/or is coupled to a slip knot (also referred to herein as sliding knot) 104 which is movable along each suture 102. The sutures 102 and slip knots 104 can be used to move the valve 100 to the nested configuration as described in more detail below. In some embodiments, after the prosthetic valve has been deployed out of the delivery sheath 126, the sutures 102 can be pulled proximally such that the inner frame 150 is pulled proximally into the nested configuration. The slip knots 104 can then be translated along the sutures 102 toward the valve 100 such that the outer frame 120 is secured to the inner frame 150. For example, in some embodiments, the apertures in the outer frame 120 can be smaller in diameter than the diameter of the slip knots 104, such that the outer frame 120 cannot move proximally beyond the location of the slip knots 104. Additionally, in some embodiments, during deployment of the prosthetic valve 100, the distal end of the delivery sheath 126 can act as a stop (i.e., limit proximal movement of the valve 100). Said another way, as the sutures 102 are pulled proximally during deployment, the expanded or partially expanded valve 100 cannot be pulled proximally beyond the distal end of the delivery sheath 126 (i.e., into the delivery sheath 126).


As shown in FIGS. 2A-2C, the delivery device 181 can include an inner sheath 180 axially movable within the lumen of the delivery sheath 126. One or more suture tubes 182 can be disposed within and can be axially movable relative to the inner sheath 180. Each suture tube 182 can define a suture lumen within which a suture 102 can be movably disposed. Each suture tube 182 can be translated along a suture 102 and engage with a corresponding slip knot 104 such that the slip knot 104 is axially movable by the suture tube 182 relative to the suture 102. In some embodiments, each slip knot 104 is movable by the corresponding suture tube 182 because the inner diameter of each suture tube 182 (i.e., the diameter of each suture lumen) at the distal end of each suture tube 182 is less than the diameter of each corresponding slip knot 104. In other embodiments, each suture tube 182 can include an engagement feature (not shown) capable of engaging with each slip knot 104 for distal and/or proximal translation of each slip knot 104 along each corresponding suture 102. Although four suture tubes 182 are shown in FIGS. 2A-2C, any suitable number of suture tubes 182 can be used. For example, in some embodiments, the number of suture tubes 182 can be equal to the number of sutures 102. In other embodiments, the number of suture tubes 182 can be greater than or less than the number of sutures 102.


A tube positioning member 184 can be coupled to each of the suture tubes 182. In some embodiments, the tube positioning member 184 can be, for example, a sheath within which the suture tubes 182 are securely attached. In other embodiments, the tube positioning member 184 can be a frame securely coupled to each of the suture tubes 182. In other embodiments, the tube positioning member 184 can be a sheath within which a frame is secured such that the suture tubes 182 can be attached to the frame. Additionally, the tube positioning member 184 can define a central lumen (not shown) such that a tether (not shown) coupled to the valve 100 can be threaded through and movably disposed therethrough. The suture tubes 182 can be fixed to the tube positioning member 184 such that axial movement of the tube positioning member 184 relative to the inner sheath 180 causes simultaneous movement of the suture tubes 182. In alternative embodiments, the suture tubes 182 can each be controlled independently. Although the delivery device 181 is shown as including an inner sheath 180, in some embodiments, the delivery device 181 does not include an inner sheath 180.



FIG. 2B shows the valve 100 after the valve 100 has been moved out of the distal end of the delivery sheath 126 and into an expanded configuration. As shown in FIG. 2B in comparison to FIG. 2A, the inner frame 150 and the outer frame 120 have a larger diameter in the expanded configuration than in the compressed configuration within the delivery sheath 126. In some embodiments, the inner sheath 180 can engage with the valve 100 to control the position of the valve 100 relative to the delivery sheath 126 and control the sequential delivery of the inner frame 150 and the outer frame 120 from the delivery sheath 126. In such embodiments, the inner sheath 180 can push the outer frame 120 distally into abutting contact with the inner frame 150. Further distal movement of the inner sheath 180 can cause the outer frame 120 to push the inner frame 150 distally such that the inner frame 150 is pushed from the distal end of the delivery sheath 126. The inner sheath 180 can continue to push the outer frame 120 distally until the outer frame 120 is also pushed distally of the distal end of the delivery sheath 126. In other embodiments, another component (not shown) can be used similarly to push the valve 100 distally such that the inner frame 150 and the outer frame 120 are sequentially delivered from the delivery sheath 126. Alternatively, the inner sheath 180 or another component (not shown) can prevent proximal movement of the valve 100 while the delivery sheath 126 is retracted relative to the valve 100 such that the inner frame 150 and the outer frame 120 can sequentially transition into the expanded configuration. In the configuration of FIG. 2B, the inner frame 150 and the outer frame 120 are each in a biased expanded configuration and the inner frame 150 is still axially disposed relative to the outer frame 120.



FIG. 2C shows the inner frame 150 nested within the outer frame 120. As shown in FIG. 2C, the position of the inner frame 150 relative to the outer frame 120 is secured by the slip knots 104. The slip knots 104 can be moved to the position shown in FIG. 2C by the suture tubes 182. As described above, the sutures 102 can be pulled proximally through the suture tubes 182 while the slip knots 104 are held stationary by the distal end of the suture tubes 182 such that the inner frame 150 is moved proximally into a nested position within the outer frame 120. Although the slip knots 104 are described as being held stationary, in some embodiments, the slip knots 104 can be pushed distally by the suture tubes 182 while the sutures 102 are being pulled proximally through the suture tubes 182. After the inner frame 150 is nested within the outer frame 120, the suture tubes 182 can be distally translated along the sutures 102 such that each slip knot 104 is moved distally along the sutures 102 by the distal end of a suture tube 182. The suture tubes 182 can be extended from the distal end of the delivery sheath 126 such that the slip knots 104 are pushed into contact with the outer frame 120 and the inner frame 150 and the outer frame 120 are secured relative to each other. Although the suture tubes 182 are described as not being extended from the distal end of the delivery sheath 126 until after the valve 100 is in the nested configuration, in some embodiments the suture tubes 182 can be extended from the distal end of the delivery sheath 126 prior to pulling the sutures 102 proximally to pull the inner frame 150 into the nested position within the outer frame 120. In such embodiments, the slip knots 104 would be pushed along the sutures 102 by the suture tubes 182 to a position distal of the delivery tube 126 prior to the proximal movement of the inner frame 150 into the nested position within the outer frame 120. In some embodiments, the distal movement of the slip knots 104 via distal movement of the suture tubes 182 can occur simultaneously while the sutures 102 are pulled proximally. When the inner frame 150 and the outer frame 120 are properly positioned relative to each other and secured by the slip knots 104, the sutures 102 can be severed proximally of the location of the slip knots 104 and the portion proximal of the severance can be removed. In some embodiments, the suture tubes 182 can each include a cutting feature (not shown) for separation and removal of a portion of each suture 102 proximal of each slip knot 104. In some embodiments, after the inner frame 150 and the outer frame 120 are secured to each other, a tether (not shown) attached to the valve 100 can be used to position the valve 100 in the native annulus. For example, a tether can be coupled to the inner frame 150 prior to delivery of the valve 100 to the left atrium. Once the valve 100 is positioned in the left atrium, the tether can be pulled such that the valve 100 is seated in the native annulus.



FIG. 2D is a schematic illustration of a stage of an alternative method of delivering the valve 100 from the delivery sheath 126. The inner frame 150 can be delivered from the distal end of the delivery sheath 126 similarly as described above with reference to FIG. 2B. For example, the inner sheath 180 can engage with the valve 100 to control the sequential delivery of the inner frame 150 and the outer frame 120 from the delivery sheath 126. The inner sheath 180 can push the outer frame 120 distally into abutting contact with the inner frame 150. Further distal movement of the inner sheath 180 can cause the outer frame 120 to push the inner frame 150 distally such that the inner frame 150 is pushed from the distal end of the delivery sheath 126. The inner sheath 180 can continue to push the outer frame 120 distally such that the outer frame 120 begins to transition to the expanded configuration as it is partially deployed from the distal end of the delivery sheath 126, as shown in FIG. 2D. In other embodiments, another component (not shown) can be used similarly to push the valve 100 distally such that the inner frame 150 is delivered and the outer frame 120 is partially delivered from the delivery sheath 126. Alternatively, the inner sheath 180 or another component (not shown) can prevent proximal movement of the valve 100 while the delivery sheath 126 is retracted relative to the valve 100 such that the inner frame 150 is delivered and transitions into the expanded configuration and the outer frame 120 is partially delivered and partially transitions into the expanded configuration. In the configuration of FIG. 2D, the inner frame 150 is in a biased expanded configuration, the outer frame is in a partially expanded configuration, and the inner frame 150 is still axially disposed relative to the outer frame 120.


With the outer frame 120 in the partially deployed position, the sutures 102 can be pulled proximally through the suture tubes 182 while the outer frame 120 is held stationary at the distal end of the delivery sheath 126 such that the inner frame 150 is moved proximally into a partially nested position within the outer frame 120. After the inner frame 150 is partially nested within the outer frame 120 and when the outer frame 120 is in the partially deployed position, the slip knots 104 can be pushed distally along at least a portion of the sutures 104 by the suture tubes 182. The outer frame 120 can then be pushed distally into the fully expanded, fully deployed configuration. For example, in some embodiments, the inner sheath 180 can continue to push the outer frame 120 distally until the outer frame 120 is pushed distally of the distal end of the delivery sheath 126. While the outer frame 120 is being pushed distally from the delivery sheath 126 and/or after the outer frame 120 has been moved to the expanded configuration, the sutures 102 can be pulled further proximally such that the inner frame 150 is moved to a fully nested position within the outer frame 120. The slip knots 104 can be moved to the position shown in FIG. 2C by the suture tubes 182 such that the position of the inner frame 150 relative to the outer frame 120 is secured by the slip knots 104, as described above with reference to FIG. 2C.


The valve 100 described above can be constructed the same as or similar to the valve 200 described with respect to FIGS. 3-14. For example the inner frame 150 and the outer frame 120 described above can include the same as or similar features as described for the valve 200. Although valve 200 is described as being coupled in a nested configuration prior to being delivered to the heart, the inner frame assembly and the outer frame assembly of the valve 200 can alternatively be delivered in a sequential manner as described above for the valve 100.


The prosthetic heart valve 200 can be delivered and deployed within a left atrium of a heart using a variety of different delivery approaches including, for example, a transfemoral delivery approach, a transatrial delivery approach, a transapical delivery approach, a transjugular delivery approach, etc. FIGS. 3-5 are front, bottom, and top views, respectively, of a prosthetic heart valve 200 according to an embodiment. Prosthetic heart valve 200 (also referred to herein as “valve” or “prosthetic valve”) is designed to replace a damaged or diseased native heart valve such as a mitral valve. Valve 200 includes an outer frame assembly 210 and an inner valve assembly 240 coupled to the outer frame assembly 210.


As shown, outer frame assembly 210 includes an outer frame 220, covered on all or a portion of its outer face with an outer covering 230, and covered on all or a portion of its inner face by an inner covering 232. Outer frame 220 can provide several functions for prosthetic heart valve 200, including serving as the primary structure, as an anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, as a support to carry inner valve assembly 240, and/or as a seal to inhibit paravalvular leakage between prosthetic heart valve 200 and the native heart valve apparatus.


Outer frame 220 has a biased expanded configuration and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original unconstrained shape. To achieve this, outer frame 220 can be formed of materials, such as metals or plastics, that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used.


As best shown in FIG. 3, outer frame assembly 210 has an upper end (e.g., at the atrium portion 216), a lower end (e.g., at the ventricle portion 212), and a medial portion (e.g., at the annulus portion 214) therebetween. The upper end or atrium portion 216 (also referred to as “outer free end portion”) defines an open end portion of the outer frame assembly 210. The medial or annulus portion 214 of the outer frame assembly 210 has a perimeter that is configured (e.g., sized, shaped) to fit into an annulus of a native atrioventricular valve. The upper end of the outer frame assembly 210 has a perimeter that is larger than the perimeter of the medial portion. In some embodiments, the perimeter of the upper end of the outer frame assembly 210 has a perimeter that is substantially larger than the perimeter of the medial portion. As shown best in FIG. 5, the upper end and the medial portion of the outer frame assembly 210 have a D-shaped cross-section. In this manner, the outer frame assembly 210 promotes a suitable fit into the annulus of the native atrioventricular valve.


Inner valve assembly 240 includes an inner frame 250 (see, e.g., FIGS. 6-8 and 12-14), an outer covering (not shown), and leaflets 270 (see, e.g., FIGS. 4 and 5). As shown, for example, in FIG. 7, the inner valve assembly 240 includes an upper portion having a periphery formed with multiple arches. The inner frame 250 includes six axial posts or frame members that support the outer covering and leaflets 270. Leaflets 270 are attached along three of the posts, shown as commissure posts 252 (best illustrated in FIG. 4), and the outer covering (not shown) is attached to the other three posts, 254 (best illustrated in FIG. 4), and optionally to commissure posts 252. Each of the outer covering and leaflets 270 are formed of approximately rectangular sheets of material, which are joined together at their upper, or atrium end. The lower, ventricle end of the outer covering may be joined to inner covering 232 of outer frame assembly 210, and the lower, ventricle end of leaflets 270 may form free edges 275, though coupled to the lower ends of commissure posts 252.


Although inner valve assembly 240 is shown as having three leaflets, in other embodiments, an inner valve assembly can include any suitable number of leaflets. The leaflets 270 are movable between an open configuration and a closed configuration in which the leaflets 270 coapt, or meet in a sealing abutment.


Outer covering 230 of the outer frame assembly 210 and inner covering 232 of outer frame assembly 210, outer covering (not shown) of the inner valve assembly 240 and leaflets 270 of the inner valve assembly 240 may be formed of any suitable material, or combination of materials, such as those discussed above. In this embodiment, the inner covering 232 of the outer frame assembly 210, the outer covering of the inner valve assembly 240, and the leaflets 270 of the inner valve assembly 240 are formed, at least in part, of porcine pericardium. Moreover, in this embodiment, the outer covering 230 of the outer frame assembly 210 is formed, at least in part, of polyester.


Inner frame 250 is shown in more detail in FIGS. 6-8. Specifically, FIGS. 6-8 show inner frame 250 in an undeformed, initial state (FIG. 6), a side view of the inner frame 250 in an expanded configuration (FIG. 7), and a bottom view of the inner frame 250 in the expanded configuration (FIG. 8), respectively, according to an embodiment.


In this embodiment, inner frame 250 is formed from a laser-cut tube of Nitinol®. Inner frame 250 is illustrated in FIG. 6 in an undeformed, initial state, i.e. as laser-cut, but cut and unrolled into a flat sheet for ease of illustration. Inner frame 250 can be divided into four portions, corresponding to functionally different portions of the inner frame 250 in final form: atrial portion 247, body portion 242, strut portion 243, and tether clamp or connecting portion 244. Strut portion 243 includes six struts, such as strut 243A, which connect body portion 242 to tether connecting portion 244.


Tether connecting portion 244 (also referred to as first end portion of inner frame) includes longitudinal extensions of the struts, connected circumferentially by pairs of opposed, slightly V-shaped connecting members (or “micro-Vs”). Tether connecting portion 244 is configured to be radially collapsed by application of a compressive force, which causes the micro-Vs to become more deeply V-shaped, with the vertices moving closer together longitudinally and the open ends of the V shapes moving closer together circumferentially. Thus, tether connecting portion 244 can be configured to compressively clamp or grip one end of a tether, either connecting directly onto a tether line (e.g. braided filament line) or onto an intermediate structure, such as a polymer or metal piece that is in turn firmly fixed to the tether line.


In contrast to tether connecting portion 244, atrial portion 247 (also referred to as “inner frame free end portion”) and body portion 242 are configured to be expanded radially. Strut portion 243 forms a longitudinal connection and radial transition between the expanded body portion and the compressed tether connecting portion 244. Body portion 242 provides an inner frame coupling portion 245 that includes six longitudinal posts, such as post 242A. The inner frame coupling portion 245 can be used to attach leaflets 270 to inner frame 250, and/or can be used to attach inner assembly 240 to outer assembly 210, such as by connecting inner frame 250 to outer frame 220. In the illustrated embodiment, the posts include openings through which connecting members (such as suture filaments and/or wires) can be passed to couple the posts to other structures.


Inner frame 250 is shown in a fully deformed configuration (i.e., the final, deployed configuration) in side view and bottom view in FIGS. 7 and 8, respectively.


Outer frame 220 of valve 200 is shown in more detail in FIGS. 9-11. In this embodiment, outer frame 220 is also formed from a laser-cut tube of Nitinol®. Outer frame 220 is illustrated in FIG. 9 in an undeformed, initial state, e.g., as laser-cut, but cut and unrolled into a flat sheet for ease of illustration. Outer frame 220 can be divided into an outer frame coupling portion 271, a body portion 272, and a cuff portion 273 (which includes the atrium or free end portion 216), as shown in FIG. 9. Outer frame coupling portion 271 includes multiple openings or apertures, such as 271A, by which outer frame 220 can be coupled to inner frame 250, as discussed in more detail below.


Outer frame 220 is shown in a fully deformed configuration (i.e. the final, deployed configuration) in side view and top view in FIGS. 10 and 11, respectively. As best seen in FIG. 11, the lower end of outer frame coupling portion 271 forms a roughly circular opening (identified by “0” in FIG. 11). The diameter of this opening preferably corresponds approximately to the diameter of body portion 242 of inner frame 250, to facilitate coupling of the two components of valve 200.


Outer frame 220 and inner frame 250 are shown coupled together in FIGS. 12-14, in front, side, and top views, respectively. The two frames (220, 250) collectively form a structural support for a prosthetic valve such as valve 200. The frames support the valve leaflet structure (e.g., leaflets 270) in the desired relationship to the native valve annulus, support the coverings (e.g., outer covering 230 and inner covering 232 of outer frame assembly 210, and the outer covering of the inner valve assembly) for the two frames (220, 250) to provide a barrier to blood leakage between the atrium and ventricle, and couple to the tether (e.g., tether assembly 290) (by the inner frame 250) to aid in holding the prosthetic valve 200 in place in the native valve annulus by the tether connection to the ventricle wall.


In this embodiment, the outer frame 220 and the inner frame 250 are connected at six coupling points (representative points are identified as “C”). The coupling points are implemented with a mechanical fastener, such as a short length of wire, passed through an aperture (such as aperture 271A) in outer frame coupling portion 271 and corresponding openings in inner frame coupling portion 245 (e.g., longitudinal posts, such as post 242A) in body portion 242 of inner frame 250. Inner frame 250 is thus disposed within the outer frame 220 and securely coupled to it. As described above, the outer frame 220 and inner frame 250 can alternatively be coupled with sutures and delivered in a sequential manner and secured with, for example, slip knots as described herein.



FIGS. 15A and 15B are a distal end view and a side view of a portion of a delivery device 381, respectively, with an inner sheath of the delivery device shown in cross-section in FIG. 15B. The delivery device 381 can be the same or similar in structure and function to the delivery device 181 described above with reference to FIGS. 2A-2D. For example, the delivery device 381 includes an inner sheath 380 axially movable within the lumen of a delivery sheath (not shown). The delivery device 381 also includes suture tubes 382 disposed within and axially moveable relative to the inner sheath 380. Although six suture tubes 382 are shown, any suitable number of suture tubes 382 can be included. Each suture tube 382 can define a suture lumen 386 within which a suture (not shown) can be movably disposed. Each suture tube 382 can be translated along a suture into engagement with a corresponding slip knot (not shown) such that the slip knot is axially movable by the suture tube 382 relative to the suture. In some embodiments, each slip knot is movable by a corresponding suture tube 382 because the inner diameter of each suture tube 382 (i.e., the diameter of each suture lumen 386) at the distal end of each suture tube 382 is less than the diameter of each corresponding slip knot. In other embodiments, each suture tube 382 can include an engagement feature (not shown) capable of engaging with each slip knot for distal and/or proximal translation of each slip knot along each corresponding suture.


A tube positioning member 384 can be coupled to each of the suture tubes 382. As shown in FIGS. 15A and 15B, the tube positioning member 384 can be a sheath within which a frame is secured such that the suture tubes 382 can be attached to the frame. The suture tubes 382 can be fixed to the tube positioning member 384 such that axial movement of the tube positioning member 384 causes simultaneous movement of the suture tubes 382. Additionally, the tube positioning member 384 can define a central lumen 387 such that a tether (not shown) of a valve can be movably disposed within the central lumen 387. In other embodiments, the tube positioning member 384 can be, for example, a sheath within which the suture tubes 382 are securely attached. In other embodiments, the tube positioning member 384 can be a frame securely coupled to each of the suture tubes 382. In some alternative embodiments, the suture tubes 382 can each be controlled independently.



FIG. 16A is a schematic illustration of a delivery device 481 according to an embodiment, shown disposed partially within a delivery sheath 426 (shown in cross-section) during deployment of a prosthetic heart valve 400. FIG. 16A illustrates the prosthetic heart valve 400 in a first configuration, and FIG. 16B illustrates the prosthetic heart valve 400 in a second configuration. The prosthetic heart valve 400 (also referred to herein as “prosthetic valve” or “valve”) can be, for example, a prosthetic mitral valve. The valve 400 includes an outer frame 420 and an inner frame 450. The outer frame 420 and the inner frame 450 can each be formed as a tubular structure and in the same or similar manner as described in more detail above for prosthetic valve 100 with reference to FIGS. 1A-2D and prosthetic valve 200 with reference to FIGS. 3-14. The outer frame 420 and the inner frame 450 can be coupled together via sutures 402 as described in more detail below. The valve 400 can also include other features, such as those described with respect to FIGS. 3-14 above. For illustration purposes, only the inner frame 450 and the outer frame 420 are discussed with respect to FIGS. 16A and 16B.


The outer frame 420 is configured to have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed or constrained) and, when released, return to its original (expanded or undeformed) shape. For example, the outer frame 420 can be formed of materials, such as metals or plastics, having shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used. The inner frame 450 can be formed from a laser-cut tube of Nitinol®. The inner frame 450 can also have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original (expanded or undeformed) shape. Further details regarding the inner frame 450 and the outer frame 420 are described above with respect to valve 200 and FIGS. 3-14.


More specifically, the valve 400 can have a biased expanded configuration as shown in FIG. 16A (similar to valve 100 as shown in FIGS. 2B and 2C) and a compressed or collapsed configuration (similar to valve 100 as shown in FIGS. 1A, 1B, and 2A). The expanded configuration allows the valve 400 to function when implanted within the heart. The valve 400 can be moved to the compressed or collapsed configuration for delivery of the valve 400 to the heart of a patient. As described above for previous embodiments, the valve 400 can be delivered and deployed within a heart using a variety of different delivery approaches including, for example, a transfemoral delivery approach, a transatrial approach, a transapical approach, or a transjugular approach.


Similarly as described above with respect to valve 100 and shown in FIG. 1A, the valve 400 can be delivered to the heart of a patient using a delivery system that includes the delivery sheath 426 and the delivery device 481. Although not shown with reference to FIGS. 16A and 16B, the valve 400 can be disposed within a lumen 427 of the delivery sheath 426 in an axially extended configuration. More specifically, the valve 400 can be disposed within the lumen 427 of the delivery sheath 426 with the inner frame 450 disposed axially distally of the outer frame 420. In some embodiments, the inner frame 450 can be entirely disposed distally of a distal end of the outer frame 420. In other words, the inner frame 450 is disposed at a non-zero distance from the outer frame 420. In other embodiments, the inner frame 450 can be disposed such that a portion of the inner frame 450 is within the outer frame 420, but the inner frame 450 is not within the outer frame 420 to the same extent as when the inner frame 450 is nested within the outer frame 420 when the valve 400 is fully assembled. The inner frame 450 can be coupled to the outer frame 420 via the sutures 402. When the valve 400 is in the axially extended configuration (e.g., first configuration), the sutures 402 extend from the inner frame 450 to the outer frame 420 and then proximally from the outer frame into the delivery device 481 as described in more detail below.


With the valve 400 in the axially extended configuration, the valve 400 can be placed within the lumen 427 of the delivery sheath 426 (similar to valve 100 as shown in FIG. 1A) for delivery of the valve 400 to the heart (e.g., the left atrium of the heart). When placed within the lumen of the delivery sheath 426, the valve 400 can be moved to the collapsed or compressed configuration in which the outer diameter or outer perimeter of the valve 400 is reduced. Said another way, the outer frame 420 and the inner frame 450 are each moved to a collapsed or compressed configuration in which the outer diameter of each of the outer frame 420 and the inner frame 450 is reduced.


Thus, by disposing the outer frame 420 and the inner frame 450 in the axially extended configuration, the valve 400 can be collapsed into a smaller overall diameter, i.e. placed in a smaller diameter delivery sheath 426, than would be possible if the outer frame 420 and the inner frame 450 of the valve 400 were merely nested and collapsed radially. As described above, when the inner frame 450 is nested within an interior of the outer frame 420, the outer frame 420 must be collapsed around the inner frame 450. In some embodiments, the inner frame 450 and the outer frame 420 are disposed concentrically when nested together. In the axially extended configuration, the inner frame 450 and the outer frame 420 are arranged axially with respect to each other (i.e., the inner frame is not nested or is only partially nested within the outer frame 420), such that the outer frame 420 can be collapsed without needing to accommodate all of the structure of the inner frame 450 inside the outer frame 420. In other words, with the inner frame 450 disposed mostly inside or nested within the outer frame 420, the layers or bulk of the frame structures cannot be compressed to as small a diameter. In addition, if the frames are nested, the structure is less flexible, and therefore, more force is needed to bend the valve, e.g., to pass through tortuous vasculature or to make tight turns in, for example, the left atrium after passing through the atrial septum to be properly oriented for insertion into the mitral valve annulus.


The outer frame 420 and the inner frame 450 can be coupled via the sutures 402.


Although two sutures 402 are shown, any suitable number of sutures 402 can be used to couple the outer frame 420 to the inner frame 450. The sutures 402 can be securely attached to the inner frame 450 via any suitable method. Additionally, the outer frame 420 can include apertures 422 within which the sutures 402 can be movably disposed. In some embodiments, each aperture 422 can be aligned with an attachment location of a suture 402 to the inner frame 450. Each of the sutures 402 includes and/or is coupled to a slip knot 404 which is movable along each suture 402. The sutures 402 and slip knots 404 can be used to move the valve 400 to the nested configuration as described in more detail below. In some embodiments, the sutures 402 can be pulled proximally such that the inner frame 450 is pulled proximally into the nested configuration. The slip knots 404 can then be translated along the sutures 402 toward the valve 400 such that the outer frame 420 is secured to the inner frame 450. For example, in some embodiments, the apertures 422 in the outer frame 420 can be smaller in diameter than the diameter of the slip knots 404, such that the outer frame 420 cannot move proximally beyond the location of the slip knots 404. Additionally, in some embodiments, the distal end of the delivery sheath 426 can act as a stop (i.e., limit proximal movement of the valve 400). Said another way, as the sutures 402 are pulled proximally, the valve 400 cannot be pulled proximally beyond the distal end of the delivery sheath 426 (i.e., into the delivery sheath 426).


The delivery device 481 includes an inner sheath 480 axially movable within the lumen 427 of the delivery sheath 426. Suture tubes 482 can be disposed within the inner sheath 480 and can be axially movable relative to the inner sheath 480. Each suture tube 482 can define a suture lumen (not shown) within which a suture 402 can be movably disposed. Each suture tube 482 can be translated along a suture 402 and engage with a corresponding slip knot 404 such that the slip knot 404 is axially movable by the suture tube 482 relative to the suture 402. In some embodiments, each slip knot 404 is movable by each suture tube 482 because the inner diameter of each suture tube 482 (i.e., the diameter of each suture lumen) at the distal end of each suture tube 482 is less than the diameter of each corresponding slip knot 404. In other embodiments, each suture tube 482 can include an engagement feature (not shown) capable of engaging with each slip knot 404 for distal and/or proximal translation of each slip knot 404 along each corresponding suture 402. Although two suture tubes 482 are shown in FIG. 16A, any suitable number of suture tubes 482 can be used. For example, in some embodiments, the number of suture tubes 482 can be equal to the number of sutures 402. In other embodiments, the number of suture tubes 482 can be greater than or less than the number of sutures 402.


A tube positioning member (not shown) can be coupled to each of the suture tubes 482. As described above for previous embodiments, the tube positioning member can be, for example, a sheath within which the suture tubes 482 are securely attached. In other embodiments, the tube positioning member can be a frame securely coupled to each of the suture tubes 482. In other embodiments, the tube positioning member can be a sheath within which a frame is secured such that the suture tubes 482 can be attached to the frame. Additionally, the tube positioning member can define a central lumen (not shown) such that a tether 492 (FIG. 16B) coupled to and extending from the valve 400 can be disposed therein. The suture tubes 482 can be fixed to the tube positioning member such that axial movement of the tube positioning member causes simultaneous movement of the suture tubes 482. In alternative embodiments, the suture tubes 482 can each be controlled independently.



FIG. 16A shows the valve 400 after the valve 400 has been moved out of the distal end of the delivery sheath 426 and into an expanded configuration. In some embodiments, the inner sheath 480 can engage with the valve 400 to control the position of the valve 400 relative to the delivery sheath 426 and control the sequential delivery of the inner frame 450 and the outer frame 420 from the delivery sheath 426. In such embodiments, the inner sheath 480 can push the outer frame 420 distally into abutting contact with the inner frame 450. Further distal movement of the inner sheath 480 can cause the outer frame 420 to push the inner frame 450 distally such that the inner frame 450 is pushed from the distal end of the delivery sheath 426. The inner sheath 480 can continue to push the outer frame 420 distally until the outer frame 420 is also pushed distally of the distal end of the delivery sheath 426. In other embodiments, another component (not shown) can be used similarly to push the valve 400 distally such that the inner frame 450 and the outer frame 420 are sequentially delivered from the delivery sheath 426. Alternatively, the inner sheath 480 or another component (not shown) can prevent proximal movement of the valve 400 while the delivery sheath 426 is retracted relative to the valve 400 such that the inner frame 450 and the outer frame 420 can sequentially transition into their expanded configurations.


As shown in FIG. 16A, after the valve 400 has been moved from the distal end of the delivery sheath 426, the inner frame 450 is still axially extended relative to the outer frame 420. Before the inner frame 450 is pulled into the nested configuration, the inner sheath 480 can be pushed distally such that the inner sheath 480 extends from the distal end of the delivery sheath 426. The suture tubes 482 can then be pushed distally along the sutures 402 such that the suture tubes 482 extend distally of the distal end of the inner sheath 480. Although the inner sheath 480 is described as being extended distally of the delivery sheath 426 prior to extending the suture tubes 482 from the inner sheath 480, in some embodiments the inner sheath 480 can remain within the delivery sheath 426 and/or not be moved within the delivery sheath 426 during the deployment of the suture tubes 482 along the sutures 402 from the distal end of the inner sheath 480.


The sutures 402 can then be pulled proximally through the suture tubes 482 while the slip knots 404 are held stationary by the distal end of the suture tubes 482 such that the inner frame 450 is moved proximally into a nested position within the outer frame 420. The suture tubes 482 can be distally translated along the sutures 402 such that each slip knot 404 is moved distally along the sutures 402 by the distal end of a suture tube 482 until the slip knots 404 are pushed into contact with the outer frame 420 and the inner frame 450 and the outer frame 420 are secured relative to each other. In some embodiments, the distal movement of the slip knots 404 via distal movement of the suture tubes 482 can occur simultaneously while the sutures 402 are pulled proximally. As shown in FIG. 16B, when the inner frame 450 and the outer frame 420 are properly positioned relative to each other (e.g., in the nested configuration), the sutures 402 can be severed proximally of the location of the slip knots 404 and the portion of sutures 402 proximal of the severance can be removed. In some embodiments, the suture tubes 482 can each include a cutting feature (not shown) for separation and removal of a portion of each suture 402 proximal of each slip knot 404. In some embodiments, after the inner frame 450 and the outer frame 420 are secured to each other, the tether 492 attached to the valve 400 can be used to position the valve 400 in the native annulus. For example, the tether 492 can be coupled to the inner frame 450 prior to delivery of the valve 400 to the left atrium. Once the valve 400 is positioned in the left atrium, the tether can be pulled proximally such that the valve 400 is seated in the native annulus.


In some embodiments, the tether 492 can be pulled proximally to pull the inner frame 450 into the nested position within the outer frame 420. The tether 492 can be used to pull the inner frame 450 either in the alternative or in addition to the sutures 402. In embodiments where the tether 492 is used to position the inner frame 450 relative to the outer frame 420 in addition to the sutures 402, the tether 492 and the sutures 402 can be pulled simultaneously, or sequentially, to position the inner frame 450 relative to the outer frame 420.


In some alternative embodiments, the outer frame 420 can be only partially delivered before the inner frame 450 is pulled proximally into a partial or fully nested position as described above with respect to FIG. 2D. In such embodiments, the inner frame 450 can be delivered from the distal end of the delivery sheath 426 similarly as described above with reference to FIG. 16A. For example, the inner sheath 480 can engage with the valve 400 to control the sequential delivery of the inner frame 450 and the outer frame 420 from the delivery sheath 426. The inner sheath 480 can push the outer frame 420 distally into abutting contact with the inner frame 450. Further distal movement of the inner sheath 480 can cause the outer frame 420 to push the inner frame 450 distally such that the inner frame 450 is pushed from the distal end of the delivery sheath 426. The inner sheath 480 can continue to push the outer frame 420 distally such that the outer frame 420 begins to transition to the expanded configuration as it is partially deployed from the distal end of the delivery sheath 426. With the outer frame in a partially deployed configuration at the distal end of the delivery sheath 426, the inner frame 450 is in a biased expanded configuration and the inner frame 450 is still axially disposed relative to the outer frame 420.


With the outer frame 420 in the partially deployed position, the sutures 402 can be pulled proximally through the suture tubes 482 while the outer frame 420 is held stationary at the distal end of the delivery sheath 426 such that the inner frame 450 is moved proximally into a partially nested position within the outer frame 420. After the inner frame 450 is partially nested within the outer frame 420 and when the outer frame 420 is in the partially deployed position, the slip knots 404 can be pushed distally along at least a portion of the sutures 402 by the suture tubes 482. The outer frame 420 can then be pushed distally into the fully expanded, fully deployed configuration. For example, in some embodiments, the inner sheath 480 can continue to push the outer frame 420 distally until the outer frame 420 is pushed distally of the distal end of the delivery sheath 426. While the outer frame 420 is being pushed distally from the delivery sheath 426 and/or after the outer frame 420 has been moved to the expanded configuration, the sutures 402 can be pulled further proximally such that the inner frame 450 is moved to a fully nested position within the outer frame 420. The slip knots 404 can be moved to the position shown in FIG. 16B by the suture tubes 482 such that the position of the inner frame 450 relative to the outer frame 420 is secured by the slip knots 404, as described above with reference to FIG. 16B.



FIG. 17 is a flowchart of a method of delivering and deploying a prosthetic heart valve (e.g., a prosthetic mitral valve) within a heart of a patient. At 533, a prosthetic heart valve (e.g., a prosthetic mitral valve) is placed in an axially extended configuration in which the inner valve assembly and the outer frame assembly are disposed in an axial relation to each other. For example, as described above, the inner valve assembly can be disposed at a spaced or non-zero distance from the outer frame assembly, or can be disposed substantially distally of the outer frame assembly (substantially not overlapping, or partially overlapping). The inner valve assembly and the outer frame assembly can be loosely coupled together with sutures. At 534, the prosthetic heart valve is placed within a lumen of a delivery sheath such that the inner valve assembly and the outer frame assembly are moved to a collapsed configuration and the inner valve assembly is disposed substantially distally of the outer frame assembly or entirely distal of the outer frame assembly in the axially extended configuration. At 535, a distal end portion of the delivery sheath can be disposed within the left atrium of a heart. For example, in some embodiments, the delivery sheath can be delivered via a transapical approach through a puncture site at an apex region of the heart, through the left ventricle and into the left atrium. At 536, the inner valve assembly can be deployed outside a distal end of the delivery sheath and within the left atrium such that the inner valve assembly assumes a biased expanded configuration. At 537, the outer frame assembly can be at least partially deployed within the left atrium such that the portion deployed can assume an expanded configuration. For example, as discussed above, in some embodiments, the outer frame assembly can be fully deployed outside of the delivery sheath and within the left atrium and in some embodiments, the outer frame assembly can be only partially deployed. At 538, the inner valve assembly and the outer frame assembly can be moved relative to each other into a nested configuration. At 539, slip knots can be moved distally to secure the outer frame assembly to the inner valve assembly. With the inner valve assembly and the outer frame assembly secured together, the sutures extending from the slip knots can be cut, and the prosthetic valve can be positioned within the native mitral annulus of the heart. A tether coupled to the prosthetic valve can be tensioned, and then secured to the apex of the heart with an epicardial pad device.


In some embodiments, the suture tails from the sutures used to couple the outer frame assembly to the inner valve assembly can be snared with a snare device. The snare device can be used to capture or snare the suture tails extending from the slip knots and pull the suture tails into, for example, a delivery tube or sheath. The suture tails could be snared individually in separate tubes, in groups, or all in a single tube. The snaring could be accomplished at the same time that the leader/tether tube is snared and routed through the device as described, for example, in the '305 PCT application incorporated by reference above.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above.


Where schematics and/or embodiments described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different embodiments described.


For example, although not specifically described with reference to specific embodiments, the prosthetic heart valves described herein can be secured to a heart using an epicardial pad device as described, for example, in International Application No. PCT/US2016/012305, entitled “Prosthetic Mitral Valves and Apparatus and Methods for Delivery of Same,” incorporated by reference above. Additionally, although embodiments described herein include slip knots for securing an inner frame to an outer frame (e.g., slip knots 404 for securing the inner frame 450 to the outer frame 420 shown in FIG. 16B), in some alternative embodiments an outer frame can include a snap fit mechanism for engagement with an inner frame. For example, a snap fit mechanism can be located on the distal end of an outer frame, such as outer frame 420. When an inner frame (e.g., inner frame 450), is pulled via proximal movement of associated sutures and/or a tether (e.g., sutures 402 and/or tether 492), the inner frame can be pulled into the nested position relative to the outer frame and retained in the nested position relative to the outer frame by the snap fit mechanism. When retained in the nested position, the inner frame cannot move distally out of the nested position.


Further, although not shown, any of the embodiments of a delivery device or system can include a handle or handle assembly to which the various delivery sheaths and components can be operatively coupled and which a user (e.g., physician) can grasp and use to manipulate the delivery device or system.


In addition, the systems and methods described herein can also be adapted for use with a prosthetic tricuspid valve. For example, in such a case, a procedural catheter can be inserted into the right ventricle of the heart, and the delivery sheath delivered to the right atrium of the heart either directly (transatrial), or via the jugular or femoral vein.

Claims
  • 1. An apparatus, comprising: a delivery device including a sheath having a distal end and a proximal end;a prosthetic heart valve including an inner frame securing a valve assembly and an outer frame coupleable to the inner frame via at least one suture,the inner frame and the outer frame moveable relative to each other between a first position in which the inner frame and the outer frame are disposed within the sheath such that the outer frame is substantially axially proximal of the inner frame and a second position in which the inner frame is nested substantially within an interior portion of the outer frame,the prosthetic valve movable between a first configuration for delivery into a heart of a patient and a second configuration when the inner frame and the outer frame have been deployed from the sheath, the prosthetic valve being in the first configuration when the inner frame and the outer frame are in the first position relative to each other, the prosthetic valve being in the second configuration when the inner frame and the outer frame are in the second position relative to each other.
  • 2. The apparatus of claim 1, wherein the at least one suture includes a slip knot that can be moved relative to the at least one suture to secure the outer frame to the inner frame when the prosthetic heart valve is in the second configuration.
  • 3. The apparatus of claim 1, wherein the at least one suture includes a plurality of sutures, each suture from the plurality of sutures coupled to the inner frame and extending proximally through openings in the outer frame and extending proximally from the outer frame.
  • 4. The apparatus of claim 1, wherein the at least one suture includes a plurality of sutures, each suture from the plurality of sutures coupled to the inner frame and extending proximally through openings in the outer frame and extending proximally from the outer frame, and each suture from the plurality of sutures including a slip knot disposed proximally of the outer frame.
  • 5. The apparatus of claim 1, wherein when the inner frame and the outer frame are in the first position relative to each other the outer frame is disposed at a non-zero distance from the inner frame.
  • 6. A method, comprising: inserting into a heart of a patient, a prosthetic heart valve that includes an inner frame securing a valve assembly and an outer frame coupleable to the inner frame via at least one suture, during the inserting the inner frame and the outer frame are disposed within a delivery sheath in a collapsed configuration and the outer frame is positioned at least partially axially proximal of the inner frame;deploying the prosthetic heart valve within the heart such that the inner frame is moved to an expanded configuration within the heart and the outer frame is at least partially moved to an expanded configuration within the heart,after the deploying, moving the outer frame and the inner frame relative to each other into a nested configuration in which the inner frame is disposed substantially within an interior portion of the outer frame.
  • 7. The method of claim 6, further comprising: after the moving of the outer frame and the inner frame into the nested configuration, securing the inner frame to the outer frame with the at least one suture.
  • 8. The method of claim 6, further comprising: after the moving of the outer frame and the inner frame into the nested configuration, securing the inner frame to the outer frame with the at least one suture comprising a slip knot.
  • 9. The method of claim 6, wherein the moving of the outer frame and the inner frame into the nested configuration includes sliding a slip knot distally along the at least one suture while pulling proximally the at least one suture such that the inner frame and outer frame are moved relative to each other and the inner frame is disposed substantially within the interior portion of the outer frame.
  • 10. The method of claim 7, further comprising: inserting a positioning member into the lumen of the delivery sheath, the positioning member including at least one suture tube defining a lumen; anddisposing the at least one suture at least partially within a lumen of a suture tube of the at least one suture tubes;the moving of the outer frame and the inner frame relative to each other into the nested configuration includes moving a slip knot distally along the at least one suture using the positioning member while pulling proximally the at least one suture such that the inner frame and outer frame are moved relative to each other and the inner frame is disposed substantially within the interior portion of the outer frame.
  • 11. The method of claim 10, further comprising: inserting a snare device into a lumen of a suture tube from the at least one suture tube, the disposing the at least one suture at least partially within the lumen of the suture tube of the at least one suture tubes includes snaring the at least one suture with the snare device and pulling the at least one suture proximally within the lumen of the suture tube.
  • 12. The method of claim 7, wherein the inserting the prosthetic heart valve includes inserting a distal end portion of the delivery sheath into the left atrium of the heart, the method further comprising: with the prosthetic heart valve in the second configuration, positioning the prosthetic heart valve within a mitral annulus of the heart in a desired orientation.
  • 13. The method of claim 10, further comprising: with the inner frame and the outer frame in the nested configuration, positioning the prosthetic heart valve within the mitral annulus of the heart in a desired orientation; andcutting the at least one suture proximally of the slip knot.
  • 14. The method of claim 6, wherein the deploying the prosthetic heart valve within the heart includes deploying the inner frame and outer frame sequentially.
  • 15. The method of claim 6, wherein the deploying the prosthetic heart valve within the heart includes deploying the inner frame and outer frame substantially simultaneously.
  • 16. A method, comprising: inserting a prosthetic heart valve into a lumen of a delivery sheath, the prosthetic heart valve including an inner valve assembly and an outer frame assembly coupleable to the inner valve assembly via at least one suture, the prosthetic heart valve being inserted into the lumen of the delivery sheath with the inner valve assembly disposed at least partially distally of the outer frame assembly;disposing a distal end portion of the delivery sheath in a left atrium of a heart;deploying the inner valve assembly into the left atrium of the heart such that the inner valve assembly assumes a biased expanded configuration;deploying at least a portion of the outer frame assembly into the left atrium of the heart such that the at least a portion of the outer frame assembly assumes a biased expanded configuration;moving the inner valve assembly and the outer frame assembly into a nested configuration in which the inner valve assembly is at least partially disposed within a portion of the outer frame assembly;securing the inner valve assembly to the outer frame assembly with the at least one suture; andpositioning, after the securing, the prosthetic heart valve within a native annulus of the heart in a desired orientation.
  • 17. The method of claim 16, further comprising: prior to the inserting the prosthetic heart valve into the lumen of the delivery sheath, placing the prosthetic heart valve in an axially extended configuration in which the inner valve is loosely coupled to the outer valve with the at least one suture.
  • 18. The method of claim 16, wherein the moving the inner valve assembly and the outer frame assembly into the nested configuration includes moving distally at least one slip knot along the at least one suture while pulling proximally the at least one suture.
  • 19. The method of claim 16, wherein the deploying at least a portion of the outer frame assembly includes deploying the entire outer frame assembly such that the outer frame assembly assumes a biased expanded configuration.
  • 20. The method of claim 16, further comprising: inserting a positioning member into the lumen of the delivery sheath, the positioning member including at least one suture tube; anddisposing the at least one suture at least partially within a lumen of a suture tube of the at least one suture tubes;the moving the inner valve assembly and the outer frame assembly into theft nested configuration includes moving a slip knot distally along the at least one suture using the positioning member while pulling proximally the at least one suture such that the inner frame and outer frame are moved relative to each other and the inner frame is at least partially disposed within an interior of the outer frame assembly.
  • 21. The method of claim 20, further comprising: inserting a snare device into the lumen of the suture tube from the at least one suture tubes, the disposing the at least one suture at least partially within the lumen of the suture tube of the at least one suture tubes includes snaring the at least one suture with the snare device and pulling the at least one suture proximally within the lumen of the suture tube.
  • 22. The method of claim 16, wherein the positioning comprises positioning the prosthetic heart valve within the mitral annulus of the heart in a desired orientation.
  • 23. The method of claim 20, further comprising: cutting the at least one suture proximally of the slip knot.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/US2017/036949 filed Jun. 12, 2017, published in English, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/349,418, entitled “Sequential Delivery of Two-Part Prosthetic Mitral Valve,” filed Jun. 13, 2016, the disclosures of which are all incorporated herein by reference in their entireties. This application is also related to International Application No. PCT/US2016/012305, entitled “Prosthetic Mitral Valves and Apparatus and Methods for Delivery of Same,” filed Jan. 6, 2016, which claims priority to and the benefit of International Application No. PCT/US2015/014572, entitled “Apparatus and Methods for Transfemoral Delivery of Prosthetic Mitral Valve,” filed Feb. 5, 2015, which claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/935,899, entitled “Transfemoral Delivery of Prosthetic Mitral Valve,” filed Feb. 5, 2014, and U.S. Provisional Patent Application No. 62/100,548, entitled “Apparatus and Methods for Transfemoral Delivery of Prosthetic Mitral Valve,” filed Jan. 7, 2015, each of the disclosures of which is incorporated herein by reference in its entirety. International Application No. PCT/US2016/012305 also claims priority to and the benefit of U.S. Provisional Patent Application No. 62/100,548, entitled “Apparatus and Methods for Transfemoral Delivery of Prosthetic Mitral Valve,” filed Jan. 7, 2015, U.S. Provisional Patent Application Ser. No. 62/187,896, entitled “Apparatus and Methods for Delivery of a Prosthetic Mitral Valve,” filed Jul. 2, 2015, and U.S. Provisional Patent Application Ser. No. 62/137,384, entitled “Apparatus and Method for Delivery of a Prosthetic Mitral Valve,” filed Mar. 24, 2015. The disclosure of each of the foregoing applications is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/736949 6/12/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2017/218375 12/21/2017 WO A
US Referenced Citations (799)
Number Name Date Kind
2697008 Ross Dec 1954 A
3409013 Berry Nov 1968 A
3472230 Fogarty et al. Oct 1969 A
3476101 Ross Nov 1969 A
3548417 Kischer Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3976079 Samuels et al. Aug 1976 A
4003382 Dyke Jan 1977 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4073438 Meyer Feb 1978 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4585705 Broderick et al. Apr 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4626255 Reichart et al. Dec 1986 A
4638886 Marietta Jan 1987 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4824180 Levrai Apr 1989 A
4829990 Thuroff et al. May 1989 A
4830117 Capasso May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4923013 De Gennaro May 1990 A
4960424 Grooters Oct 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
4996873 Takeuchi Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5035706 Giantureo et al. Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5201880 Wright et al. Apr 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5306296 Wright et al. Apr 1994 A
5332402 Teitelbaum Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5344442 Deac Sep 1994 A
5360444 Kusuhara Nov 1994 A
5364407 Poll Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554184 Machiraju Sep 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5607462 Imran Mar 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5662704 Gross Sep 1997 A
5665115 Cragg Sep 1997 A
5674279 Wright et al. Oct 1997 A
5697905 d'Ambrosio Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5741333 Frid Apr 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5792179 Sideris Aug 1998 A
5800508 Goicoechea et al. Sep 1998 A
5833673 Ockuly et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5904697 Gifford, III et al. May 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968052 Sullivan, III et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5993481 Marcade et al. Nov 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6063112 Sgro May 2000 A
6077214 Mortier et al. Jun 2000 A
6099508 Bousquet Aug 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6350277 Kocur Feb 2002 B1
6358277 Duran Mar 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6537198 Vidlund et al. Mar 2003 B1
6540782 Snyders Apr 2003 B1
6569196 Vesely May 2003 B1
6575252 Reed Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6622730 Ekvall et al. Sep 2003 B2
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6648077 Hoffman Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6669724 Park et al. Dec 2003 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6740105 Yodfat et al. May 2004 B2
6746401 Panescu Jun 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6810882 Langberg et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6854668 Wancho et al. Feb 2005 B2
6855144 Lesh Feb 2005 B2
6858001 Aboul-Hosn Feb 2005 B1
6890353 Cohn et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908424 Mortier et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
6945996 Sedransk Sep 2005 B2
6955175 Stevens et al. Oct 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6976543 Fischer Dec 2005 B1
6997950 Chawla Feb 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7060021 Wilk Jun 2006 B1
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7108717 Freidberg Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7141064 Scott et al. Nov 2006 B2
7175656 Khairkhahan Feb 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7275604 Wall Oct 2007 B1
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316706 Bloom et al. Jan 2008 B2
7318278 Zhang et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329278 Seguin et al. Feb 2008 B2
7331991 Kheradvar et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7374571 Pease et al. May 2008 B2
7377941 Rhee et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7381218 Schreck Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7422072 Dade Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470285 Nugent et al. Dec 2008 B2
7500989 Solem et al. Mar 2009 B2
7503931 Kowalsky et al. Mar 2009 B2
7510572 Gabbay Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7513908 Lattouf Apr 2009 B2
7524330 Berreklouw Apr 2009 B2
7527647 Spence May 2009 B2
7534260 Lattouf May 2009 B2
7556646 Yang et al. Jul 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7591847 Navia et al. Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7632304 Park Dec 2009 B2
7632308 Loulmet Dec 2009 B2
7635386 Gammie Dec 2009 B1
7674222 Nikolic et al. Mar 2010 B2
7674286 Alfieri et al. Mar 2010 B2
7695510 Bloom et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7766961 Patel et al. Aug 2010 B2
7789909 Andersen et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7803184 McGuckin, Jr. et al. Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7806928 Rowe et al. Oct 2010 B2
7837727 Goetz et al. Nov 2010 B2
7854762 Speziali et al. Dec 2010 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7901454 Kapadia et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7931630 Nishtala et al. Apr 2011 B2
7942928 Webler et al. May 2011 B2
7955247 Levine et al. Jun 2011 B2
7955385 Crittenden Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7988727 Santamore et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8043368 Crabtree Oct 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8052751 Aklog et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8152821 Gambale et al. Apr 2012 B2
8157810 Case et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308796 Lashinski et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8353955 Styrc et al. Jan 2013 B2
RE44075 Williamson et al. Mar 2013 E
8449599 Chau et al. May 2013 B2
8454656 Tuval Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8480730 Maurer et al. Jul 2013 B2
8486138 Vesely Jul 2013 B2
8506623 Wilson et al. Aug 2013 B2
8506624 Vidlund et al. Aug 2013 B2
8578705 Sindano et al. Nov 2013 B2
8579913 Nielsen Nov 2013 B2
8591573 Barone Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8685086 Navia et al. Apr 2014 B2
8790394 Miller et al. Jul 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8900214 Nance et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8932342 McHugo et al. Jan 2015 B2
8932348 Bolen et al. Jan 2015 B2
8945208 Jimenez et al. Feb 2015 B2
8956407 Macoviak et al. Feb 2015 B2
8961597 Subramanian et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986376 Solem Mar 2015 B2
9011522 Annest Apr 2015 B2
9023099 Duffy et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9039759 Alkhatib et al. May 2015 B2
9078645 Conklin et al. Jul 2015 B2
9078749 Lutter et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9149357 Seguin Oct 2015 B2
9161837 Kapadia Oct 2015 B2
9168137 Subramanian et al. Oct 2015 B2
9232995 Kovalsky et al. Jan 2016 B2
9232998 Wilson et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241702 Maisano et al. Jan 2016 B2
9254192 Lutter et al. Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9289295 Aklog et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9345573 Nyuli et al. May 2016 B2
9468526 Subramanian et al. Oct 2016 B2
9480557 Pellegrini et al. Nov 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9526611 Tegels et al. Dec 2016 B2
9597181 Christianson et al. Mar 2017 B2
9610159 Christianson et al. Apr 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9730792 Lutter et al. Aug 2017 B2
9827092 Vidlund et al. Nov 2017 B2
9833315 Vidlund et al. Dec 2017 B2
9867700 Bakis et al. Jan 2018 B2
9883941 Hastings et al. Feb 2018 B2
9895221 Vidlund Feb 2018 B2
9986993 Vidlund et al. Jun 2018 B2
10327894 Vidlund et al. Jun 2019 B2
20010018611 Solem et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025171 Mortier et al. Sep 2001 A1
20020010427 Scarfone et al. Jan 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020139056 Finnell Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020161377 Rabkin Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20020183827 Derus et al. Dec 2002 A1
20030010509 Hoffman Jan 2003 A1
20030036698 Kohler et al. Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030069593 Tremulis et al. Apr 2003 A1
20030078652 Sutherland Apr 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040049211 Tremulis et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040064014 Melvin et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093075 Kuehne May 2004 A1
20040097865 Anderson et al. May 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040163828 Silverstein et al. Aug 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20050004652 van der Burg et al. Jan 2005 A1
20050004666 Alfieri et al. Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050096498 Houser et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050113798 Slater et al. May 2005 A1
20050113810 Houser et al. May 2005 A1
20050113811 Houser et al. May 2005 A1
20050119519 Girard et al. Jun 2005 A9
20050121206 Dolan Jun 2005 A1
20050125012 Houser et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050256567 Lim et al. Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060042803 Gallaher Mar 2006 A1
20060047338 Jenson et al. Mar 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060094983 Burbank et al. May 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060195185 Lane Aug 2006 A1
20060229708 Powell Oct 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060247491 Vidlund et al. Nov 2006 A1
20060252984 Randert et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070005231 Seguchi Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis Jan 2007 A1
20070027535 Purdy et al. Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070050020 Spence Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070073387 Forster et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070083076 Lichtenstein Apr 2007 A1
20070083259 Bloom et al. Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118210 Pinchuk May 2007 A1
20070118213 Loulmet May 2007 A1
20070142906 Figulla Jun 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070162048 Quinn et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070168024 Khairkhahan Jul 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070215362 Rodgers Sep 2007 A1
20070221388 Johnson Sep 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070256843 Pahila Nov 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070267202 Mariller Nov 2007 A1
20070270932 Headley et al. Nov 2007 A1
20070270943 Solem Nov 2007 A1
20070293944 Spenser et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082163 Woo Apr 2008 A1
20080082166 Styrc Apr 2008 A1
20080091264 Machold et al. Apr 2008 A1
20080109069 Coleman et al. May 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125861 Webler et al. May 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183203 Fitzgerald et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080243150 Starksen et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288060 Kaye et al. Nov 2008 A1
20080293996 Evans et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090048668 Wilson et al. Feb 2009 A1
20090054968 Bonhoeffer et al. Feb 2009 A1
20090054974 McGuckin, Jr. et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082619 De Marchena Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099410 De Marchena Apr 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090131849 Maurer et al. May 2009 A1
20090132035 Roth et al. May 2009 A1
20090137861 Goldberg et al. May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171432 Von Segesser et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090224529 Gill Sep 2009 A1
20090234318 Loulmet et al. Sep 2009 A1
20090234435 Johnson et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090248149 Gabbay Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090292262 Adams et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090326575 Galdonik et al. Dec 2009 A1
20100004740 Seguin et al. Jan 2010 A1
20100016958 St. Goar et al. Jan 2010 A1
20100021382 Dorshow et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100121435 Subramanian et al. May 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100179641 Ryan et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100185278 Schankereli Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100192402 Yamaguchi et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100210899 Schankereli Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249489 Jarvik Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100280589 Styrc Nov 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298755 McNamara et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015616 Straubinger et al. Jan 2011 A1
20110015728 Jimenez et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137408 Bergheim Jun 2011 A1
20110213459 Garrison et al. Sep 2011 A1
20110218619 Benichou Sep 2011 A1
20110224655 Asirvatham et al. Sep 2011 A1
20110224678 Gabbay Sep 2011 A1
20110224728 Martin et al. Sep 2011 A1
20110224784 Quinn Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110288637 De Marchena Nov 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120010700 Spenser Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120053686 McNamara et al. Mar 2012 A1
20120059487 Cunanan et al. Mar 2012 A1
20120089171 Hastings et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120109079 Asleson et al. May 2012 A1
20120116351 Chomas et al. May 2012 A1
20120123529 Levi et al. May 2012 A1
20120158129 Duffy et al. Jun 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120226348 Lane et al. Sep 2012 A1
20120245678 Solem Sep 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120289945 Segermark Nov 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130103140 Subramanian et al. Apr 2013 A1
20130131788 Quadri et al. May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130184811 Rowe et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20130226288 Goldwasser et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130274874 Hammer Oct 2013 A1
20130282101 Eidenschink et al. Oct 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325041 Annest et al. Dec 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130338752 Geusen et al. Dec 2013 A1
20130338764 Thornton et al. Dec 2013 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140046433 Kovalsky Feb 2014 A1
20140081323 Hawkins Mar 2014 A1
20140094918 Vishnubholta et al. Apr 2014 A1
20140142691 Pouletty May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296972 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303718 Tegels et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324161 Tegels et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140331475 Duffy et al. Nov 2014 A1
20140358222 Gorman, III et al. Dec 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364942 Straubinger et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150005874 Vidlund et al. Jan 2015 A1
20150011821 Gorman et al. Jan 2015 A1
20150025553 Del Nido et al. Jan 2015 A1
20150057705 Vidlund Feb 2015 A1
20150073542 Heldman Mar 2015 A1
20150073545 Braido Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150105856 Rowe et al. Apr 2015 A1
20150119936 Gilmore et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150127093 Hosmer et al. May 2015 A1
20150127096 Rowe et al. May 2015 A1
20150134050 Solem et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150142104 Braido May 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150196688 James Jul 2015 A1
20150202044 Chau et al. Jul 2015 A1
20150216653 Freudenthal Aug 2015 A1
20150216660 Pintor Aug 2015 A1
20150223820 Olson Aug 2015 A1
20150223934 Vidlund et al. Aug 2015 A1
20150223935 Subramanian et al. Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238729 Jenson et al. Aug 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150305860 Wang et al. Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150305868 Lutter et al. Oct 2015 A1
20150327995 Morin et al. Nov 2015 A1
20150328001 McLean Nov 2015 A1
20150335424 McLean Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150342717 O'Donnell et al. Dec 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20160000562 Siegel Jan 2016 A1
20160008131 Christianson et al. Jan 2016 A1
20160067042 Murad et al. Mar 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106537 Christianson et al. Apr 2016 A1
20160113764 Sheahan Apr 2016 A1
20160143736 Vidlund May 2016 A1
20160151155 Lutter et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160242902 Morriss Aug 2016 A1
20160262879 Meiri et al. Sep 2016 A1
20160262881 Schankereli et al. Sep 2016 A1
20160278955 Liu et al. Sep 2016 A1
20160317290 Chau Nov 2016 A1
20160324635 Vidlund et al. Nov 2016 A1
20160331527 Vidlund et al. Nov 2016 A1
20160346086 Solem Dec 2016 A1
20160367365 Conklin Dec 2016 A1
20160367367 Maisano et al. Dec 2016 A1
20160367368 Vidlund et al. Dec 2016 A1
20170079790 Vidlund et al. Mar 2017 A1
20170100245 Subramanian et al. Apr 2017 A1
20170100248 Tegels et al. Apr 2017 A1
20170128208 Christianson et al. May 2017 A1
20170181854 Christianson et al. Jun 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170252153 Chau et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
20170281343 Christianson et al. Oct 2017 A1
20170312076 Lutter et al. Nov 2017 A1
20170312077 Vidlund et al. Nov 2017 A1
20170319333 Tegels et al. Nov 2017 A1
20180028314 Ekvall et al. Feb 2018 A1
20180078368 Vidlund et al. Mar 2018 A1
20180078370 Kovalsky et al. Mar 2018 A1
20180147055 Vidlund et al. May 2018 A1
20180193138 Vidlund Jul 2018 A1
Foreign Referenced Citations (135)
Number Date Country
1486161 Mar 2004 CN
1961845 May 2007 CN
2902226 May 2007 CN
101146484 Mar 2008 CN
101180010 May 2008 CN
101984938 Mar 2011 CN
102791223 Nov 2012 CN
102869317 Jan 2013 CN
102869318 Jan 2013 CN
102869321 Jan 2013 CN
103220993 Jul 2013 CN
103974674 Aug 2014 CN
102639179 Oct 2014 CN
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049815 Apr 2002 DE
102006052564 Dec 2007 DE
102006052710 May 2008 DE
102007043830 Apr 2009 DE
102007043831 Apr 2009 DE
0103546 Mar 1984 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1469797 Nov 2005 EP
2111800 Oct 2009 EP
2193762 Jun 2010 EP
2278944 Feb 2011 EP
2747707 Jul 2014 EP
2918248 Sep 2015 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2003505146 Feb 2003 JP
2005515836 Jun 2005 JP
2009514628 Apr 2009 JP
2009519783 May 2009 JP
2013512765 Apr 2013 JP
1017275 Aug 2002 NL
1271508 Nov 1986 SU
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9829057 Jul 1998 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
2000018333 Apr 2000 WO
2000030550 Jun 2000 WO
2000041652 Jul 2000 WO
2000047139 Aug 2000 WO
2001035878 May 2001 WO
2001049213 Jul 2001 WO
2001054624 Aug 2001 WO
2001054625 Aug 2001 WO
2001056512 Aug 2001 WO
2001061289 Aug 2001 WO
2001076510 Oct 2001 WO
2001082840 Nov 2001 WO
2002004757 Jan 2002 WO
2002022054 Mar 2002 WO
2002028321 Apr 2002 WO
2002036048 May 2002 WO
2002041789 May 2002 WO
2002043620 Jun 2002 WO
2002049540 Jun 2002 WO
2002076348 Oct 2002 WO
2003003943 Jan 2003 WO
2003030776 Apr 2003 WO
2003047468 Jun 2003 WO
2003049619 Jun 2003 WO
2004019825 Mar 2004 WO
2005102181 Nov 2005 WO
2006014233 Feb 2006 WO
2006034008 Mar 2006 WO
2006064490 Jun 2006 WO
2006070372 Jul 2006 WO
2006105009 Oct 2006 WO
2006113906 Oct 2006 WO
2006127756 Nov 2006 WO
2007081412 Jul 2007 WO
2007100408 Sep 2007 WO
2008005405 Jan 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008125906 Oct 2008 WO
2008147964 Dec 2008 WO
2009024859 Feb 2009 WO
2009026563 Feb 2009 WO
2009045338 Apr 2009 WO
2009132187 Oct 2009 WO
2010090878 Aug 2010 WO
2010098857 Sep 2010 WO
2010121076 Oct 2010 WO
2011017440 Feb 2011 WO
2011022658 Feb 2011 WO
2011069048 Jun 2011 WO
2011072084 Jun 2011 WO
2011106735 Sep 2011 WO
2011109813 Sep 2011 WO
2011159342 Dec 2011 WO
2011163275 Dec 2011 WO
2012027487 Mar 2012 WO
2012036742 Mar 2012 WO
2012095116 Jul 2012 WO
2012177942 Dec 2012 WO
2013028387 Feb 2013 WO
2013045262 Apr 2013 WO
2013059747 Apr 2013 WO
2013096411 Jun 2013 WO
2013116785 Aug 2013 WO
2013175468 Nov 2013 WO
2014121280 Aug 2014 WO
2014144020 Sep 2014 WO
2014144937 Sep 2014 WO
2014162306 Oct 2014 WO
2014189974 Nov 2014 WO
2014210124 Dec 2014 WO
2015051430 Apr 2015 WO
2015058039 Apr 2015 WO
2015063580 May 2015 WO
2015065646 May 2015 WO
2015120122 Aug 2015 WO
2015138306 Sep 2015 WO
2015173609 Nov 2015 WO
2016112085 Jul 2016 WO
2016126942 Aug 2016 WO
2016168609 Oct 2016 WO
2016196933 Dec 2016 WO
2017096157 Jun 2017 WO
2017132008 Aug 2017 WO
2017218375 Dec 2017 WO
2018005779 Jan 2018 WO
2018013515 Jan 2018 WO
Non-Patent Literature Citations (57)
Entry
US 9,155,620 B2, 10/2015, Gross et al. (withdrawn)
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, Mar. 20, 1983, pp. 111-150, American Chemical Society.
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/˜database/MEMS/sma.html>, Feb. 5, 2016, 3 pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/016567, dated Aug. 3, 2016, 17 pages.
U.S. Pat. No. 9,155,620, Oct. 2015, Gross et al. (withdrawn).
Cullen, et al., “Transvenous, Antegrade Melody Valve-in-Valve Implantation for Bioprosthetic Mitral and Tricuspid Valve Dysfunction”, JACC: Cardiovascular Interventions, vol. 6, No. 6, Jun. 2013, pp. 598-605.
Chinese Search Report for CN Application No. 201680013223.9, dated Oct. 29, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2016/012305, dated Aug. 3, 2016, 18 pages.
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenos's,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53.
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311.
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314.
H. R. Andersen et al., “Transluminal Implantation of Artificial Heart Valves: Description of a New Expandable Aortic Valve and Initial Results with Implantation by Catheter Technique in Closed Chest Pigs,” European Heart Journal, 1992, Issue 5, vol. 13, pp. 704-708.
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346.
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2):102-106.
Robert C. Ashton Jr., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, Issue/vol. 112, pp. 979-983.
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273(1):55-62.
G. M. Bernacca, et al., “Polyurethane Heart Valves: Fatigue Failure, Calcification, and Polyurethane Structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, Issue 3, vol. 34, pp. 371-379.
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365.
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration in Dilated Hearts,” Interactive Cardiovascular and Thoracic Surgery, 2005, 4:475-477.
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages.
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415.
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012.
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670.
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages.
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html>, Dec. 10, 2012, 5 pages.
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138>, Aug. 10, 2012, 9 pages.
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages.
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402.
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150.
Knudsen, L. L. et al., “Catheter-implanted prosthetic heart valves. Transluminal catheter implantation of a new expandable artificial heart valve in the descending thoracic aorta in isolated vessels and closed chest pigs,” The International Journal of Artificial Organs, 1993, 16(5):253-262.
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-ar- teries-gets-a-faili . . . ,>, published Jan. 3, 1991, retrieved from the Internet on Feb. 5, 2016, 3 pages.
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360.
Lozonschi, L., et al. “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page.
Lutter, G. et al., “Mitral Valved Stent Implantation,” European Journal of Cardia-Thoracic Surgery, 2010, 38:350-355, 2 pages.
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2): 194-198.
Moazami, N. et al., “Transluminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./ Oct. 1996, 42(5):M381-M385.
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Symposium: Small Animal Proceedings, 2011, pp. 311-312.
Pavcnik, D. et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Radiology, 1992; 183:151-154.
Porstmann, W. et al., “Der Verschlul?. des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskulare Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203.
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196( 11 ): 173-174.
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367.
Reul, H. et al., “The Geomety of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191.
Rosch, J. et al., “The Birth, Early Years and Future of Interventional Radiology,” J Vase Intery Radiol., Jul. 2003, 4:841-853.
Ross, D. N., “Aortic Valve Surgery,” Guy's Hospital, London, 1968, pp. 192-197.
Rousseau, E. P. M. et al., “A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis,” Journal of Biomechanics, 1998, 21(7):545-562.
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309.
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538.
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989.
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/.about.database/MEMS/sma.html>, Nov. 14, 2012, 3 pages.
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440.
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187.
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, pp. 227-230.
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850.
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, ButtenNorths 1986.
Extended European Search Report including the Written Opinion for Application No. EP 17813855.8 dated Jan. 15 2020, 9 pages.
Search Report dated Aug. 21, 2017 (PCT/US2017/036949).
Related Publications (1)
Number Date Country
20190321178 A1 Oct 2019 US
Provisional Applications (1)
Number Date Country
62349418 Jun 2016 US