The present invention generally relates to medical devices and methods, and more particularly relates to the treatment of valve insufficiency, such as mitral insufficiency, also referred to as mitral regurgitation. The use of prosthetic valves delivered by traditional surgical implantation methods, by a less invasive percutaneous catheter, or by minimally invasive transapical methods are one possible treatment for valvar insufficiency (also referred to as regurgitation).
The heart of vertebrate animals is divided into four chambers, and is equipped with four valves (the mitral, aortic, pulmonary and tricuspid valves) that ensure that blood pumped by the heart flows in a forward direction through the cardiovascular system. The mitral valve of a healthy heart prevents the backflow of blood from the left ventricle into the left atrium of the heart, and comprises two flexible leaflets (anterior and posterior) that close when the left ventricle contracts. The leaflets are attached to a fibrous annulus, and their free edges are tethered by subvalvular chordae tendineae to papillary muscles in the left ventricle to prevent them from prolapsing into the left atrium during the contraction of the left ventricle.
Various cardiac diseases or degenerative changes may cause dysfunction in any of these portions of the mitral valve apparatus, causing the mitral valve to become abnormally narrowed or dilated, or to allow blood to leak (i.e. regurgitate) from the left ventricle back into the left atrium. Any such impairments compromise cardiac sufficiency, and can be debilitating or life threatening.
Numerous surgical methods and devices have accordingly been developed to treat mitral valve dysfunction, including open-heart surgical techniques for replacing, repairing or re-shaping the native mitral valve apparatus, and the surgical implantation of various prosthetic devices such as annuloplasty rings to modify the anatomy of the native mitral valve. More recently, less invasive transcatheter techniques for the delivery of replacement mitral valve assemblies have been developed. In such techniques, a prosthetic valve is generally mounted in a crimped stale on the end of a flexible catheter and advanced through a blood vessel or the body of the patient until the valve reaches the implantation site. The prosthetic valve is then expanded to its functional size at the site of the defective native valve.
While these devices and methods are promising treatments for valvar insufficiency, they can be difficult to deliver, expensive to manufacture, or may not be indicated for all patients. Therefore, it would be desirable to provide improved devices and methods for the treatment of valvar insufficiency such as mitral insufficiency. At least some of these objectives will be met by the devices and methods disclosed below.
By way of example, PCT international patent number PCT/US2008/054410 (published as PCT international publication no. WO2008/103722), the disclosure of which is hereby incorporated by reference, describes a transcatheter mitral valve prosthesis that comprises a resilient ring, a plurality of leaflet membranes mounted with respect to the ring so as to permit blood flow therethrough in one direction, and a plurality of tissue-engaging positioning elements movably mounted with respect to the ring and dimensioned to grip the anatomical structure of the heart valve annulus, heart valve leaflets, and/or heart wall. Each of the positioning elements defines respective proximal, intermediate, and distal tissue engaging regions cooperatively configured and dimensioned to simultaneously engage separate corresponding areas of the tissue of an anatomical structure, and may include respective first, second, and third elongate tissue-piercing elements. The valve prosthesis may also include a skirt mounted with respect to the resilient ring for sealing a periphery of the valve prosthesis against a reverse flow of blood around the valve prosthesis. In some embodiments, the skirt extends both above and below the resilient ring so that the valve prosthesis can seal against tissue both above and below the flexible ring at the valve annulus.
PCT international patent number PCT/US2009/041754 (published as PCT international publication no. WO2009/134701), the disclosure of which is hereby incorporated by reference, describes a prosthetic mitral valve assembly that comprises an anchor or outer support frame with a flared upper end and a tapered portion to fit the contours of the native mitral valve, and a tissue-based one-way valve mounted therein. The assembly is adapted to expand radially outwardly and into contact with the native heart tissue to create a pressure fit, and further includes tension members anchoring the leaflets of the valve assembly to a suitable location on the heart to function as prosthetic chordae tendineae.
Also known are prosthetic mitral valve assemblies that utilize a claw structure for attachment of the prosthesis to the heart (see, for example, U.S. patent publication no. US2007/0016286 to Hermann et al., the disclosure of which is hereby incorporated by reference), as are prosthetic mitral valve assemblies that rely on the application of axial rather than radial clamping forces to facilitate the self-positioning and self-anchoring of the prosthesis with respect to the native anatomical structure.
Also known are prosthetic valve devices which include anchoring means which engage the chordae tendinae such that the chordae tendinae are captured within the hooks of the anchoring means, engage and penetrate the valve annulus, engage and penetrate the papillary muscles on the ventricular side, and/or engage and penetrate other tissue such as the interventricular septum and the left ventricle muscle wall to fix the position of the prosthetic valve device (see, for example, U.S. patent publication no. US2006/0241745 to Solent, the disclosure of which is hereby incorporated by reference).
Also know are prosthetic valve devices which include an annular body to attach to the valve annulus as well as prosthetic valve tissue, a plurality of ventricular anchor members configured to clamp leaflet tissue and chordae between adjacent anchor members, and a plurality of atrial anchor members (see, for example, U.S. Pat. No. 9,125,738 to Figulla et al., the disclosure of which is hereby incorporated by reference). The positioning of the valve prosthesis with a catheter can be made in a procedure such that the anchor members are released from a first end of the catheter and then anchored and supported behind the natural valve leaflets and/or between the chordae. Then, the valve prosthesis including the annular body may be completely released such that the annular body can come to rest with its center approximately at the annulus of the valve to be replaced.
Another method which has been proposed as a treatment of mitral valve regurgitation is the surgical bow tie method, which recently has been adapted into a minimally invasive catheter based treatment where an implant is used to clip the valve leaflets together. This procedure is more fully disclosed in the scientific and patent literature, such as in U.S. Pat. No. 6,629,534 to St. Goar et al., the entire contents of which are incorporated herein by reference.
Other relevant publications include U.S. patent publication no. 2011/0015731 to Carpentier et al., WO2011/137531 to Lane et al., and 2013/075215 to Lane et al. While some of these devices and methods are promising, there still is a need for improved devices and methods that will further allow more accurate positioning of a prosthetic valve and that will also more securely anchor the valve in place. At least some of these objectives will be met by the exemplary embodiments disclosed herein.
The present invention generally relates to medical devices and methods, and more particularly prosthetic valves used to treat mitral regurgitation. While the present disclosure focuses on the use of a prosthetic valve for treating mitral regurgitation, this is not intended to be limiting. The prosthetic valves disclosed herein may also be used to treat other body valves including other heart valves or venous valves. Exemplary heart valves include the aortic valve, the tricuspid valve, or the pulmonary valve.
In a first aspect of the present invention, a method of delivering an implantable prosthetic valve to a patient's heart which has a mitral valve with an anterior leaflet and a posterior leaflet, comprises providing a prosthetic valve, wherein the prosthetic valve comprises an expandable frame having a first end, a second end opposite the first end, a first anterior tab on an anterior portion of the expandable frame, a posterior tab on a posterior portion of the expandable frame, and a ventricular skirt adjacent the first end of the expandable frame. The prosthetic valve has an expanded configuration for engaging the heart and a collapsed configuration. The prosthetic valve is delivered in the collapsed configuration to the patient's heart adjacent the mitral valve, and the first anterior tab is expanded radially outward such that a tip portion of the first anterior tab engages a first fibrous trigone on a first side of the anterior leaflet of the mitral valve. The anterior chordae tendineae adjacent the anterior leaflet are disposed between the first anterior tab and an outer anterior surface of the ventricular skirt. In other words, the first anterior tab advances under (toward the ventricle) and behind the anterior chordae tendinae adjacent the anterior leaflet. After radially expanding the first anterior tab, the posterior tab is radially expanded outward such that the posterior leaflet of the mitral valve and adjacent posterior chordae tendinae are disposed between the posterior tab and an outer posterior surface of the ventricular skirt. In other words, the posterior tab advances under (toward the ventricle) and behind the posterior chordae tendinae adjacent the posterior leaflet. After radially expanding the posterior tab, the ventricular skirt is radially expanded outward thereby engaging the anterior and posterior leaflets. The anterior leaflet and the adjacent anterior chordae tendinae are captured between the first anterior tab and the outer anterior surface of the ventricular skirt. The posterior leaflet and the adjacent posterior chordae tendinae are captured between the posterior tab and the posterior outer surface of the ventricular skirt.
In another aspect of the present invention, a method of delivering an implantable prosthetic valve to a patient's heart having a mitral valve with an anterior leaflet and a posterior leaflet, comprises providing a prosthetic valve, wherein the prosthetic valve comprises an expandable frame having a first end, a second end opposite the first end, a first anterior tab on an anterior portion of the expandable frame, a posterior tab on a posterior portion of the expandable frame, and a ventricular skirt adjacent the first end of the expandable frame. The prosthetic valve has an expanded configuration for engaging the heart and a collapsed configuration. The prosthetic valve is delivered in the collapsed configuration to the patient's heart adjacent the mitral valve. The first anterior tab is expanded radially outward such that a tip portion of the first anterior tab engages a first fibrous trigone on a first side of the anterior leaflet of the mitral valve. In other words, the first anterior tab advances under (toward the ventricle) and behind the anterior chordae tendinae adjacent the anterior leaflet. The anterior leaflet and adjacent anterior chordae tendineae are disposed between the first anterior tab and an outer anterior surface of the ventricular skirt. After radially expanding the first anterior tab, the ventricular skirt is radially expanded outward thereby engaging the anterior leaflet such that the anterior leaflet and the adjacent anterior chordae tendinae are captured between the first anterior tab and the outer anterior surface of the ventricular skirt. After radially expanding the ventricular skirt, the posterior tab is radially expanded outward such that the posterior leaflet of the mitral valve and adjacent posterior chordae tendineae are disposed and captured between the posterior tab and an outer posterior surface of the ventricular skirt. In other words, the posterior tab advances under (toward the ventricle) and behind the posterior chordae tendinae adjacent the posterior leaflet.
The method may further comprise providing a delivery catheter, wherein the prosthetic valve is releasably coupled thereto. Delivering the prosthetic valve may comprise transapical delivery of the prosthetic valve from a region outside the heart to the left ventricle of the heart, or the prosthetic valve may be delivered transseptally from the right atrium to the left atrium of the heart. Delivering the prosthetic valve may comprise positioning the prosthetic valve across the mitral valve so that the first end of the expandable frame is inferior to a portion of the mitral valve and the second end of the expandable frame is superior to a portion of the mitral valve.
Expanding the first anterior tab may comprise retracting a constraining sheath from the first anterior tab so that the first anterior tab is free to self-expand radially outward. The prosthetic valve may further comprise a second anterior tab on the anterior portion of the expandable frame, and the method may further comprise expanding the second anterior tab radially outward such that a tip portion of the second anterior tab engages a second fibrous trigone on a second side of the anterior leaflet opposite the first side of the anterior leaflet, in other words, second first anterior tab advances under (toward the ventricle) and behind the anterior chordae tendinae adjacent the anterior leaflet. The anterior leaflet and adjacent anterior chordae tendineae may be disposed between the second anterior tab and an outer surface of the ventricular skirt. The second anterior tab may expand radially outward concurrently with expansion of the first anterior tab. Prior to engaging the first fibrous trigone or the second fibrous trigone with the respective first or second anterior tab, and prior to disposing the anterior leaflet and the adjacent chordae tendineae between the first or second anterior tab and the outer surface of the ventricular skirt, the method may comprise partially expanding the first or the second anterior tab radially outward such that the first or the second anterior tab is transverse to a longitudinal axis of the prosthetic valve. Expanding the second anterior tab may comprise retracting a constraining sheath from the second anterior tab so that the second anterior tab is free to self-expand radially outward. The partial expansion may advance the tab under (toward the ventricle) the adjacent chordae tendinae and, in some cases, further behind the chordae tendinae.
In some embodiments, prior to disposing the posterior leaflet of the mitral valve and the adjacent posterior chordae tendineae between the posterior tab and the outer posterior surface of the ventricular skirt, the method may comprise partially expanding the posterior tab radially outward such that the posterior tab is transverse to a longitudinal axis of the prosthetic valve. After the anterior leaflet and the adjacent anterior chordae tendineae are disposed between the first anterior tab and the outer anterior surface of the ventricular skirt, the method may comprise partially expanding the posterior tab radially outward such that the posterior tab is transverse to a longitudinal axis of the prosthetic valve, and wherein the posterior tab is partially expanded without disposing the posterior leaflet of the mitral valve and the adjacent posterior chordae tendinae between the posterior tab and the outer posterior surface of the ventricular skirt.
Radially expanding the ventricular skirt may comprise retracting a constraining sheath from the ventricular skirt so that the ventricular skirt is free to self-expand radially outward. The ventricular skirt may comprise a plurality of barbs, and expanding the ventricular skirt may comprise anchoring the plurality of barbs into heart tissue. The prosthetic valve may further comprise a plurality of commissures, and expanding the ventricular skirt may displace the anterior and posterior mitral valve leaflets radially outward thereby preventing interference between the commissures and both of the anterior and posterior leaflets. Expanding the ventricular skirt may displace the anterior and posterior valve leaflets radially outward without contacting an inner wall of the left ventricle, and without obstructing the left ventricular outflow tract. Expanding the ventricular skirt may expand the ventricular skirt asymmetrically such that an anterior portion of the ventricular skirt is substantially flat, and a posterior portion of the ventricular skirt is cylindrically shaped.
The method may further comprise reducing or eliminating mitral regurgitation. In some embodiments, the prosthetic valve may carry a therapeutic agent, and the method may further comprise eluting the therapeutic agent from the prosthetic valve into adjacent tissue. The prosthetic valve may also comprise an alignment element. A second fibrous trigone is disposed on a second side of the anterior leaflet opposite the first side of the anterior leaflet, and the method may further comprise aligning the alignment element with an aortic root and disposing the alignment element between the first and second fibrous trigones. Aligning the alignment element may comprise rotating the prosthetic valve.
The prosthetic valve may further comprise a plurality of commissures with a covering disposed thereover whereby a plurality of prosthetic valve leaflets are formed, and the method may further comprise releasing the plurality of prosthetic valve leaflets from a delivery catheter. The plurality of prosthetic valve leaflets may form a tricuspid valve that has an open configuration and a closed configuration. The plurality of prosthetic valve leaflets may be disposed away from one another in the open configuration thereby permitting antegrade blood flow therethrough, and the plurality of prosthetic valve leaflets may engage one another in the closed configuration thereby substantially preventing retrograde blood flow therethrough.
The prosthetic valve may further comprise an atrial skirt, and the method may further comprise expanding the atrial skirt radially outward so as to lie over a superior surface of the mitral valve, and engaging the atrial skirt against the superior surface of the mitral valve. Expanding the atrial skirt may comprise retracting a constraining sheath from the atrial skirt so that the atrial skirt is free to self-expand radially outward. The prosthetic valve may be moved upstream or downstream relative to the mitral valve to ensure that the atrial skirt engages the superior surface of the mitral valve. Engaging the atrial skirt against the superior surface may seal the atrial skirt against the superior surface of the mitral valve to prevent or substantially prevent blood flow therebetween.
The prosthetic valve may further comprise an annular region, and the method may further comprise expanding the annular region radially outward so as to cover an annulus of the minal valve. Expanding the annular region may comprise retracting a constraining sheath from the annular region so that the annular region is free to self-expand radially outward. Expanding the annular region may comprise asymmetrically expanding the annular region such that an anterior portion of the annular region is substantially flat, and a posterior portion of the annular region is cylindrically shaped.
In another aspect of the present invention, a sequentially deployed prosthetic cardiac valve comprises a self-expanding frame having a first end, a second end opposite the first end, an atrial region near the second end, and a ventricular region near the first end. The self-expanding frame has an expanded configuration and a collapsed configuration. The expanded configuration is adapted to engage heart tissue, and the collapsed configuration is adapted to be delivered to a patient's heart. The prosthetic valve also includes a self-expanding atrial skirt disposed in the atrial region, a self-expanding ventricular skirt disposed in the ventricular region and a self-expanding annular region disposed between the atrial region and the ventricular region. A first self-expanding anterior tab is disposed on an anterior portion of the self-expanding frame in the ventricular region. A self-expanding posterior tab is disposed on a posterior portion of the self-expanding frame in the ventricular region. A portion of the first self-expanding anterior tab and a portion of the self-expanding posterior tab partially self-expand radially outward when a constraint is removed therefrom. The first anterior tab fully self-expands radially outward before the posterior tab fully self-expands radially outward when the constraint is removed therefrom. The posterior tab fully self-expands radially outward before ventricular skirt self-expands when the constraint is removed therefrom, and the ventricular skirt fully expands last.
In another aspect of the present invention, a sequentially deployed prosthetic cardiac valve comprises a self-expanding frame having a first end, a second end opposite the first end, an atrial region near the second end, and a ventricular region near the first end. The self-expanding frame has an expanded configuration and a collapsed configuration. The expanded configuration is adapted to engage heart tissue, and the collapsed configuration is adapted to be delivered to a patient's heart. The prosthetic cardiac valve also comprises a self-expanding atrial skirt disposed in the atrial region, a self-expanding ventricular skirt disposed in the ventricular region, and a self-expanding annular region disposed between the atrial region and the ventricular region. A first self-expanding anterior tab is disposed on an anterior portion of the self-expanding frame in the ventricular region. A self-expanding posterior tab is disposed on a posterior portion of the self-expanding frame in the ventricular region. A portion of the first self-expanding anterior tab and a portion of the self-expanding posterior tab partially self-expand radially outward when a constraint is removed therefrom. The first anterior tab self-expands radially outward before the ventricular skirt self-expands radially outward when the constraint is removed therefrom. The ventricular skirt self-expands radially outward before the posterior tab finishes self-expanding, and the posterior tab finishes self-expanding after the ventricular skirt self-expands.
At least a portion of the atrial skirt may be covered with tissue or a synthetic material. The atrial skirt may have a collapsed configuration and an expanded configuration. The collapsed configuration may be adapted for delivery to a patient's heart, and the expanded configuration may be radially expanded relative to the collapsed configuration and may be adapted to lie over a superior surface of the patient's native mitral valve, thereby anchoring the atrial skirt against a portion of the left atrium. The atrial skirt may comprise one or more radiopaque markers and may comprise a plurality of axially oriented struts connected together with a connector element thereby forming interconnected struts into a series of peaks and valleys. After self-expansion of the atrial skirt, the atrial skirt may form a flanged region adjacent the second end of the self-expanding frame. Also after self-expansion, the atrial skirt may have an asymmetrically D-shaped cross-section having a substantially flat anterior portion, and a cylindrically shaped posterior portion. The prosthetic valve may further comprise an alignment element coupled to an anterior portion of the atrial skirt, and the alignment element may be aligned with an aortic root of a patient's heart and may be disposed between two fibrous trigones of an anterior leaflet of the patient's mitral valve.
At least a portion of the annular region may be covered with tissue or a synthetic material. The annular region may have a collapsed configuration and an expanded configuration. The collapsed configuration may be adapted for delivery to the patient's heart, and the expanded configuration may be radially expanded relative to the collapsed configuration and may be adapted to cover an annulus of a patient's native mitral valve. After self-expanding, the annular region may have an asymmetrically D-shaped cross-section having a substantially flat anterior portion, and a cylindrically shaped posterior portion. The annular region may comprise a plurality of axially oriented struts connected together with a connector element, and the plurality of interconnected struts may form a series of peaks and valleys. One or more of the plurality of axially oriented struts may comprise one or more suture holes extending therethrough, and the suture holes may be sized to receive a suture.
At least a portion of the ventricular skirt may be covered with tissue or a synthetic material. After self-expanding, the ventricular skirt may comprise an asymmetrically D-shaped cross-section having a substantially flat anterior portion, and a cylindrically shaped posterior portion. The ventricular skirt may have a collapsed configuration and an expanded configuration. The collapsed configuration may be adapted for delivery to the patient's heart, and the expanded configuration may be radially expanded relative to the collapsed configuration and may be adapted to displace native mitral valve leaflets radially outward.
The first anterior tab may have a tip portion adapted to engage a first fibrous trigone on a first side of an anterior leaflet of a patient's mitral valve, and the first anterior tab may also be adapted to capture the anterior leaflet and adjacent chordae tendineae between the first anterior tab and an outer anterior surface of the ventricular skirt. The prosthetic cardiac valve may further comprise a second self-expanding anterior tab disposed on the anterior portion of the self-expanding frame in the ventricular region. The second anterior tab may have a tip portion adapted to engage a second fibrous trigone on a second side of the anterior leaflet of the patient's mitral valve opposite the first side of the anterior leaflet. The second anterior tab may be adapted to capture the anterior leaflet and adjacent chordae tendineae between the second anterior tab and the outer surface of the ventricular skirt. The first or the second anterior tabs may have a cover disposed thereover that increases the contact area between the tab and the cardiac tissue. The cover may include a fabric disposed over a polymer tab that is coupled to the first or second tab. The posterior tab may be adapted to being anchored over a posterior leaflet of the patient's mitral valve, such that the posterior tab is seated between the posterior leaflet and a ventricular wall of a patient's heart. The posterior tab may comprise a plurality of struts, and adjacent struts may be coupled together to form a plurality of expandable hinged joints. Upon radial expansion of the posterior tab, the plurality of struts may move away from one another thereby opening the hinged joints forming an elongate horizontal section which allows engagement and anchoring of the posterior tab with the sub-annular region between the posterior leaflet and the ventricular wall. Thus, the elongate horizontal section contacts a larger region of the sub-annular region as compared with a posterior tab that only has a tapered tip formed from a single hinge between struts. The ventricular skirt may further comprise a plurality of barbs coupled thereto. The plurality of barbs may be adapted to anchor the ventricular skirt into heart tissue. The ventricular skirt may also comprise a plurality of struts connected together with a connector element, and the plurality of interconnected struts may form a series of peaks and valleys. One or more of the struts may comprise one or more suture holes extending therethrough, the suture holes sized to receive a suture.
The prosthetic cardiac valve may further comprise a plurality of prosthetic valve leaflets. Each of the leaflets may have a first end and a free end, and the first end may be coupled with the self-expanding frame and the free end may be opposite of the first end. The prosthetic valve leaflets may have an open configuration in which the free ends of the prosthetic valve leaflets are disposed away from one another to allow antegrade blood flow therepast. The prosthetic valve leaflets may have a closed configuration in which the free ends of the prosthetic valve leaflets engage one another and substantially prevent retrograde blood flow therepast. The plurality of prosthetic valve leaflets may form a tricuspid valve. At least a portion of one or more prosthetic valve leaflets may comprise tissue or a synthetic material. One or more of the prosthetic valve leaflets may comprise a commissure post having a commissure tab, and the commissure tab may be adapted to be releasably engaged with a delivery device. The prosthetic cardiac valve may carry a therapeutic agent that is adapted to being eluted therefrom.
In still another aspect of the present invention, a delivery system for delivering a prosthetic cardiac valve to a patient's heart having a mitral valve with an anterior leaflet and a posterior leaflet, comprises a prosthetic cardiac valve, an inner guidewire shaft having a lumen extending therethrough, where the lumen is sized to slidably receive a guidewire, and a distal tissue penetrating tip coupled to a distal portion of the inner guidewire shaft. The distal tip is adapted to pass through and expand tissue in the heart, and a continuous flared region couples the inner guidewire shaft with the distal tip. The continuous flared region is configured to support the prosthetic cardiac valve thereby reducing or eliminating unwanted bending of the prosthetic cardiac valve. The delivery system also comprises a hub shaft concentrically disposed over the inner guidewire shaft. The prosthetic cardiac valve is releasably coupled to a distal portion of the hub shaft. A bell shaft is slidably and concentrically disposed over the hub shaft, and an outer sheath is slidably and concentrically disposed over the bell shaft. The prosthetic cardiac valve is housed in the outer sheath in a radially collapsed configuration. The delivery system also has a handle near a proximal end of the delivery system. The handle comprises an actuator mechanism adapted to advance and retract the bell shaft and the sheath. Proximal retraction of the outer sheath relative to the bell shaft may remove a constraint from the prosthetic cardiac valve thereby allowing the prosthetic cardiac valve to self-expand into engagement with the patient's mitral valve. The prosthetic cardiac valve may comprise a plurality of commissure posts, and the commissure posts may be releasably coupled with a distal portion of the hub shaft. Proximal retraction of the bell shaft relative to the hub shaft allows the commissure posts to uncouple from the hub shaft. The actuator mechanism may comprise a rotatable wheel.
Another aspect of the present invention provides an implantable prosthetic valve, a method of delivering the implantable prosthetic valve to a patient's heart, and/or a system for delivering the implantable prosthetic valve. The patient's heart has a mitral valve with an anterior leaflet and a posterior leaflet. The prosthetic valve may be provided. The prosthetic valve may comprise an expandable frame having a first end, a second end opposite the first end, a first anterior tab on an anterior portion of the expandable frame, a posterior tab on a posterior portion of the expandable frame, and a ventricular skirt adjacent the first end of the expandable frame. The prosthetic valve may have an expanded configuration for engaging the heart and a collapsed configuration. The prosthetic valve may be delivered in the collapsed configuration to the patient's heart adjacent the mitral valve. The first anterior tab may be expanded radially outward such that a tip portion of the first anterior tab engages a first fibrous trigone on a first side of the anterior leaflet of the mitral valve. The anterior leaflet and adjacent anterior chordae tendinae may be disposed between the first anterior tab and an outer anterior surface of the ventricular skirt. Concurrently with expanding the first anterior tab, the posterior tab may be radially expanded outward such that the posterior leaflet of the mitral valve and adjacent posterior chordae tendinae are disposed between the posterior tab and an outer posterior surface of the ventricular skirt. The ventricular skirt may be radially expanded outward thereby engaging the anterior and posterior leaflets. The anterior leaflet and the adjacent anterior chordae tendinae may be captured between the first anterior tab and the outer anterior surface of the ventricular skirt. The posterior leaflet and the adjacent posterior chordae tendinae may be captured between the posterior tab and the posterior outer surface of the ventricular skirt.
The prosthetic valve may further comprise a second anterior tab on the anterior portion of the expandable frame, and the second anterior tab may be expanded radially outward such that a tip portion of the second anterior tab engages a second fibrous trigone on a second side of the anterior leaflet opposite the first side of the anterior leaflet. The anterior leaflet and adjacent anterior chordae tendinae may be disposed between the second anterior tab and an outer surface of the ventricular skirt. The first and second anterior tabs and the posterior tab may each extend from a base proximal to the annular region to a free end arranged at an axial position along the frame in the ventricular region. The axial position of the free end of the tabs, and therefore the length of each of the tabs, may vary in different embodiments and the lengths of the tabs may differ from one another. The varying axial position of the free ends of the tabs may enable the deployment sequence of the tabs to be controlled as the sheath is retracted. For example, the second anterior tab may be longer than the first anterior tab and the posterior tab, such that the free end of the second anterior tab is axially positioned further from the annular region than the free ends of the first anterior tab and the posterior tab. In this case, the second anterior tab may be radially expanded outward after the first anterior tab and the posterior tab are radially expanded outward. In other examples, the lengths and axial position of the free end of the tabs may be controlled such that the second anterior tab is radially expanded outward before the first anterior tab and the posterior tab are radially expanded outward, or concurrently with the first anterior tab and the posterior tab being radially expanded outward. The ventricular skirt may be radially expanded outward before the second anterior tab is radially expanded outward, after the second anterior tab is radially expanded outward, or concurrently with the second anterior tab being radially expanded outward.
To radially expand the second anterior tab outward, a constraining sheath may be retracted from the second anterior tab so that the second anterior tab is free to radially self-expand outward.
Prior to the anterior leaflet and the adjacent anterior chordae tendineae being disposed between the second anterior tab and the outer anterior surface of the ventricular skirt, the second anterior tab may be partially expanded radially outward such that the first anterior tab is transverse to a longitudinal axis of the prosthetic valve. The second anterior tab may be partially expanded radially outward by partially retracting the constraining sheath from the second anterior tab so that the second anterior tab is partially free to self-expand radially outward.
Prior to the anterior leaflet and the adjacent anterior chordae tendineae being disposed between the first anterior tab and the outer anterior surface of the ventricular skirt, the first anterior tab may be partially expanded radially outward such that the first anterior tab is transverse to a longitudinal axis of the prosthetic valve. The first anterior tab may be partially expanded radially outward by partially retracting the constraining sheath from the first anterior tab so that the first anterior tab is partially free to self-expand radially outward.
Prior to disposing the posterior leaflet of the mitral valve and the adjacent posterior chordae tendineae between the posterior tab and the outer posterior surface of the ventricular skirt, the posterior tab may be partially expanded radially outward such that the posterior tab is transverse to a longitudinal axis of the posterior valve. The posterior tab may be partially expanded radially outward by partially retracting the constraining sheath from the posterior tab so that the posterior tab is partially free to self-expand radially outward.
The first anterior tab may be expanded by retracting the constraining sheath from the first anterior tab so that the first anterior tab is free to self-expand radially outward. The posterior tab may be expanded by retracting the constraining sheath from the posterior tab so that the posterior tab is free to self-expand radially outward.
The ventricular skirt may be radially expanded outward before the first anterior tab and posterior tab are radially expanded outward, after the first anterior tab and posterior tab are radially expanded outward, or concurrently with the first anterior tab and posterior tab being radially expanded outward.
The ventricular skirt may be radially expanded by retracting the constraining sheath from the ventricular skirt so that the ventricular skirt is free to self-expand radially outward. The ventricular skirt may be radially expanded in any order, for example, before any combination of the anterior and posterior tabs, concurrently with at least any one of the anterior and posterior tabs, between at least any two of the anterior and posterior tabs, or after any combination of the anterior and posterior tabs.
A delivery catheter which the prosthetic valve is releaseably coupled thereto may be further provided.
The prosthetic valve may be delivered transapically from a region outside the heart to the left ventricle of the heart. Alternatively, the prosthetic valve may be delivered transseptally from the right atrium to the left atrium of the body.
To deliver the prosthetic valve, the prosthetic valve may be positioned across the mitral valve so that the first end of the expandable frame is inferior to a portion of the mitral valve and the second end of the expandable frame is superior to a position of the mitral valve.
The ventricular skirt may comprise a plurality of barbs, and in expanding the ventricular skirt, the plurality of barbs may be anchored into heart tissue.
The prosthetic valve may further comprise a plurality of commissures, and in expanding the ventricular skirt, the anterior and posterior mitral valve leaflets may be displaced radially outward thereby preventing interference between the commissures and both of the anterior and posterior leaflets. Expanding the ventricular skirt may displace the anterior and posterior valve leaflets radially outward without contacting an inner wall of the left ventricle, and without obstructing a left ventricular outflow tract, in radially expanding the ventricular skirt, the ventricular skirt may be expanded asymmetrically such that an anterior portion of the ventricular skirt is substantially flat, and a posterior portion of the ventricular skirt is cylindrically shaped.
Mitral regurgitation may be reduced or eliminated, such as by the implanted prosthetic valve.
The prosthetic valve may carry a therapeutic agent, and the therapeutic agent may be eluted from the prosthetic valve into adjacent tissue.
The prosthetic valve may comprise an alignment element, and a second fibrous trigone may be disposed on a second side of the anterior leaflet opposite the first side of the anterior leaflet. The alignment element may be aligned with an aortic root and the alignment element may be disposed between the first and second fibrous trigones. To align the alignment element, the prosthetic valve may be rotated.
The prosthetic valve may further comprise a plurality of commissures with a covering disposed thereover whereby a plurality of prosthetic valve leaflets are formed. The plurality of prosthetic valve leaflets may be released from a delivery catheter. The plurality of prosthetic valve leaflets may form a tricuspid valve, the tricuspid valve having an open configuration and a closed configuration. The plurality of prosthetic valve leaflets may be disposed away from one another in the open configuration thereby permitting antegrade blood flow therethrough. The plurality of prosthetic valve leaflets may engage one another in the closed configuration thereby substantially preventing retrograde blood flow therethrough.
The prosthetic valve may further comprise an atrial skirt. The atrial skirt may be expanded radially outward so as to lie over a superior surface of the mitral valve, and the atrial skirt may be engaged against the superior surface of the mitral valve. The atrial skirt may be expanded by retracting the constraining sheath from the atrial skirt so that the atrial skirt is free to self-expand radially outward. The prosthetic valve may be moved upstream or downstream relative to the mitral valve to ensure that the atrial skirt engages the superior surface of the mitral valve. The atrial skirt may be engaged against the superior surface to seal the atrial skirt against the superior surface of the mitral valve to prevent or substantially prevent blood flow therebetween.
The prosthetic valve may further comprise an annular region. The annular region may be expanded radially outward so as to cover an annulus of the mitred valve. To expand the annular region, a constraining sheath may be retracted from the annular region so that the annular region is free to self-expand radially outward. To expand the annular region, the annular region may be asymmetrically expanded such that an anterior portion of the annular region is substantially flat, and a posterior portion of the annular region is cylindrically shaped.
Another aspect of the present invention provides an implantable prosthetic valve, a method of delivering m implantable prosthetic valve to a patient's heart, and/or a system for delivering the implantable prosthetic valve. The patient's heart has a mitral valve with an anterior leaflet and a posterior leaflet. The prosthetic valve may be provided. The prosthetic valve may comprise an expandable frame having a first end, a second end opposite the first end, a first anterior tab on an anterior portion of the expandable frame, a posterior tab on a posterior portion of the expandable frame, and a ventricular skirt adjacent the first end of the expandable frame. The prosthetic valve may have an expanded configuration for engaging the heart and a collapsed configuration. The prosthetic valve may be delivered in the collapsed configuration to the patient's heart adjacent the mitral valve. The first anterior tab may be expanded radially outward such that a tip portion of the first anterior tab engages a first fibrous trigone on a first side of the anterior leaflet of the mitral valve. The anterior leaflet and adjacent anterior chordae tendinae may be disposed between the first anterior tab and an outer anterior surface of the ventricular skirt. After radially expanding the first anterior tab, the posterior tab may he radially expanded outward such that the posterior leaflet of the mitral valve and adjacent posterior chordae tendinae are disposed between the posterior tab and an outer posterior surface of the ventricular skirt. The ventricular skirt may be radially expanded outward thereby engaging the anterior and posterior leaflets. The anterior leaflet and the adjacent anterior chordae tendinae may be captured between the first anterior tab and the outer anterior surface of the ventricular skirt. The posterior leaflet and the adjacent posterior chordae tendinae may be captured between the posterior tab and the posterior outer surface of the ventricular skirt.
The prosthetic valve may further comprise a second anterior tab on the anterior portion of the expandable frame, and the second anterior tab may be expanded radially outward such that a tip portion of the second anterior tab engages a second fibrous trigone on a second side of the anterior leaflet opposite the first side of the anterior leaflet. The anterior leaflet and adjacent anterior chordae tendinae may be disposed between the second anterior tab and an outer surface of the ventricular skirt. The second anterior tab may be radially expanded outward after the first anterior tab is radially expanded outward and before the posterior tab is radially expanded outward, before the first anterior tab and the posterior tab are radially expanded outward, or after the first anterior tab and the posterior tab are radially expanded outward. The ventricular skirt may be radially expanded outward before the second anterior tab is radially expanded outward, after the second anterior tab is radially expanded outward, or concurrently with the second anterior tab being radially expanded outward.
To radially expand the second anterior tab outward, a constraining sheath may be retracted from the second anterior tab so that the second anterior tab is free to radially self-expand outward.
Prior to the anterior leaflet and the adjacent anterior chordae tendineae being disposed between the second anterior tab and the outer anterior surface of the ventricular skirt, the second anterior tab may be partially expanded radially outward such that the first anterior tab is transverse to a longitudinal axis of the prosthetic valve. The second anterior tab may be partially expanded radially outward by partially retracting the constraining sheath from the second anterior tab so that the second anterior tab is partially free to self-expand radially outward.
Prior to the anterior leaflet and the adjacent anterior chordae tendineae being disposed between the first anterior tab and the outer anterior surface of the ventricular skirt, the first anterior tab may be partially expanded radially outward such that the first anterior tab is transverse to a longitudinal axis of the prosthetic valve. The first anterior tab may be partially expanded radially outward by partially retracting the constraining sheath from the first anterior tab so that the first anterior tab is partially free to self-expand radially outward.
Prior to disposing the posterior leaflet of the mitral valve and the adjacent posterior chordae tendineae between the posterior tab and the outer posterior surface of the ventricular skirt, the posterior tab may be partially expanded radially outward such that the posterior tab is transverse to a longitudinal axis of the posterior valve. The posterior tab may be partially expanded radially outward by partially retracting the constraining sheath from the posterior tab so that the posterior tab is partially free to self-expand radially outward.
The first anterior tab may be expanded by retracting the constraining sheath from the first anterior tab so that the first anterior tab is free to self-expand radially outward. The posterior tab may be expanded by retracting the constraining sheath from the posterior tab so that the posterior tab is free to self-expand radially outward.
The ventricular skirt may be radially expanded outward before the first anterior tab and posterior tab are radially expanded outward, after the first anterior tab and posterior tab are radially expanded outward, or after the first anterior tab is radially expanded after and before the posterior tab is radially expanded outward.
The ventricular skirt may be expanded radially expanded outward concurrently with the first anterior tab or concurrently with the posterior tab. The ventricular skirt may be radially expanded by retracting the constraining sheath from the ventricular skirt so that the ventricular skirt is free to self-expand radially outward. The ventricular skirt may be radially expanded in any order, for example, before any combination of the anterior and posterior tabs, concurrently with at least any one of the anterior and posterior tabs between at least any two of the anterior and posterior tabs, or after any combination of the anterior and posterior tabs.
A delivery catheter which the prosthetic valve is releaseably coupled thereto may be further provided.
The prosthetic valve may be delivered transapically from a region outside the heart to the left ventricle of the heart. Alternatively, the prosthetic valve may be delivered transseptally from the right atrium to the left atrium of the body.
To deliver the prosthetic valve, the prosthetic valve may be positioned across the mitral valve so that the first end of the expandable frame is inferior to a portion of the mitral valve and the second end of the expandable frame is superior to a position of the mitral valve.
The ventricular skirt may comprise a plurality of barbs, and in expanding the ventricular skirt, the plurality of barbs may be anchored into heart tissue.
The prosthetic valve may further comprise a plurality of commissures, and in expanding the ventricular skirt, the anterior and posterior mitral valve leaflets may be displaced radially outward thereby preventing interference between the commissures and both of the anterior and posterior leaflets. Expanding the ventricular skirt may displace the anterior and posterior valve leaflets radially outward without contacting an inner wall of the left ventricle, and without obstructing a left ventricular outflow tract, in radially expanding the ventricular skirt, the ventricular skirt may be expanded asymmetrically such that an anterior portion of the ventricular skirt is substantially flat, and a posterior portion of the ventricular skirt is cylindrically shaped.
Mitral regurgitation may be reduced or eliminated, such as by the implanted prosthetic valve.
The prosthetic valve may catty a therapeutic agent, and the therapeutic agent may be eluted from the prosthetic valve into adjacent tissue.
The prosthetic valve may comprise an alignment element, and a second fibrous trigone may be disposed on a second side of the anterior leaflet opposite the first side of the anterior leaflet. The alignment element may be aligned with an aortic root and the alignment element may be disposed between the first and second fibrous trigones. To align the alignment element, the prosthetic valve may be rotated.
The prosthetic valve may further comprise a plurality of commissures with a covering disposed thereover whereby a plurality of prosthetic valve leaflets are formed. The plurality of prosthetic valve leaflets may be released from a delivery catheter. The plurality of prosthetic valve leaflets may form a tricuspid valve, the tricuspid valve having an open configuration and a closed configuration. The plurality of prosthetic valve leaflets may be disposed away from one another in the open configuration thereby permitting antegrade blood flow therethrough. The plurality of prosthetic valve leaflets may engage one another in the closed configuration thereby substantially preventing retrograde blood flow therethrough.
The prosthetic valve may further comprise an atrial skirt. The atrial skirt may be expanded radially outward so as to lie over a superior surface of the mitral valve, and the atrial skirt may be engaged against the superior surface of the mitral valve. The atrial skirt may be expanded by retracting the constraining sheath from the atrial skirt so that the atrial skirt is free to self-expand radially outward. The prosthetic valve may be moved upstream or downstream relative to the mitral valve to ensure that the atrial skirt engages the superior surface of the mitral valve. The atrial skirt may be engaged against the superior surface to seal the atrial skirt against the superior surface of the mitral valve to prevent or substantially prevent blood flow therebetween.
The prosthetic valve may further comprise an annular region. The annular region may be expanded radially outward so as to cover an annulus of the mitral valve. To expand the annular region, a constraining sheath may be retracted from the annular region so that the annular region is free to self-expand radially outward. To expand the annular region, the annular region may be asymmetrically expanded such that an anterior portion of the annular region is substantially flat, and a posterior portion of the annular region is cylindrically shaped.
Another aspect of the present invention provides an implantable prosthetic valve, a method of delivering the implantable prosthetic valve to a patient's heart, and/or a system for delivering the implantable prosthetic valve. The patient's heart having a mitral valve with an anterior leaflet and a posterior leaflet. The prosthetic valve may be provided. The prosthetic valve may comprise an expandable frame having a first end, a second end opposite the first end, a first anterior tab on an anterior portion of the expandable frame, a posterior tab on a posterior portion of the expandable frame, and a ventricular skirt adjacent the first end of the expandable frame. The prosthetic valve may have an expanded configuration for engaging the heart and a collapsed configuration. The prosthetic valve may be delivered in the collapsed configuration to the patient's heart adjacent the mitral valve. The first anterior tab may be expanded radially outward such that a tip portion of the first anterior tab engages a first fibrous trigone on a first side of the anterior leaflet of the mitral valve. The anterior leaflet and adjacent anterior chordae tendinae may be disposed between the first anterior tab and an outer anterior surface of the ventricular skirt. Prior to radially expanding the first anterior tab, the posterior tab may be radially expanded outward such that the posterior leaflet of the mitral valve and adjacent posterior chordae tendinae are disposed between the posterior tab and an outer posterior surface of the ventricular skirt. The ventricular skirt may be radially expanded outward thereby engaging the anterior and posterior leaflets. The anterior leaflet and the adjacent anterior chordae tendinae may be captured between the first anterior tab and the outer anterior surface of the ventricular skirt. The posterior leaflet and the adjacent posterior chordae tendinae may be captured between the posterior tab and the posterior outer surface of the ventricular skirt.
The prosthetic valve may further comprise a second anterior tab on the anterior portion of the expandable frame. The second anterior tab may be expanded radially outward such that a tip portion of the second anterior tab engages a second fibrous trigone on a second side of the anterior leaflet opposite the first side of the anterior leaflet. The anterior leaflet and adjacent anterior chordae tendinae may be disposed between the second anterior tab and an outer surface of the ventricular skirt. The second anterior tab may be radially expanded outward after the first anterior tab and the posterior tab are radially expanded outward, before the first anterior tab and the posterior tab are radially expanded outward, or before the first anterior tab is radially expanded outward and after the posterior tab is radially expanded outward. The ventricular skirt may be radially expanded outward before the second anterior tab is radially expanded outward, after the second anterior tab is radially expanded outward, or concurrently with the second anterior tab being radially expanded outward.
To radially expand the second anterior tab outward, a constraining sheath may be retracted from the second anterior tab so that the second anterior tab is free to radially self-expand outward.
Prior to the anterior leaflet and the adjacent anterior chordae tendineae being disposed between the second anterior tab and the outer anterior surface of the ventricular skirt, the second anterior tab may be partially expanded radially outward such that the first anterior tab is transverse to a longitudinal axis of the prosthetic valve. The second anterior tab may be partially expanded radially outward by partially retracting the constraining sheath from the second anterior tab so that the second anterior tab is partially free to self-expand radially outward.
Prior to the anterior leaflet and the adjacent anterior chordae tendineae being disposed between the first anterior tab and the outer anterior surface of the ventricular skirt, the first anterior tab may be partially expanded radially outward such that the first anterior tab is transverse to a longitudinal axis of the prosthetic valve. The first anterior tab may be partially expanded radially outward by partially retracting the constraining sheath from the first anterior tab so that the first anterior tab is partially free to self-expand radially outward.
Prior to disposing the posterior leaflet of the mitral valve and the adjacent posterior chordae tendineae between the posterior tab and the outer posterior surface of the ventricular skirt, the posterior tab may be partially expanded radially outward such that the posterior tab is transverse to a longitudinal axis of the posterior valve. The posterior tab may be partially expanded radially outward by partially retracting the constraining sheath from the posterior tab so that the posterior tab is partially free to self-expand radially outward.
The first anterior tab may be expanded by retracting the constraining sheath from the first anterior tab so that the first anterior tab is free to self-expand radially outward. The posterior tab may be expanded by retracting the constraining sheath from the posterior tab so that the posterior tab is free to self-expand radially outward.
The ventricular skirt may be radially expanded outward before the first anterior tab and posterior tab are radially expanded outward, after the first anterior tab and posterior tab are radially expanded outward, or concurrently with the first anterior tab and posterior tab being radially expanded outward.
The ventricular skirt may be radially expanded by retracting the constraining sheath from the ventricular skirt so that the ventricular skirt is free to self-expand radially outward. The ventricular skirt may be radially expanded in any order, for example, before any combination of the anterior and posterior tabs, concurrently with at least any one of the anterior and posterior tabs, between at least any two of the anterior and posterior tabs, or after any combination of the anterior and posterior tabs.
A delivery catheter which the prosthetic valve is releaseably coupled thereto may be further provided.
The prosthetic valve may be delivered transapically from a region outside the heart to the left ventricle of the heart. Alternatively, the prosthetic valve may be delivered transseptally from the right atrium to the left atrium of the body.
To deliver the prosthetic valve, the prosthetic valve may be positioned across the mitral valve so that the first end of the expandable frame is inferior to a portion of the mitral valve and the second end of the expandable frame is superior to a position of the mitral valve.
The ventricular skirt may comprise a plurality of barbs, and in expanding the ventricular skirt, the plurality of barbs may be anchored into heart tissue.
The prosthetic valve may further comprise a plurality of commissures, and in expanding the ventricular skirt, the anterior and posterior mitral valve leaflets may be displaced radially outward thereby preventing interference between the commissures and both of the anterior and posterior leaflets. Expanding the ventricular skirt may displace the anterior and posterior valve leaflets radially outward without contacting an inner wall of the left ventricle, and without obstructing a left ventricular outflow tract. In radially expanding the ventricular skirt, the ventricular skirt may be expanded asymmetrically such that an anterior portion of the ventricular skirt is substantially flat, and a posterior portion of the ventricular skirt is cylindrically shaped.
Mitral regurgitation may be reduced or eliminated, such as by the implanted prosthetic valve.
The prosthetic valve may carry a therapeutic agent, and tale therapeutic agent may be eluted from the prosthetic valve into adjacent tissue.
The prosthetic valve may comprise an alignment element, and a second fibrous trigone may be disposed on a second side of the anterior leaflet opposite the first side of the anterior leaflet. The alignment element may be aligned with an aortic root and the alignment element may be disposed between the first and second fibrous trigones. To align the alignment element, the prosthetic valve may be rotated.
The prosthetic valve may further comprise a plurality of commissures with a covering disposed thereover whereby a plurality of prosthetic valve leaflets are formed. The plurality of prosthetic valve leaflets may be released from a delivery catheter. The plurality of prosthetic valve leaflets may form a tricuspid valve, the tricuspid valve having an open configuration and a closed configuration. The plurality of prosthetic valve leaflets may be disposed away from one another in the open configuration thereby permitting antegrade blood flow therethrough. The plurality of prosthetic valve leaflets may engage one another in the closed configuration thereby substantially preventing retrograde blood flow therethrough.
The prosthetic valve may further comprise an atrial skirt. The atrial skirt may be expanded radially outward so as to lie over a superior surface of the mitral valve, and the atrial skirt may be engaged against the superior surface of the mitral valve. The atrial skirt may be expanded by retracting the constraining sheath from the atrial skirt so that the atrial skirt is free to self-expand radially outward. The prosthetic valve may be moved upstream or downstream relative to the mitral valve to ensure that the atrial skirt engages the superior surface of the mitral valve. The atrial skirt may be engaged against the superior surface to seal the atrial skirt against the superior surface of the mitral valve to prevent or substantially prevent blood flow therebetween.
The prosthetic valve may further comprise an annular region. The annular region may be expanded radially outward so as to cover an annulus of the mitral valve. To expand the annular region, a constraining sheath may be retracted from the annular region so that the annular region is free to self-expand radially outward. To expand the annular region, the annular region may be asymmetrically expanded such that an anterior portion of the annular region is substantially flat, and a posterior portion of the annular region is cylindrically shaped.
These and other embodiments are described in further detail in the following description related to the appended drawing figures.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will he obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Specific embodiments of the disclosed device, delivery system, and method will now be described with reference to the drawings. Nothing in this detailed description is intended to imply that any particular component, feature, or step is essential to the invention.
Cardiac Anatomy. The left ventricle LV of a normal heart H in systole is illustrated in
Referring now to
Regurgitation also occurs in the patients suffering from cardiomyopathy where the heart is dilated and the increased size prevents the valve leaflets LF from meeting properly, as shown in
Mitral valve regurgitation can also occur in patients who have suffered ischemic heart disease where the functioning of the papillary muscles PM is impaired, as illustrated in
While various surgical techniques as well as implantable devices have been proposed and appear to be promising treatments for mitral regurgitation, surgical approaches can require a lengthy recovery period, and implantable devices have varying clinical results. Therefore, there still is a need for improved devices and methods for treating mitral regurgitation. While the embodiments disclosed herein are directed to an implantable prosthetic mitral valve for treating mitral regurgitation, one of skill in the art will appreciate that this is not intended to be limiting, and the device and methods disclosed herein may also be used to treat other cardiac valves such as the tricuspid valve, aortic valve, pulmonary valve, etc., as well as other valves in the body such as venous valves.
Prosthetic Valve. Prosthetic valves have been surgically implanted in the heart as a treatment for mitral regurgitation. Some of these valves have been valves harvested from animals such as porcine valves, and others have been prosthetic mechanical valves with or without a tissue covering. More recently, minimally invasive catheter technology has been used to deliver prosthetic valves to the heart. These valves typically include an anchor for securing the valve to the patient's heart, and a valve mechanism, either a mechanical valve, a valve with animal tissue, or combinations thereof. The prosthetic valve once implanted, takes over for the malfunctioning native valve, thereby reducing or eliminating valvar insufficiency. While some of these valves appear promising, there still is a need for improved valves. Positioning and anchoring the prosthetic valve in the native anatomy remains a challenge. The following specification discloses exemplary embodiments of a prosthetic valve, a delivery system for the prosthetic valve, and methods of delivering the valve that overcome some of the challenges associated with existing prosthetic valves.
Atrial region 606 has a skirt 616 which includes a plurality of interconnected struts that form a series of peaks and valleys. In this region, the struts are skewed relative to one another and thus the resulting cell pattern has an enlarged end and the opposite end tapers to a smaller end. In preferred embodiments, the anterior portion of the atrial skirt does not have a flanged region like the posterior portion, thus the anterior portion 602 of the atrial region may have shorter struts than the posterior region 604. Thus the peaks and valleys in the anterior portion are axially offset from those in the remaining posterior portion of the atrial region. This may be advantageous as it prevents the struts in the anterior portion of the atrial skirt from protruding upwards potentially impinging against the left atrium and causing perforations. Additionally, the shortened struts and offset peaks and valleys form an alignment element 614 that can assist the physician with visualization of delivery of the prosthetic valve to the mitral valve and also with alignment of the prosthetic valve prior to expansion of the prosthetic valve. Optional radiopaque markers 614a are disposed on either side of the offset peaks and valleys and further help with visualization during implantation of the valve. The atrial region preferably self-expands to either a cylindrical shape, or it may have a D-shaped cross-section where the anterior portion 602 is substantially flat, and the posterior portion 604 is cylindrically shaped. This allows the atrial skirt to conform to the anatomy of the native mitral valve, thereby preventing obstruction of the left ventricular outflow tract. Additionally, the atrial skirt may also be formed so that upon expansion, the skirt flares outward and forms a flange that can rest against a superior surface of the mitral valve. The flanged region is preferably along the posterior portion of the atrial skirt, and the anterior portion of the atrial skirt remains flangeless. Or, the flange may extend entirely around the atrial skirt. The atrial region is connected to the adjacent annular region 608 with connecting struts which are preferably linear and substantially parallel to the longitudinal axis of the frame.
The annular region 608 is also comprised of a plurality of axially oriented and interconnected struts that form peaks and valleys that allow radial expansion. The struts are preferably parallel with one another and parallel with the longitudinal axis of the frame. The annular region may also be self-expanding and expand into a cylindrical shape, or more preferably the annular region may expand to have a D-shaped cross-section as described above with respect to the atrial region. Thus, the annular region may similarly have a flat anterior portion, and a cylindrically shaped posterior portion. Upon delivery, the annular region is aligned with and expanded against the mitral valve annulus. Connector struts join the annular region with the ventricular region 610.
The ventricular region 610 also includes a plurality of interconnected struts that form peaks and valleys. Additionally, the struts in the ventricular region form the leaflet commissures 613 which are covered with fabric, pericardial tissue, or other materials to form the prosthetic valve leaflets. Holes in the commissures allow suture to be attached thereto. Struts in the ventricular region also form a ventricular skirt 628 which expands outward to engage the anterior and posterior mitral valve leaflets, and struts in the ventricular region also form the anterior tabs 624 and the posterior tab 630. The anterior tabs are designed to capture the anterior mitral valve leaflet between an inner surface of the anterior tab and outer surface of the ventricular skirt. Any adjacent chordae tendineae may also be captured therebetween. Also, the tip of the anterior tab engages the fibrous trigone on an anterior portion of the mitral valve, one on the left and one on the right side. The posterior tab similarly captures the posterior mitral valve leaflet between an inner surface of the posterior tab and an outer surface of the ventricular skirt, along with any adjacent chordae tendineae. This will be described in more detail below.
By controlling strut length or axial position of the anterior or posterior tabs along the frame, the sequence of the deployment of the tabs may be controlled. Thus in this exemplary embodiment, because the length of the struts in the anterior tabs and posterior tabs 624, 630 as well as their relative position along the frame are the same as one another, when a constraining sheath is retracted away from the tabs, the anterior and posterior tabs will partially spring outward together. As the constraining sheath is further retracted, the remainder of the anterior tabs will self-expand radially outward. Further retraction of the constraining sheath then allows the remainder of the posterior tab to finish its radial expansion, and finally the ventricular skirt will radially expand outward. While strut lengths and axial position of the posterior tab and the ventricular skirt are similar, internal struts connect the ventricular skirt with the commissures, and this delays expansion of the ventricular skirt slightly, thus the posterior tab finishes expansion before the ventricular skirt. Using this sequence of deploying the prosthetic valve may allow the valve to more accurately be delivered and also more securely anchored into position. For example, either the anterior tab(s) or the posterior tab(s) may be more easily visualized than the other in at least some cases, and the more easily visualized tab may be configured to deploy first as a guide to orient the frame during implantation. In at least some cases, the Inventors have found that the posterior tab is easier to visualize using ultrasound and/or fluoroscopy. The sequence of tab deployment may be customized to the individual patient and their anatomy in some cases and the customization may be based on pre-screen imaging data for the individual patient. The tabs that are projected to be more easily visualized, such as by using ultrasound and/or fluoroscopy, may be configured to deploy first. The initially deployed tabs can allow for intermediate movement of the imaging source, e.g., the C-arm controlling the ultrasound or X-ray device for fluoroscopy, so as to provide verification of the initial tab placements. If needed, the prosthetic valve may be repositioned and/or reoriented with the initial tab(s) deployed (and the remaining tab(s) yet to be deployed) based on the imaging or visualization. To further improve the visibility of the tabs, the length and/or curvature of one or more of the tabs may be customized for the individual patient and their anatomy. The length and/or curvature of the one or more tabs may be customized to provide an optimum fit for the individual patient's anatomy, such as the deployment area behind the valve leaflet(s) and/or the chordae tendinae.
Suture holes 621 are disposed along the struts of the annular region as well as the ventricular region to allow attachment of a cover such as pericardium or a polymer such as Dacron or ePTFE. The suture holes may also be disposed along any other part of the frame. Barbs 623 are disposed along the ventricular skirt 628 to help anchor the prosthetic valve to adjacent tissue. Commissure tabs or tabs 612 are disposed on the tips of the commissures 613 and may be used to releasably couple the commissures with a delivery system as will be described below. This allows the frame to expand first, and then the commissures may be released from the delivery system afterwards. One of skill in the art will appreciate that a number of strut geometries may be used, and additionally that strut dimensions such as length, width, thickness, etc. may be adjusted in order to provide the prosthesis with the desired mechanical properties such as stiffness, radial crush strength, commissure deflection, etc. Therefore, the illustrated geometry is not intended to be limiting.
The frame may be formed by electrical discharge machining (EDM), laser cutting, photochemical etching, or other techniques known in the art. Hypodermic tubing or flat sheets may be used to form the frame. Once the frame has been cut and formed into a cylinder (if required), it may be radially expanded into a desired geometry and heat treated using known processes to set the shape. Thus, the prosthetic valve may be loaded onto a delivery catheter in a collapsed configuration and constrained in the collapsed configuration with a constraining sheath. Removal of the constraining sheath will allow the prosthesis to self-expand into its unbiased pre-set shape. In other embodiments, an expandable member such as a balloon may be used to radially expand the prosthesis into its preferred expanded configuration.
Atrial region 706 has a skirt 716 which includes a plurality of interconnected struts that form a series of peaks and valleys. In this region, the struts are skewed relative to one another and thus the resulting cell pattern has an enlarged end and the opposite end tapers to a smaller end. An anterior portion 702 of the atrial region has shorter struts than the posterior region 704. Thus the peaks and valleys in the anterior portion are axially offset from those in the remaining posterior portion of the atrial region. This allows creation of an alignment element 714 to help the physician deliver the prosthetic valve to the mitral valve and align the prosthetic valve prior to expansion of the prosthetic valve. Other aspects of the atrial region 706 are similar to those of the atrial region 606 in
The annular region 708 is also comprised of a plurality of axially oriented and interconnected struts that form peaks and valleys that allow radial expansion. The struts are preferably parallel with one another and parallel with the longitudinal axis of the frame. The annular region may also be self-expanding and expand into a cylindrical shape, or more preferably the annular region may expand to have a D-shaped cross-section as described above with respect to the atrial region. Thus, the annular region may similarly have a flat anterior portion, and a cylindrically shaped posterior portion. Upon delivery, the annular region is aligned with and against the mitral valve annulus. Connector struts join the annular region with the ventricular region 710.
The ventricular region 710 also includes a plurality of interconnected struts that form peaks and valleys. Additionally, the struts in the ventricular region form the leaflet commissures 713 which are covered with fabric, pericardial tissue, or other materials to form the prosthetic valve leaflets. Holes in the commissures allow suture to be attached thereto. Struts in the ventricular region also form a ventricular skirt 728 which expands outward to engage the anterior and posterior mitral valve leaflets, and struts in the ventricular region also form the anterior tabs 724 and the posterior tab 730. The anterior tabs are designed to capture the anterior mitral valve leaflet between an inner surface of the anterior tab and outer surface of the ventricular skirt. Any adjacent chordae tendineae may also be captured therebetween. Also, the tip of the anterior tab engages the fibrous trigone on an anterior portion of the mitral valve, one on the left and one on the right side. The posterior tab similar captures the posterior mitral valve leaflet between an inner surface of the posterior tab and an outer surface of the ventricular skirt, along with any adjacent chordae tendineae. This will be described in more detail below.
By controlling strut length or axial position of the anterior or posterior tabs along the frame, deployment of the tabs may be controlled. Thus in this exemplary embodiment, because the length of the struts in the anterior tabs and posterior tabs 724, 730 as well as their relative position along the frame are the same as one another, when a constraining sheath is retracted away from the tabs, the anterior and posterior tabs will partially spring outward together. As the constraining sheath is further retracted, the remainder of the anterior tabs will self-expand radially outward because they are the shortest relative to the struts in the ventricular skirt and the posterior tab. Further retraction of the constraining sheath then allows the ventricular skirt to radially expand, and finally further retraction of the sheath allows the remainder of the posterior tab to finish it's radial expansion. Using this sequence of deploying the prosthetic valve may allow the valve to more accurately be delivered and also more securely anchored into position.
Suture holes 721 are disposed along the struts of the annular region as well as the ventricular region to allow attachment of a cover such as pericardium or a polymer such as Dacron or ePTFE. The suture holes may also be disposed along any other part of the frame. Barbs 723 are disposed along the ventricular skirt 728 to help anchor the prosthetic valve to adjacent tissue. Commissure tabs or tabs 712 are disposed on the tips of the commissures 713 and may be used to releasably couple the commissures with a delivery system as will be described below. This allows the frame to expand first, and then the commissures may be released from the delivery system afterwards. One of skill in the art will appreciate that a number of strut geometries may be used, and additionally that strut dimensions such as length, width, thickness, etc., may be adjusted in order to provide the prosthesis with the desired mechanical properties such as stiffness, radial crush strength, commissure deflection, etc. Therefore, the illustrated geometry is not intended to be limiting. The frame may be formed similarly as described above with respect to
Atrial region 806 has a skirt 816 which includes a plurality of interconnected struts that form a series of peaks and valleys. In this region, the struts are skewed relative to one another and thus the resulting cell pattern has an enlarged end and the opposite end tapers to a smaller end. An anterior portion 802 of the atrial region has shorter struts than the posterior region 804. Thus the peaks and valleys in the anterior portion are axially offset from those in the remaining posterior portion of the atrial region. This allows creation of an alignment element 814 to help the physician deliver the prosthetic valve to the mitral valve and align the prosthetic valve prior to expansion of the prosthetic valve. Other aspects of the atrial region 806 are similar to those of the atrial region 606 in
The annular region 808 is also comprised of a plurality of axially oriented and interconnected struts that form peaks and valleys that allow radial expansion. The struts are preferably parallel with one another and parallel with the longitudinal axis of the frame. The annular region may also be self-expanding and expand into a cylindrical shape, or more preferably the annular region may expand to have a D-shaped cross-section as described above with respect to the atrial region. Thus, the annular region may similarly have a flat anterior portion, and a cylindrically shaped posterior portion. Upon delivery, the annular region is aligned with and against the mitral valve annulus. Connector struts join the annular region with the ventricular region 810.
The ventricular region 810 also includes a plurality of interconnected struts that form peaks and valleys. Additionally, the struts in the ventricular region form the leaflet commissures 813 which are covered with fabric, pericardial tissue, or other materials to form the prosthetic valve leaflets. Holes in the commissures allow suture to be attached thereto. Struts in the ventricular region also form a ventricular skirt 828 which expands outward to engage the anterior and posterior mitral valve leaflets, and struts in the ventricular region also form the anterior tabs 824 and the posterior tab 830. The anterior tabs are designed to capture the anterior mitral valve leaflet between an inner surface of the anterior tab and outer surface of the ventricular skirt. Any adjacent chordae tendineae may also be captured therebetween. Also, the tip of the anterior tab engages the fibrous trigone on an anterior portion of the mitral valve, one on the left and one on the right side. The posterior tab similarly captures the posterior mitral valve leaflet between an inner surface of the posterior tab and an outer surface of the ventricular skirt, along with any adjacent chordae tendineae. This will be described in more detail below. The posterior tab is similar to the posterior tabs described above in
By controlling strut length or axial position of the anterior or posterior tabs along the frame, deployment of the tabs may be controlled. Thus in this exemplary embodiment, because the length of the struts in the anterior tabs and posterior tabs 824, 830 as well as their relative position along the frame are the same as one another, when a constraining sheath is retracted away from the tabs, the anterior and posterior tabs will partially spring outward together. As the constrainimg sheath is further retracted, the remainder of the anterior tabs will self-expand radially outward because they are the shortest relative to the struts in the ventricular skirt and the posterior tab. Further retraction of the constraining sheath then allows the remainder of the posterior tab to finish self-expanding, followed by self-expansion of the ventricular skirt. Using this sequence of deploying the prosthetic valve may allow the valve to more accurately be delivered and also more securely anchored into position.
Suture holes 821 are disposed along the struts of the annular region as well as the ventricular region to allow attachment of a cover such as pericardium or a polymer such as Dacron or ePTFE. The suture holes may also be disposed along any other part of the frame. Barbs 823 are disposed along the ventricular skirt 828 to help anchor the prosthetic valve to adjacent tissue. Commissure tabs or tabs 812 are disposed on the tips of the commissures 813 and may be used to releasably couple the commissures with a delivery system as will be described below. This allows the frame to expand first, and then the commissures may be released from the delivery system afterwards. One of skill in the art will appreciate that a number of strut geometries may be used, and additionally strut dimensions such as length, width, thickness, etc. may be adjusted in order to provide the prosthesis with the desired mechanical properties such as stiffness, radial crush strength, commissure deflection, etc. Therefore, the illustrated geometry is not intended to be limiting. The frame may be formed similarly as described above.
The frame also includes the annular region 910 and ventricular skirt 912. Anterior tabs 904 (only one visible in this view) is fully expanded such that a space exists between the inner surface of the anterior tab and an outer surface of the ventricular skirt. This allows the anterior leaflet and adjacent chordae to be captured therebetween. Similarly, the posterior tab 902 is also fully deployed, with a similar space between the inner surface of the posterior tab 902 and an outer surface of the ventricular skirt. This allows the posterior leaflet and adjacent chordae tendineae to be captured therebetween. The commissure posts 908 are also visible and are disposed in the inner channel formed by the frame. The commissure posts are used to form the prosthetic mitral valve leaflets. The overall shape of the expanded frame is D-shaped, with the anterior portion flat and the posterior portion cylindrically shaped.
Delivery System.
Any of the prosthetic cardiac valves disclosed herein may be carried by delivery system 1100. The atrial skirt, annular skirt, anterior tabs, posterior tab and ventricular skirt are loaded over the bell catheter shaft and disposed under the outer sheath catheter shaft 1102. The ventricular skirt is loaded proximally so that it is closest to the handle 1112 and the atrial skirt is loaded most distally so it is closest to the tip 1110. Therefore, retraction of outer sheath catheter shaft 1102 plays a significant part in controlling deployment of the prosthetic cardiac valve. The atrial skirt therefore expands first when the outer sheath catheter is retracted. The prosthetic valve commissures may be coupled with a hub 1106a on the distal portion of hub catheter 1106 and then the bell catheter shaft is disposed thereover, thereby releasably engaging the commissures with the delivery catheter. Once other portions of the prosthetic cardiac valve have expanded, the commissures may be released.
Delivery Method. A number of methods may be used to deliver a prosthetic cardiac valve to the heart. Exemplary methods of delivering a prosthetic mitral valve may include a transluminal delivery route which may also be a transseptal technique which crosses the septum between the right and left sides of the heart, or in more preferred embodiments, a transapical route may be used such as illustrated in
As the outer sheath 1206 continues to be proximally retracted, the annular region of the prosthetic cardiac valve self-expands within the valve annulus. The annular region also preferably has the D-shaped geometry, although it may also be cylindrical or have other geometries to match the native anatomy. In
In
Further actuation of the delivery device now retracts the outer sheath 1206 and the bell catheter shaft 1222 so as to remove the constraint from the hub catheter 1224, as illustrated in
As the outer sheath 1306 continues to be proximally retracted, the annular region of the prosthetic cardiac valve self-expands within the valve annulus. The annular region also preferably has the D-shaped geometry, although it may also be cylindrical or have other geometries to match the native anatomy. In
In
Further actuation of the delivery device now retracts the outer sheath 1306 and the bell catheter shaft 1322 so as to remove the constraint from the hub catheter 1324, as illustrated in
Tab Covering. In the exemplary embodiments described above, the tabs (anterior trigonal tabs and posterior ventricular tab) are generally narrow and somewhat pointy. The embodiment previously described with respect to
Sequential Deployment. As discussed above and herein, the deployment of the tabs, particularly the sequence of deployment (and thereby capture and/or engagement of the anterior leaflet AL, the posterior leaflet PL, and the adjacent chordae tendinae), may be controlled by controlling strut length and/or axial position of the anterior and/or posterior tabs. For instance, the axial position of the atrial end of the tabs may be varied to vary when the tabs begin deployment as the constraining sheath is retracted, and the axial position of the ventricular end of the tabs may be varied to vary when the tabs are fully deployed as the constraining sheath is retracted. Particular sequences of deployment may be more optimal to certain anatomies and may allow the prosthetic valve to be more accurately delivered and more securely anchored into position. For example, either the anterior tab(s) or the posterior tab(s) may be more easily visualized than the other in at least some cases, and the more easily visualized tab may be configured to deploy first as a guide to orient the frame during implantation. In at least some cases, the Inventors have found that the posterior tab is easier to visualize using ultrasound and/or fluoroscopy. The sequence of tab deployment may be customized to the individual patient and their anatomy in some cases and the customization may be based on pre-screen imaging data for the individual patient. The tabs that are projected to be more easily visualized, such as by using ultrasound and/or fluoroscopy, may be configured to deploy first. The initially deployed tabs can allow for intermediate movement of the imaging source, e.g., the C-arm controlling the ultrasound or X-ray device for fluoroscopy, so as to provide verification of the initial tab placements. If needed, the prosthetic valve may be repositioned and/or reoriented with the initial tab(s) partially and/or fully deployed (and the remaining tab(s) yet to be partially and/or fully deployed) based on the imaging or visualization. To further improve the visibility of the tabs, the length and/or curvature of one or more of the tabs may be customized for the individual patient and their anatomy. The length and/or curvature of the one or more tabs may be customized to provide an optimum fit for the individual patient's anatomy, such as the deployment area behind the valve leaflet(s) and/or the chordae tendinae.
In some embodiments, the first and second anterior tabs may be deployed concurrently.
In some embodiments, the first and second anterior tabs may be deployed sequentially.
While
In some embodiments, the lengths of the tabs and/or the axial positions of the free ends 1701, 1702, 1703 of the tabs may be varied such that two or more of the two anterior tabs A1, A2 and the posterior tab PTB are fully deployed concurrently.
As shown in
As shown in
As shown in
In some embodiments, the lengths of the tabs and/or the axial positions of the ventricular ends of the tabs may be varied such that one of the two anterior tabs A1, A2 may have the same length as the posterior tab PTB and/or their free ends may be in the same axial position. In this case, one of the two anterior tabs A1, A2 is fully deployed concurrently with the posterior tab PTB. The lengths of the tabs and/or the axial positions of the free ends of the tabs may be varied such that the second of the anterior tabs A1, A2 may be allowed to fully deploy before or after the concurrent full deployment of the first of the anterior tabs A1, 42 and the posterior tab PTB.
As shown in
As shown in
As shown in
As shown in
In some embodiments, the lengths of the tabs and/or the axial positions of the ventricular ends of the tabs may be varied such that one of the two anterior tabs A1, A2 is fully deployed before the posterior tab PTB. The lengths of the tabs and/or the axial positions of the ventricular ends of the tabs may be varied such that the second of the anterior tabs A1, A2 may be allowed to fully deploy before or after the full deployment of the posterior tab PTB.
As shown in
As shown in
As shown in
As shown in
In some embodiments, the lengths of the tabs and/or the axial positions of the ventricular ends of the tabs may be varied such that the posterior tab PTB is fully deployed first. The lengths of the tabs and/or the axial positions of the ventricular ends of the tabs may be varied such that the anterior tabs A1, A2 fully deploy either sequentially or concurrently after the full deployment of the posterior tab PTB.
As shown in
As shown in
As shown in
While
As described above and herein, the anterior and posterior tabs may partially deploy upon retraction of the constraining sheath 1550, such as to deploy to an orientation transverse to the longitudinal axes of the prosthetic cardiac valve and the constraining sheath. This partially deployed position of the tabs may position the tabs relative to one or more of the anterior leaflet AL, the posterior leaflet PL, or the adjacent chordae tendinae for subsequent engagement and capture by the tabs upon full deployment. One or more of the partially deployed anterior or posterior tabs may be visualized to confirm proper positioning and/or orientation of the prosthetic cardiac valve and its tabs. If needed, the prosthetic valve may be repositioned and/or reoriented with the initial tab(s) deployed (and the remaining tab(s) yet to be deployed) based on the imaging or visualization. In response to the visualization, the prosthetic cardiac valve may be repositioned and/or reoriented. The anterior and posterior tabs may partially deploy in any order and in any combination with any order of the full deployment of the tabs as described above with respect to
In some embodiments, the lengths of the tabs and/or the axial positions of the atrial ends of the tabs may be varied such that two or more of the two anterior tabs A1, A2 and the posterior tab PTB are partially deployed concurrently.
As shown in
As shown in
As shown in
In some embodiments, the lengths of the tabs and/or the axial positions of the atrial ends of the tabs may be varied such that one of the two anterior tabs A1, A2 is partially deployed concurrently with the posterior tab PTB. The lengths of the tabs and/or the axial positions of the atrial ends of the tabs may be varied such that the second of the anterior tabs A1, A2 may be allowed to partially deploy before or after the concurrent partial deployment of the first of the anterior tabs A1, A2 and the posterior tab PTB.
As shown in
As shown in
As shown in
As shown in
In some embodiments, the lengths of the tabs and/or the axial positions of the atrial ends of the tabs may be varied such that one of the two anterior tabs A1, A2 is partially deployed before the posterior tab PTB. The lengths of the tabs and/or the axial positions of the atrial ends of the tabs may be varied such that the second of the anterior tabs A1, A2 may be allowed to partially deploy before or after the full deployment of the posterior tab PTB.
As shown in
As shown in
As shown in
As shown in
In some embodiments, the lengths of the tabs and/or the axial positions of the atrial ends of the tabs may be varied such that the posterior tab PTB is partially deployed first. The lengths of the tabs and/or the axial positions of the atrial ends of the tabs may be varied such that the anterior tabs A1, A2 partially deploy either sequentially or concurrently after the partial deployment of the posterior tab PTB.
As shown in
As shown in
As shown in
The first and second anterior tabs A1, A2 and the posterior tab PTB may all partially deploy before any of the same tabs concurrently deploy. Alternatively, one or more of the first and second anterior tabs A1, A2 and the posterior tab PTB may partially deploy before one or more of the first and second anterior tabs A1, A2 and the posterior tab PTB fully deploys.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application claims priority to U.S. Provisional Patent Application No. 62/550,368 filed Aug. 25, 2017, the entire contents of which are incorporated herein by reference. The subject matter of the present application is related to that of U.S. patent application Ser. No. 15/628,924 filed Jun. 21, 2017, now U.S. Pat. No. 10,537,422, which is a continuation of U.S. patent application Ser. No. 15/046,371 filed Feb. 17, 2017, now U.S. Pat. No. 9,713,529, which is a continuation of U.S. patent application Ser. No. 13/679,920 filed Nov. 16, 2012, now U.S. Pat. No. 9,308,087, which is a non-provisional of, and claims the benefit of U.S. Provisional Patent Application No. 61/563,156 filed Nov. 23, 2011; the entire contents of which are incorporated herein by reference. The subject matter of the present application is related to that of U.S. patent application Ser. No. 13/096,572 filed Apr. 28, 2011, now U.S. Pat. No. 8,579,964, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6629534 | St. Goar et al. | Oct 2003 | B1 |
8449599 | Chau | May 2013 | B2 |
8579964 | Lane et al. | Nov 2013 | B2 |
9125738 | Figulla et al. | Sep 2015 | B2 |
9125740 | Morriss | Sep 2015 | B2 |
9241790 | Lane | Jan 2016 | B2 |
9248014 | Lane | Feb 2016 | B2 |
9308087 | Lane et al. | Apr 2016 | B2 |
9439763 | Geist | Sep 2016 | B2 |
9522062 | Tuval | Dec 2016 | B2 |
9554897 | Lane | Jan 2017 | B2 |
9572665 | Lane | Feb 2017 | B2 |
9713529 | Lane et al. | Jul 2017 | B2 |
9770329 | Lane | Sep 2017 | B2 |
10363133 | Lane | Jul 2019 | B2 |
10383728 | Lane | Aug 2019 | B2 |
10433952 | Lane | Oct 2019 | B2 |
10449042 | Lane | Oct 2019 | B2 |
10537422 | Lane | Jan 2020 | B2 |
10583002 | Lane | Mar 2020 | B2 |
10631984 | Nyuli | Apr 2020 | B2 |
20060241745 | Solem | Oct 2006 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20110015731 | Carpentier et al. | Jan 2011 | A1 |
20110208297 | Tuval | Aug 2011 | A1 |
20110208298 | Tuval | Aug 2011 | A1 |
20120078353 | Quadri | Mar 2012 | A1 |
20130190861 | Chau | Jul 2013 | A1 |
20130310928 | Morriss et al. | Nov 2013 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20170281336 | Lane et al. | Oct 2017 | A1 |
20170348100 | Lane et al. | Dec 2017 | A1 |
20190060071 | Lane | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
111263622 | Jun 2020 | CN |
10103955 | Nov 2001 | DE |
10033858 | Jan 2002 | DE |
102005052628 | May 2007 | DE |
102006052564 | Dec 2007 | DE |
102006013113 | Dec 2008 | DE |
102008015781 | Sep 2011 | DE |
102010051632 | Sep 2013 | DE |
102005032974 | Nov 2013 | DE |
102005052628 | Jun 2014 | DE |
10301026 | Oct 2014 | DE |
212013000104 | Nov 2014 | DE |
102008012438 | Dec 2014 | DE |
102011107551 | May 2015 | DE |
102011054176 | Feb 2016 | DE |
102014114762 | Mar 2016 | DE |
102013208038 | Sep 2016 | DE |
102010012677 | Aug 2017 | DE |
202011110951 | Oct 2017 | DE |
202011110985 | Dec 2017 | DE |
202016105963 | Jan 2018 | DE |
10394350 | May 2018 | DE |
102009024648 | May 2018 | DE |
102015206098 | Sep 2018 | DE |
10065824 | Oct 2018 | DE |
202017104793 | Nov 2018 | DE |
102011106928 | Feb 2019 | DE |
202016008737 | Apr 2019 | DE |
102013205519 | May 2019 | DE |
102008014730 | Jul 2019 | DE |
102018102940 | Oct 2019 | DE |
102009009158 | Nov 2020 | DE |
1077072 | Nov 2003 | EP |
1140244 | Nov 2003 | EP |
1214106 | Nov 2003 | EP |
1143864 | Feb 2004 | EP |
1220651 | Mar 2004 | EP |
1265534 | Jun 2004 | EP |
1347785 | Jul 2004 | EP |
1245202 | Aug 2004 | EP |
1161204 | Sep 2004 | EP |
1266641 | Oct 2004 | EP |
1102567 | Nov 2004 | EP |
1117446 | Nov 2004 | EP |
1107710 | Dec 2004 | EP |
1121070 | Dec 2004 | EP |
1217966 | Dec 2004 | EP |
1233731 | Dec 2004 | EP |
1294318 | Dec 2004 | EP |
1237510 | Jan 2005 | EP |
1034753 | Feb 2005 | EP |
1259194 | Feb 2005 | EP |
1121069 | Mar 2005 | EP |
1143879 | Mar 2005 | EP |
1023879 | Apr 2005 | EP |
1339356 | Apr 2005 | EP |
1214022 | May 2005 | EP |
1318774 | May 2005 | EP |
1088529 | Jun 2005 | EP |
1171060 | Jun 2005 | EP |
1251803 | Jun 2005 | EP |
1259776 | Jun 2005 | EP |
1272123 | Jun 2005 | EP |
1049422 | Jul 2005 | EP |
1230901 | Aug 2005 | EP |
1335683 | Aug 2005 | EP |
1307246 | Sep 2005 | EP |
1267753 | Oct 2005 | EP |
1284688 | Oct 2005 | EP |
1343536 | Oct 2005 | EP |
1027020 | Nov 2005 | EP |
1152780 | Nov 2005 | EP |
1171059 | Nov 2005 | EP |
1237508 | Nov 2005 | EP |
1303234 | Nov 2005 | EP |
1328215 | Nov 2005 | EP |
1341487 | Nov 2005 | EP |
1392197 | Nov 2005 | EP |
1469797 | Nov 2005 | EP |
1255505 | Dec 2005 | EP |
1360942 | Dec 2005 | EP |
1322260 | Jan 2006 | EP |
1359870 | Jan 2006 | EP |
1237586 | Feb 2006 | EP |
1112043 | Apr 2006 | EP |
1309360 | Apr 2006 | EP |
1322259 | May 2006 | EP |
1124592 | Jun 2006 | EP |
1237516 | Jun 2006 | EP |
1098673 | Jul 2006 | EP |
1124591 | Jul 2006 | EP |
1083845 | Aug 2006 | EP |
1155666 | Aug 2006 | EP |
1463462 | Aug 2006 | EP |
1519695 | Sep 2006 | EP |
1444993 | Oct 2006 | EP |
1117350 | Nov 2006 | EP |
1212011 | Nov 2006 | EP |
1261294 | Nov 2006 | EP |
1318775 | Nov 2006 | EP |
1429690 | Nov 2006 | EP |
1173111 | Dec 2006 | EP |
1239795 | Dec 2006 | EP |
1299049 | Dec 2006 | EP |
1487382 | Dec 2006 | EP |
1112044 | Jan 2007 | EP |
1482997 | Jan 2007 | EP |
1117352 | Feb 2007 | EP |
1128849 | Feb 2007 | EP |
1392666 | Feb 2007 | EP |
1474077 | Feb 2007 | EP |
1251805 | Mar 2007 | EP |
1117334 | Apr 2007 | EP |
1263484 | May 2007 | EP |
1313410 | May 2007 | EP |
1370200 | May 2007 | EP |
1560526 | Jun 2007 | EP |
1173117 | Jul 2007 | EP |
1434615 | Jul 2007 | EP |
1465546 | Jul 2007 | EP |
1499366 | Jul 2007 | EP |
1225948 | Aug 2007 | EP |
1519962 | Sep 2007 | EP |
1337285 | Oct 2007 | EP |
1112042 | Nov 2007 | EP |
1148821 | Nov 2007 | EP |
1143882 | Dec 2007 | EP |
1330189 | Dec 2007 | EP |
1489996 | Dec 2007 | EP |
1296618 | Jan 2008 | EP |
1401356 | Jan 2008 | EP |
1629795 | Jan 2008 | EP |
1128786 | Feb 2008 | EP |
1616532 | Feb 2008 | EP |
1289447 | Mar 2008 | EP |
1115353 | May 2008 | EP |
1330190 | May 2008 | EP |
1383448 | Jun 2008 | EP |
1251804 | Jul 2008 | EP |
1294310 | Jul 2008 | EP |
1313409 | Jul 2008 | EP |
1395202 | Jul 2008 | EP |
1395204 | Jul 2008 | EP |
1395205 | Jul 2008 | EP |
1423066 | Jul 2008 | EP |
1560545 | Jul 2008 | EP |
1605871 | Jul 2008 | EP |
1671608 | Jul 2008 | EP |
1690515 | Jul 2008 | EP |
1180987 | Aug 2008 | EP |
1337386 | Aug 2008 | EP |
1492579 | Sep 2008 | EP |
1524942 | Sep 2008 | EP |
1627091 | Sep 2008 | EP |
1827577 | Sep 2008 | EP |
1259195 | Oct 2008 | EP |
1704834 | Oct 2008 | EP |
1146835 | Nov 2008 | EP |
1498086 | Nov 2008 | EP |
1622548 | Nov 2008 | EP |
1235537 | Dec 2008 | EP |
1237509 | Dec 2008 | EP |
1355590 | Dec 2008 | EP |
1455680 | Dec 2008 | EP |
1472995 | Dec 2008 | EP |
1513474 | Dec 2008 | EP |
1562522 | Dec 2008 | EP |
1620042 | Dec 2008 | EP |
1690514 | Dec 2008 | EP |
1258232 | Jan 2009 | EP |
1420723 | Jan 2009 | EP |
1570809 | Jan 2009 | EP |
1395182 | Feb 2009 | EP |
1408882 | Feb 2009 | EP |
1482868 | Feb 2009 | EP |
1255510 | Mar 2009 | EP |
1330213 | Mar 2009 | EP |
1429651 | Mar 2009 | EP |
1610727 | Apr 2009 | EP |
1617788 | Apr 2009 | EP |
1634547 | Apr 2009 | EP |
1790318 | Apr 2009 | EP |
1250165 | May 2009 | EP |
1842508 | Jun 2009 | EP |
1968482 | Jun 2009 | EP |
1343438 | Jul 2009 | EP |
1406608 | Jul 2009 | EP |
1509256 | Jul 2009 | EP |
1626681 | Jul 2009 | EP |
1723935 | Jul 2009 | EP |
1803420 | Jul 2009 | EP |
1401359 | Aug 2009 | EP |
1411865 | Aug 2009 | EP |
1485033 | Aug 2009 | EP |
1581120 | Aug 2009 | EP |
1620040 | Aug 2009 | EP |
1684667 | Aug 2009 | EP |
1872743 | Aug 2009 | EP |
1100378 | Sep 2009 | EP |
1198203 | Sep 2009 | EP |
1370201 | Sep 2009 | EP |
1408850 | Sep 2009 | EP |
1472996 | Sep 2009 | EP |
1478364 | Sep 2009 | EP |
1653888 | Sep 2009 | EP |
1785154 | Sep 2009 | EP |
1881804 | Sep 2009 | EP |
1903991 | Sep 2009 | EP |
1418865 | Oct 2009 | EP |
1561437 | Oct 2009 | EP |
1615595 | Oct 2009 | EP |
1353612 | Nov 2009 | EP |
1348406 | Dec 2009 | EP |
1370202 | Dec 2009 | EP |
1603492 | Dec 2009 | EP |
1670364 | Dec 2009 | EP |
1759663 | Dec 2009 | EP |
1994887 | Dec 2009 | EP |
1615593 | Jan 2010 | EP |
1643938 | Jan 2010 | EP |
1863402 | Jan 2010 | EP |
1943942 | Jan 2010 | EP |
2010101 | Jan 2010 | EP |
2081518 | Jan 2010 | EP |
1703865 | Feb 2010 | EP |
1276437 | Mar 2010 | EP |
1276439 | Mar 2010 | EP |
1411867 | Mar 2010 | EP |
1458301 | Mar 2010 | EP |
1520519 | Mar 2010 | EP |
1648340 | Mar 2010 | EP |
1682048 | Mar 2010 | EP |
1773239 | Mar 2010 | EP |
1935377 | Mar 2010 | EP |
1994912 | Mar 2010 | EP |
1154738 | Apr 2010 | EP |
1531762 | Apr 2010 | EP |
1600178 | Apr 2010 | EP |
1626682 | Apr 2010 | EP |
1511445 | May 2010 | EP |
1198213 | Jun 2010 | EP |
1250097 | Jun 2010 | EP |
1272249 | Jun 2010 | EP |
1978895 | Jun 2010 | EP |
1572033 | Jul 2010 | EP |
1968491 | Jul 2010 | EP |
1610722 | Aug 2010 | EP |
1682047 | Aug 2010 | EP |
1952772 | Aug 2010 | EP |
1427356 | Sep 2010 | EP |
1631218 | Sep 2010 | EP |
1765224 | Sep 2010 | EP |
1871290 | Sep 2010 | EP |
1895288 | Sep 2010 | EP |
1895913 | Sep 2010 | EP |
2014257 | Sep 2010 | EP |
1176913 | Oct 2010 | EP |
1178758 | Oct 2010 | EP |
1248579 | Oct 2010 | EP |
1913899 | Oct 2010 | EP |
1259193 | Nov 2010 | EP |
1928357 | Nov 2010 | EP |
1968660 | Nov 2010 | EP |
1408895 | Dec 2010 | EP |
1465554 | Dec 2010 | EP |
1732473 | Dec 2010 | EP |
1768610 | Dec 2010 | EP |
1827314 | Dec 2010 | EP |
1940321 | Dec 2010 | EP |
1964532 | Dec 2010 | EP |
2078498 | Dec 2010 | EP |
1600182 | Jan 2011 | EP |
1617789 | Jan 2011 | EP |
1663332 | Jan 2011 | EP |
2147659 | Jan 2011 | EP |
1187582 | Feb 2011 | EP |
1450733 | Feb 2011 | EP |
1803421 | Feb 2011 | EP |
1833425 | Feb 2011 | EP |
2029053 | Feb 2011 | EP |
2068770 | Feb 2011 | EP |
1441784 | Mar 2011 | EP |
1534177 | Mar 2011 | EP |
1893132 | Mar 2011 | EP |
1951153 | Mar 2011 | EP |
1359978 | Apr 2011 | EP |
1667750 | Apr 2011 | EP |
1718249 | Apr 2011 | EP |
1903989 | Apr 2011 | EP |
2018122 | Apr 2011 | EP |
1610728 | May 2011 | EP |
2105110 | May 2011 | EP |
1347717 | Jun 2011 | EP |
1347791 | Jul 2011 | EP |
1862128 | Jul 2011 | EP |
2120795 | Jul 2011 | EP |
2229020 | Jul 2011 | EP |
1637087 | Aug 2011 | EP |
2153799 | Aug 2011 | EP |
2247263 | Aug 2011 | EP |
1441672 | Sep 2011 | EP |
1625832 | Sep 2011 | EP |
2173279 | Sep 2011 | EP |
2160150 | Oct 2011 | EP |
1626679 | Nov 2011 | EP |
1719476 | Nov 2011 | EP |
1928355 | Nov 2011 | EP |
2237747 | Nov 2011 | EP |
1572031 | Dec 2011 | EP |
1603493 | Dec 2011 | EP |
1945109 | Dec 2011 | EP |
1998688 | Dec 2011 | EP |
1443877 | Jan 2012 | EP |
1281375 | Feb 2012 | EP |
1699501 | Feb 2012 | EP |
1788984 | Feb 2012 | EP |
1833415 | Feb 2012 | EP |
1952785 | Feb 2012 | EP |
2055266 | Feb 2012 | EP |
2205184 | Feb 2012 | EP |
1337188 | Mar 2012 | EP |
1443974 | Mar 2012 | EP |
1542623 | Mar 2012 | EP |
1942835 | Mar 2012 | EP |
2074964 | Mar 2012 | EP |
2244661 | Mar 2012 | EP |
2273928 | Mar 2012 | EP |
1401336 | Apr 2012 | EP |
1749544 | Apr 2012 | EP |
2119417 | Apr 2012 | EP |
2152330 | Apr 2012 | EP |
2231069 | Apr 2012 | EP |
2019652 | May 2012 | EP |
2020958 | May 2012 | EP |
2192875 | May 2012 | EP |
2217174 | May 2012 | EP |
2218425 | May 2012 | EP |
1411847 | Jun 2012 | EP |
1727499 | Jun 2012 | EP |
2082690 | Jun 2012 | EP |
1740747 | Jul 2012 | EP |
1861044 | Jul 2012 | EP |
2052699 | Jul 2012 | EP |
1887975 | Aug 2012 | EP |
2000116 | Aug 2012 | EP |
2222247 | Aug 2012 | EP |
1605870 | Sep 2012 | EP |
1887980 | Sep 2012 | EP |
1740126 | Oct 2012 | EP |
1865889 | Oct 2012 | EP |
2033593 | Oct 2012 | EP |
2124824 | Oct 2012 | EP |
2139431 | Oct 2012 | EP |
1430853 | Nov 2012 | EP |
1928512 | Nov 2012 | EP |
2008615 | Nov 2012 | EP |
2088965 | Nov 2012 | EP |
1557138 | Dec 2012 | EP |
1924221 | Dec 2012 | EP |
2250970 | Dec 2012 | EP |
2285317 | Dec 2012 | EP |
1494731 | Jan 2013 | EP |
1610752 | Jan 2013 | EP |
1796597 | Jan 2013 | EP |
1919397 | Jan 2013 | EP |
1942834 | Jan 2013 | EP |
2015709 | Jan 2013 | EP |
2079400 | Jan 2013 | EP |
2238947 | Jan 2013 | EP |
2241287 | Jan 2013 | EP |
2359774 | Jan 2013 | EP |
1512383 | Feb 2013 | EP |
1578474 | Feb 2013 | EP |
1648339 | Feb 2013 | EP |
1750622 | Feb 2013 | EP |
1994482 | Feb 2013 | EP |
2250975 | Feb 2013 | EP |
2257242 | Feb 2013 | EP |
2265225 | Feb 2013 | EP |
1659992 | Mar 2013 | EP |
1701668 | Mar 2013 | EP |
2151216 | Mar 2013 | EP |
2340075 | Mar 2013 | EP |
1781183 | Apr 2013 | EP |
1786367 | Apr 2013 | EP |
1850795 | Apr 2013 | EP |
1861041 | Apr 2013 | EP |
2319458 | Apr 2013 | EP |
2526898 | Apr 2013 | EP |
2537487 | Apr 2013 | EP |
1901682 | May 2013 | EP |
1951166 | May 2013 | EP |
1994913 | May 2013 | EP |
2231070 | May 2013 | EP |
2401970 | May 2013 | EP |
2409651 | May 2013 | EP |
1694246 | Jun 2013 | EP |
1948078 | Jun 2013 | EP |
2135559 | Jun 2013 | EP |
1115335 | Jul 2013 | EP |
1663339 | Jul 2013 | EP |
1864687 | Jul 2013 | EP |
1977719 | Jul 2013 | EP |
2111337 | Jul 2013 | EP |
2298237 | Jul 2013 | EP |
2309949 | Jul 2013 | EP |
1599151 | Aug 2013 | EP |
1761211 | Aug 2013 | EP |
2047871 | Aug 2013 | EP |
2142144 | Aug 2013 | EP |
2150206 | Aug 2013 | EP |
2319459 | Aug 2013 | EP |
2397108 | Aug 2013 | EP |
1758523 | Sep 2013 | EP |
1545392 | Oct 2013 | EP |
1638627 | Oct 2013 | EP |
1779868 | Oct 2013 | EP |
2073756 | Oct 2013 | EP |
2111190 | Oct 2013 | EP |
1848375 | Nov 2013 | EP |
1928356 | Nov 2013 | EP |
1933766 | Nov 2013 | EP |
2109417 | Nov 2013 | EP |
2194925 | Nov 2013 | EP |
2387977 | Nov 2013 | EP |
2476394 | Nov 2013 | EP |
2529701 | Nov 2013 | EP |
1945142 | Dec 2013 | EP |
2387972 | Dec 2013 | EP |
2477555 | Dec 2013 | EP |
2117476 | Jan 2014 | EP |
2526895 | Jan 2014 | EP |
2526899 | Jan 2014 | EP |
2529696 | Jan 2014 | EP |
2529697 | Jan 2014 | EP |
2529698 | Jan 2014 | EP |
2529699 | Jan 2014 | EP |
1395214 | Feb 2014 | EP |
1499266 | Feb 2014 | EP |
1838241 | Feb 2014 | EP |
2520250 | Feb 2014 | EP |
2526977 | Feb 2014 | EP |
1629794 | Mar 2014 | EP |
1919398 | Mar 2014 | EP |
2099508 | Mar 2014 | EP |
2399549 | Mar 2014 | EP |
2422823 | Mar 2014 | EP |
1804860 | Apr 2014 | EP |
1926455 | Apr 2014 | EP |
2081519 | Apr 2014 | EP |
2117477 | Apr 2014 | EP |
2405966 | Apr 2014 | EP |
2420205 | Apr 2014 | EP |
2593048 | Apr 2014 | EP |
1499265 | May 2014 | EP |
1594569 | May 2014 | EP |
2029056 | May 2014 | EP |
2257243 | May 2014 | EP |
1791500 | Jun 2014 | EP |
2073753 | Jun 2014 | EP |
2306933 | Jun 2014 | EP |
2331017 | Jun 2014 | EP |
2337522 | Jun 2014 | EP |
2389897 | Jun 2014 | EP |
2606723 | Jun 2014 | EP |
1487350 | Jul 2014 | EP |
1977718 | Jul 2014 | EP |
2117469 | Jul 2014 | EP |
2124826 | Jul 2014 | EP |
2258316 | Jul 2014 | EP |
1667604 | Aug 2014 | EP |
1786368 | Aug 2014 | EP |
2211779 | Aug 2014 | EP |
2293740 | Aug 2014 | EP |
2367504 | Aug 2014 | EP |
2453942 | Aug 2014 | EP |
2475328 | Aug 2014 | EP |
2545884 | Aug 2014 | EP |
2571460 | Aug 2014 | EP |
1935378 | Sep 2014 | EP |
2246011 | Sep 2014 | EP |
2422749 | Sep 2014 | EP |
2531139 | Sep 2014 | EP |
2609893 | Sep 2014 | EP |
1850796 | Oct 2014 | EP |
1853199 | Oct 2014 | EP |
2133039 | Oct 2014 | EP |
2549955 | Oct 2014 | EP |
2549956 | Oct 2014 | EP |
2651335 | Oct 2014 | EP |
2049721 | Nov 2014 | EP |
2142143 | Nov 2014 | EP |
2229921 | Nov 2014 | EP |
2288403 | Nov 2014 | EP |
2415421 | Nov 2014 | EP |
1551274 | Dec 2014 | EP |
1768735 | Dec 2014 | EP |
1959865 | Dec 2014 | EP |
2077718 | Dec 2014 | EP |
2303185 | Dec 2014 | EP |
2334857 | Dec 2014 | EP |
2365840 | Dec 2014 | EP |
2420207 | Dec 2014 | EP |
2422750 | Dec 2014 | EP |
2707073 | Dec 2014 | EP |
1768630 | Jan 2015 | EP |
2254515 | Jan 2015 | EP |
2641569 | Jan 2015 | EP |
2709559 | Jan 2015 | EP |
1903990 | Feb 2015 | EP |
2255753 | Feb 2015 | EP |
2335649 | Feb 2015 | EP |
2522308 | Feb 2015 | EP |
2591754 | Feb 2015 | EP |
1861045 | Mar 2015 | EP |
2029057 | Mar 2015 | EP |
2193761 | Mar 2015 | EP |
2379010 | Mar 2015 | EP |
2416737 | Mar 2015 | EP |
1791495 | Apr 2015 | EP |
2298252 | Apr 2015 | EP |
2536359 | Apr 2015 | EP |
2538879 | Apr 2015 | EP |
2609894 | Apr 2015 | EP |
2693984 | Apr 2015 | EP |
2712633 | Apr 2015 | EP |
2747707 | Apr 2015 | EP |
1465555 | May 2015 | EP |
1924224 | May 2015 | EP |
1992369 | May 2015 | EP |
2410947 | May 2015 | EP |
2484311 | May 2015 | EP |
2654616 | May 2015 | EP |
1646332 | Jun 2015 | EP |
2745805 | Jun 2015 | EP |
2749254 | Jun 2015 | EP |
1729685 | Jul 2015 | EP |
1976439 | Jul 2015 | EP |
2068767 | Jul 2015 | EP |
2068769 | Jul 2015 | EP |
2444031 | Jul 2015 | EP |
2455041 | Jul 2015 | EP |
2498719 | Jul 2015 | EP |
2558030 | Jul 2015 | EP |
2752209 | Jul 2015 | EP |
1702247 | Aug 2015 | EP |
1729688 | Aug 2015 | EP |
1887979 | Aug 2015 | EP |
2032079 | Aug 2015 | EP |
2219558 | Aug 2015 | EP |
2234657 | Aug 2015 | EP |
2250976 | Aug 2015 | EP |
2262447 | Aug 2015 | EP |
2303384 | Aug 2015 | EP |
2560579 | Aug 2015 | EP |
2575621 | Aug 2015 | EP |
2590595 | Aug 2015 | EP |
2709560 | Aug 2015 | EP |
2755603 | Aug 2015 | EP |
1534185 | Sep 2015 | EP |
1765225 | Sep 2015 | EP |
1778127 | Sep 2015 | EP |
2094194 | Sep 2015 | EP |
2201911 | Sep 2015 | EP |
2306934 | Sep 2015 | EP |
2397113 | Sep 2015 | EP |
2453843 | Sep 2015 | EP |
2459127 | Sep 2015 | EP |
2675396 | Sep 2015 | EP |
2675397 | Sep 2015 | EP |
2736454 | Sep 2015 | EP |
2790609 | Sep 2015 | EP |
2805693 | Sep 2015 | EP |
1734903 | Oct 2015 | EP |
1863546 | Oct 2015 | EP |
1900343 | Oct 2015 | EP |
2081515 | Oct 2015 | EP |
2191792 | Oct 2015 | EP |
2254513 | Oct 2015 | EP |
2381896 | Oct 2015 | EP |
2450008 | Oct 2015 | EP |
2544626 | Oct 2015 | EP |
2561830 | Oct 2015 | EP |
2600798 | Oct 2015 | EP |
2626039 | Oct 2015 | EP |
2729093 | Oct 2015 | EP |
2836165 | Oct 2015 | EP |
1863545 | Nov 2015 | EP |
2303395 | Nov 2015 | EP |
2496181 | Nov 2015 | EP |
2497446 | Nov 2015 | EP |
2772228 | Nov 2015 | EP |
1482869 | Dec 2015 | EP |
1551473 | Dec 2015 | EP |
1748745 | Dec 2015 | EP |
1755459 | Dec 2015 | EP |
1922030 | Dec 2015 | EP |
1954212 | Dec 2015 | EP |
2424472 | Dec 2015 | EP |
2470120 | Dec 2015 | EP |
2542179 | Dec 2015 | EP |
1991168 | Jan 2016 | EP |
2254512 | Jan 2016 | EP |
2422748 | Jan 2016 | EP |
1754684 | Feb 2016 | EP |
1835948 | Feb 2016 | EP |
2012712 | Feb 2016 | EP |
2285318 | Feb 2016 | EP |
2731550 | Feb 2016 | EP |
2926766 | Feb 2016 | EP |
1585463 | Mar 2016 | EP |
1638621 | Mar 2016 | EP |
1804726 | Mar 2016 | EP |
1865886 | Mar 2016 | EP |
1887982 | Mar 2016 | EP |
2150205 | Mar 2016 | EP |
2278944 | Mar 2016 | EP |
2291126 | Mar 2016 | EP |
2517674 | Mar 2016 | EP |
2520253 | Mar 2016 | EP |
2526897 | Mar 2016 | EP |
2670353 | Mar 2016 | EP |
2674130 | Mar 2016 | EP |
2780042 | Mar 2016 | EP |
1420730 | Apr 2016 | EP |
1545371 | Apr 2016 | EP |
1592367 | Apr 2016 | EP |
1708649 | Apr 2016 | EP |
1871300 | Apr 2016 | EP |
2168536 | Apr 2016 | EP |
2399550 | Apr 2016 | EP |
2433591 | Apr 2016 | EP |
2478871 | Apr 2016 | EP |
2536355 | Apr 2016 | EP |
2572676 | Apr 2016 | EP |
2606852 | Apr 2016 | EP |
2621408 | Apr 2016 | EP |
2626041 | Apr 2016 | EP |
2633821 | Apr 2016 | EP |
2670354 | Apr 2016 | EP |
2702965 | Apr 2016 | EP |
2704669 | Apr 2016 | EP |
2815725 | Apr 2016 | EP |
2194933 | May 2016 | EP |
2237746 | May 2016 | EP |
2378947 | May 2016 | EP |
2542184 | May 2016 | EP |
2572684 | May 2016 | EP |
2582326 | May 2016 | EP |
2618784 | May 2016 | EP |
2654623 | May 2016 | EP |
2656816 | May 2016 | EP |
2680791 | May 2016 | EP |
2693986 | May 2016 | EP |
2768429 | May 2016 | EP |
2806805 | May 2016 | EP |
2866739 | May 2016 | EP |
2889020 | May 2016 | EP |
2926767 | May 2016 | EP |
2926840 | May 2016 | EP |
29249292 | May 2016 | EP |
1734902 | Jun 2016 | EP |
1906884 | Jun 2016 | EP |
2111800 | Jun 2016 | EP |
2160156 | Jun 2016 | EP |
2190379 | Jun 2016 | EP |
2193762 | Jun 2016 | EP |
2416739 | Jun 2016 | EP |
2453969 | Jun 2016 | EP |
2515800 | Jun 2016 | EP |
2558031 | Jun 2016 | EP |
2563236 | Jun 2016 | EP |
2572675 | Jun 2016 | EP |
2626040 | Jun 2016 | EP |
2704668 | Jun 2016 | EP |
2777611 | Jun 2016 | EP |
2815724 | Jun 2016 | EP |
2854710 | Jun 2016 | EP |
2901966 | Jun 2016 | EP |
1605866 | Jul 2016 | EP |
1933756 | Jul 2016 | EP |
2393452 | Jul 2016 | EP |
2410948 | Jul 2016 | EP |
2412397 | Jul 2016 | EP |
2724690 | Jul 2016 | EP |
2815723 | Jul 2016 | EP |
2870945 | Jul 2016 | EP |
1401358 | Aug 2016 | EP |
1915105 | Aug 2016 | EP |
1937186 | Aug 2016 | EP |
2292186 | Aug 2016 | EP |
2379012 | Aug 2016 | EP |
2385809 | Aug 2016 | EP |
2387365 | Aug 2016 | EP |
2536345 | Aug 2016 | EP |
2537490 | Aug 2016 | EP |
2549954 | Aug 2016 | EP |
2618779 | Aug 2016 | EP |
2670352 | Aug 2016 | EP |
2829235 | Aug 2016 | EP |
2853238 | Aug 2016 | EP |
2866738 | Aug 2016 | EP |
2906150 | Aug 2016 | EP |
1156755 | Sep 2016 | EP |
1492478 | Sep 2016 | EP |
1912697 | Sep 2016 | EP |
2393449 | Sep 2016 | EP |
2670356 | Sep 2016 | EP |
2793969 | Sep 2016 | EP |
2809271 | Sep 2016 | EP |
2896425 | Sep 2016 | EP |
2023858 | Oct 2016 | EP |
2112912 | Oct 2016 | EP |
2640319 | Oct 2016 | EP |
2663257 | Oct 2016 | EP |
2727612 | Oct 2016 | EP |
2760384 | Oct 2016 | EP |
2806829 | Oct 2016 | EP |
2858599 | Oct 2016 | EP |
2918250 | Oct 2016 | EP |
2934387 | Oct 2016 | EP |
1539047 | Nov 2016 | EP |
2282700 | Nov 2016 | EP |
2400926 | Nov 2016 | EP |
2467104 | Nov 2016 | EP |
2525743 | Nov 2016 | EP |
2549953 | Nov 2016 | EP |
2575696 | Nov 2016 | EP |
2598045 | Nov 2016 | EP |
2670355 | Nov 2016 | EP |
2676640 | Nov 2016 | EP |
2680792 | Nov 2016 | EP |
2707053 | Nov 2016 | EP |
2717803 | Nov 2016 | EP |
2773297 | Nov 2016 | EP |
2801387 | Nov 2016 | EP |
2844192 | Nov 2016 | EP |
2849679 | Nov 2016 | EP |
2877122 | Nov 2016 | EP |
2908778 | Nov 2016 | EP |
2922500 | Nov 2016 | EP |
2922501 | Nov 2016 | EP |
2967854 | Nov 2016 | EP |
3020365 | Nov 2016 | EP |
1645244 | Dec 2016 | EP |
1667614 | Dec 2016 | EP |
1684656 | Dec 2016 | EP |
1684670 | Dec 2016 | EP |
1750592 | Dec 2016 | EP |
1883375 | Dec 2016 | EP |
2293739 | Dec 2016 | EP |
2339988 | Dec 2016 | EP |
2512375 | Dec 2016 | EP |
2754417 | Dec 2016 | EP |
2754418 | Dec 2016 | EP |
2755562 | Dec 2016 | EP |
2889019 | Dec 2016 | EP |
3010442 | Dec 2016 | EP |
1893127 | Jan 2017 | EP |
1951352 | Jan 2017 | EP |
2109419 | Jan 2017 | EP |
2185107 | Jan 2017 | EP |
2266503 | Jan 2017 | EP |
2340055 | Jan 2017 | EP |
2395941 | Jan 2017 | EP |
2400923 | Jan 2017 | EP |
2629699 | Jan 2017 | EP |
2645963 | Jan 2017 | EP |
2654622 | Jan 2017 | EP |
2706952 | Jan 2017 | EP |
2760347 | Jan 2017 | EP |
2771064 | Jan 2017 | EP |
2780077 | Jan 2017 | EP |
2809272 | Jan 2017 | EP |
2934385 | Jan 2017 | EP |
2986255 | Jan 2017 | EP |
1507493 | Feb 2017 | EP |
2563238 | Feb 2017 | EP |
2752170 | Feb 2017 | EP |
2760371 | Feb 2017 | EP |
2793709 | Feb 2017 | EP |
2793748 | Feb 2017 | EP |
2793763 | Feb 2017 | EP |
2832317 | Feb 2017 | EP |
2921135 | Feb 2017 | EP |
2967931 | Feb 2017 | EP |
2974693 | Feb 2017 | EP |
3025680 | Feb 2017 | EP |
3025681 | Feb 2017 | EP |
1845895 | Mar 2017 | EP |
2190385 | Mar 2017 | EP |
2266504 | Mar 2017 | EP |
2341871 | Mar 2017 | EP |
2379011 | Mar 2017 | EP |
2379013 | Mar 2017 | EP |
2640316 | Mar 2017 | EP |
2731552 | Mar 2017 | EP |
2756109 | Mar 2017 | EP |
2773298 | Mar 2017 | EP |
2832316 | Mar 2017 | EP |
2854718 | Mar 2017 | EP |
2881083 | Mar 2017 | EP |
2934390 | Mar 2017 | EP |
2934391 | Mar 2017 | EP |
2014239 | Apr 2017 | EP |
2111189 | Apr 2017 | EP |
2393451 | Apr 2017 | EP |
2617388 | Apr 2017 | EP |
2629700 | Apr 2017 | EP |
2832318 | Apr 2017 | EP |
2893904 | Apr 2017 | EP |
2982340 | Apr 2017 | EP |
3000436 | Apr 2017 | EP |
3001979 | Apr 2017 | EP |
3043749 | Apr 2017 | EP |
3045147 | Apr 2017 | EP |
3054893 | Apr 2017 | EP |
1855614 | May 2017 | EP |
2001402 | May 2017 | EP |
2032080 | May 2017 | EP |
2262451 | May 2017 | EP |
2470119 | May 2017 | EP |
2478869 | May 2017 | EP |
2538880 | May 2017 | EP |
2545850 | May 2017 | EP |
2600799 | May 2017 | EP |
2717926 | May 2017 | EP |
2726024 | May 2017 | EP |
2805678 | May 2017 | EP |
2809270 | May 2017 | EP |
2918245 | May 2017 | EP |
2953579 | May 2017 | EP |
2976043 | May 2017 | EP |
2979666 | May 2017 | EP |
3011931 | May 2017 | EP |
3025682 | May 2017 | EP |
3033135 | May 2017 | EP |
2351541 | Jun 2017 | EP |
2384165 | Jun 2017 | EP |
2400924 | Jun 2017 | EP |
2419041 | Jun 2017 | EP |
2419050 | Jun 2017 | EP |
2489331 | Jun 2017 | EP |
2493417 | Jun 2017 | EP |
2560585 | Jun 2017 | EP |
2611387 | Jun 2017 | EP |
2645967 | Jun 2017 | EP |
2677965 | Jun 2017 | EP |
2760349 | Jun 2017 | EP |
2826443 | Jun 2017 | EP |
2906148 | Jun 2017 | EP |
2929860 | Jun 2017 | EP |
2934669 | Jun 2017 | EP |
2967852 | Jun 2017 | EP |
1624810 | Jul 2017 | EP |
2026703 | Jul 2017 | EP |
2293718 | Jul 2017 | EP |
2339989 | Jul 2017 | EP |
2344076 | Jul 2017 | EP |
2486893 | Jul 2017 | EP |
2536356 | Jul 2017 | EP |
2548534 | Jul 2017 | EP |
2608742 | Jul 2017 | EP |
2673038 | Jul 2017 | EP |
2676638 | Jul 2017 | EP |
2825107 | Jul 2017 | EP |
2841020 | Jul 2017 | EP |
2934386 | Jul 2017 | EP |
2943151 | Jul 2017 | EP |
3058894 | Jul 2017 | EP |
3071151 | Jul 2017 | EP |
1530441 | Aug 2017 | EP |
1722716 | Aug 2017 | EP |
1971289 | Aug 2017 | EP |
2323591 | Aug 2017 | EP |
2344070 | Aug 2017 | EP |
2413842 | Aug 2017 | EP |
2427143 | Aug 2017 | EP |
2459077 | Aug 2017 | EP |
2480167 | Aug 2017 | EP |
2482749 | Aug 2017 | EP |
2568925 | Aug 2017 | EP |
2617389 | Aug 2017 | EP |
2713954 | Aug 2017 | EP |
2755602 | Aug 2017 | EP |
2800602 | Aug 2017 | EP |
2809263 | Aug 2017 | EP |
2830536 | Aug 2017 | EP |
2841009 | Aug 2017 | EP |
2844190 | Aug 2017 | EP |
2849681 | Aug 2017 | EP |
2858600 | Aug 2017 | EP |
2897556 | Aug 2017 | EP |
2934388 | Aug 2017 | EP |
2979667 | Aug 2017 | EP |
1799093 | Sep 2017 | EP |
2010103 | Sep 2017 | EP |
2114304 | Sep 2017 | EP |
2344090 | Sep 2017 | EP |
2398421 | Sep 2017 | EP |
2437687 | Sep 2017 | EP |
2453970 | Sep 2017 | EP |
2509538 | Sep 2017 | EP |
2713956 | Sep 2017 | EP |
2772227 | Sep 2017 | EP |
2787924 | Sep 2017 | EP |
2803335 | Sep 2017 | EP |
2811939 | Sep 2017 | EP |
2830537 | Sep 2017 | EP |
2865355 | Sep 2017 | EP |
2872047 | Sep 2017 | EP |
2934389 | Sep 2017 | EP |
1945141 | Oct 2017 | EP |
2317956 | Oct 2017 | EP |
2613737 | Oct 2017 | EP |
2620125 | Oct 2017 | EP |
2720642 | Oct 2017 | EP |
2741682 | Oct 2017 | EP |
2872077 | Oct 2017 | EP |
3021925 | Oct 2017 | EP |
1651148 | Nov 2017 | EP |
1913901 | Nov 2017 | EP |
2222248 | Nov 2017 | EP |
2296581 | Nov 2017 | EP |
2326264 | Nov 2017 | EP |
2427142 | Nov 2017 | EP |
2456483 | Nov 2017 | EP |
2493423 | Nov 2017 | EP |
2611391 | Nov 2017 | EP |
2618780 | Nov 2017 | EP |
2658480 | Nov 2017 | EP |
2710978 | Nov 2017 | EP |
2832315 | Nov 2017 | EP |
2954875 | Nov 2017 | EP |
2967861 | Nov 2017 | EP |
2982338 | Nov 2017 | EP |
3027144 | Nov 2017 | EP |
3043746 | Nov 2017 | EP |
3049026 | Nov 2017 | EP |
3068311 | Nov 2017 | EP |
3110368 | Nov 2017 | EP |
3110369 | Nov 2017 | EP |
3132773 | Nov 2017 | EP |
1667603 | Dec 2017 | EP |
1874954 | Dec 2017 | EP |
2427145 | Dec 2017 | EP |
2542185 | Dec 2017 | EP |
2723274 | Dec 2017 | EP |
2736455 | Dec 2017 | EP |
2736457 | Dec 2017 | EP |
2830534 | Dec 2017 | EP |
2830535 | Dec 2017 | EP |
2911592 | Dec 2017 | EP |
2916772 | Dec 2017 | EP |
2967922 | Dec 2017 | EP |
3009105 | Dec 2017 | EP |
3088037 | Dec 2017 | EP |
3115023 | Dec 2017 | EP |
1492458 | Jan 2018 | EP |
1768604 | Jan 2018 | EP |
1951154 | Jan 2018 | EP |
2091465 | Jan 2018 | EP |
2345380 | Jan 2018 | EP |
2456363 | Jan 2018 | EP |
2531143 | Jan 2018 | EP |
2621407 | Jan 2018 | EP |
2694123 | Jan 2018 | EP |
2774630 | Jan 2018 | EP |
2775962 | Jan 2018 | EP |
2874568 | Jan 2018 | EP |
2967863 | Jan 2018 | EP |
2967869 | Jan 2018 | EP |
3033047 | Jan 2018 | EP |
3037065 | Jan 2018 | EP |
3049025 | Jan 2018 | EP |
3052052 | Jan 2018 | EP |
3078350 | Jan 2018 | EP |
2197512 | Feb 2018 | EP |
2248486 | Feb 2018 | EP |
2344066 | Feb 2018 | EP |
2381854 | Feb 2018 | EP |
2667823 | Feb 2018 | EP |
2699169 | Feb 2018 | EP |
2714177 | Feb 2018 | EP |
2736544 | Feb 2018 | EP |
2846736 | Feb 2018 | EP |
2886082 | Feb 2018 | EP |
2886084 | Feb 2018 | EP |
2931178 | Feb 2018 | EP |
2934392 | Feb 2018 | EP |
3150173 | Feb 2018 | EP |
1959864 | Mar 2018 | EP |
2513200 | Mar 2018 | EP |
2608815 | Mar 2018 | EP |
2858711 | Mar 2018 | EP |
2938292 | Mar 2018 | EP |
2943132 | Mar 2018 | EP |
2983620 | Mar 2018 | EP |
3003219 | Mar 2018 | EP |
3005979 | Mar 2018 | EP |
3037064 | Mar 2018 | EP |
3046511 | Mar 2018 | EP |
3142603 | Mar 2018 | EP |
2209440 | Apr 2018 | EP |
2536357 | Apr 2018 | EP |
2605725 | Apr 2018 | EP |
2608743 | Apr 2018 | EP |
2709561 | Apr 2018 | EP |
2787925 | Apr 2018 | EP |
2789314 | Apr 2018 | EP |
2900150 | Apr 2018 | EP |
2908779 | Apr 2018 | EP |
2922502 | Apr 2018 | EP |
2964441 | Apr 2018 | EP |
2967868 | Apr 2018 | EP |
2979665 | Apr 2018 | EP |
2994073 | Apr 2018 | EP |
3095394 | Apr 2018 | EP |
3134033 | Apr 2018 | EP |
1945112 | May 2018 | EP |
2007313 | May 2018 | EP |
2316381 | May 2018 | EP |
2377469 | May 2018 | EP |
2531115 | May 2018 | EP |
2561831 | May 2018 | EP |
2605724 | May 2018 | EP |
2723277 | May 2018 | EP |
2741711 | May 2018 | EP |
2755573 | May 2018 | EP |
2819818 | May 2018 | EP |
2833836 | May 2018 | EP |
2886083 | May 2018 | EP |
2943157 | May 2018 | EP |
2948099 | May 2018 | EP |
3000437 | May 2018 | EP |
3145448 | May 2018 | EP |
3154475 | May 2018 | EP |
2150312 | Jun 2018 | EP |
2379322 | Jun 2018 | EP |
2400925 | Jun 2018 | EP |
2552355 | Jun 2018 | EP |
2560589 | Jun 2018 | EP |
2563277 | Jun 2018 | EP |
2661305 | Jun 2018 | EP |
2736456 | Jun 2018 | EP |
2782523 | Jun 2018 | EP |
3056170 | Jun 2018 | EP |
3062745 | Jun 2018 | EP |
3130320 | Jun 2018 | EP |
3187150 | Jun 2018 | EP |
2478872 | Jul 2018 | EP |
2563278 | Jul 2018 | EP |
2616004 | Jul 2018 | EP |
2779943 | Jul 2018 | EP |
2802290 | Jul 2018 | EP |
2816980 | Jul 2018 | EP |
2938293 | Jul 2018 | EP |
3107496 | Jul 2018 | EP |
3178450 | Jul 2018 | EP |
3212097 | Jul 2018 | EP |
2536354 | Aug 2018 | EP |
2616006 | Aug 2018 | EP |
2797556 | Aug 2018 | EP |
2822473 | Aug 2018 | EP |
2854711 | Aug 2018 | EP |
2866847 | Aug 2018 | EP |
2918246 | Aug 2018 | EP |
2967845 | Aug 2018 | EP |
2999436 | Aug 2018 | EP |
3013281 | Aug 2018 | EP |
3060170 | Aug 2018 | EP |
3104811 | Aug 2018 | EP |
3143944 | Aug 2018 | EP |
3157467 | Aug 2018 | EP |
3193791 | Aug 2018 | EP |
3241526 | Aug 2018 | EP |
2114305 | Sep 2018 | EP |
2155115 | Sep 2018 | EP |
2601910 | Sep 2018 | EP |
2617390 | Sep 2018 | EP |
2734157 | Sep 2018 | EP |
2968674 | Sep 2018 | EP |
2999415 | Sep 2018 | EP |
3106130 | Sep 2018 | EP |
3151763 | Sep 2018 | EP |
3213717 | Sep 2018 | EP |
3245985 | Sep 2018 | EP |
1827256 | Oct 2018 | EP |
1850790 | Oct 2018 | EP |
2063823 | Oct 2018 | EP |
2124825 | Oct 2018 | EP |
2249746 | Oct 2018 | EP |
2254514 | Oct 2018 | EP |
2285309 | Oct 2018 | EP |
2455042 | Oct 2018 | EP |
2571561 | Oct 2018 | EP |
2616008 | Oct 2018 | EP |
2647393 | Oct 2018 | EP |
2739214 | Oct 2018 | EP |
2739247 | Oct 2018 | EP |
2776114 | Oct 2018 | EP |
2836171 | Oct 2018 | EP |
2842581 | Oct 2018 | EP |
2870946 | Oct 2018 | EP |
2923665 | Oct 2018 | EP |
2964277 | Oct 2018 | EP |
3001978 | Oct 2018 | EP |
3010562 | Oct 2018 | EP |
3072475 | Oct 2018 | EP |
3081161 | Oct 2018 | EP |
3081195 | Oct 2018 | EP |
3099345 | Oct 2018 | EP |
3120809 | Oct 2018 | EP |
3238663 | Oct 2018 | EP |
1708650 | Nov 2018 | EP |
1945143 | Nov 2018 | EP |
2205183 | Nov 2018 | EP |
2663258 | Nov 2018 | EP |
2790615 | Nov 2018 | EP |
2854709 | Nov 2018 | EP |
2898859 | Nov 2018 | EP |
2921139 | Nov 2018 | EP |
2928538 | Nov 2018 | EP |
3075354 | Nov 2018 | EP |
3082949 | Nov 2018 | EP |
3145452 | Nov 2018 | EP |
3216424 | Nov 2018 | EP |
3260084 | Nov 2018 | EP |
1858450 | Dec 2018 | EP |
2150208 | Dec 2018 | EP |
2326261 | Dec 2018 | EP |
2344075 | Dec 2018 | EP |
2370028 | Dec 2018 | EP |
2555709 | Dec 2018 | EP |
2564812 | Dec 2018 | EP |
2777618 | Dec 2018 | EP |
2814427 | Dec 2018 | EP |
2829240 | Dec 2018 | EP |
2911594 | Dec 2018 | EP |
2911729 | Dec 2018 | EP |
2954876 | Dec 2018 | EP |
2958520 | Dec 2018 | EP |
2958605 | Dec 2018 | EP |
3010446 | Dec 2018 | EP |
3064174 | Dec 2018 | EP |
3206628 | Dec 2018 | EP |
3242629 | Dec 2018 | EP |
3260085 | Dec 2018 | EP |
3266416 | Dec 2018 | EP |
3326583 | Dec 2018 | EP |
2129332 | Jan 2019 | EP |
2196159 | Jan 2019 | EP |
2370025 | Jan 2019 | EP |
2549957 | Jan 2019 | EP |
2819619 | Jan 2019 | EP |
2849680 | Jan 2019 | EP |
2856972 | Jan 2019 | EP |
2866742 | Jan 2019 | EP |
2884946 | Jan 2019 | EP |
2948102 | Jan 2019 | EP |
2979664 | Jan 2019 | EP |
3043748 | Jan 2019 | EP |
3145449 | Jan 2019 | EP |
3332743 | Jan 2019 | EP |
1895943 | Feb 2019 | EP |
2070490 | Feb 2019 | EP |
2308425 | Feb 2019 | EP |
2379009 | Feb 2019 | EP |
2575685 | Feb 2019 | EP |
2688562 | Feb 2019 | EP |
2714068 | Feb 2019 | EP |
2720641 | Feb 2019 | EP |
2760375 | Feb 2019 | EP |
2862590 | Feb 2019 | EP |
2925259 | Feb 2019 | EP |
2931179 | Feb 2019 | EP |
3005983 | Feb 2019 | EP |
3023117 | Feb 2019 | EP |
3184083 | Feb 2019 | EP |
3202333 | Feb 2019 | EP |
3261583 | Feb 2019 | EP |
3278832 | Feb 2019 | EP |
1771132 | Mar 2019 | EP |
1959866 | Mar 2019 | EP |
2120794 | Mar 2019 | EP |
2259728 | Mar 2019 | EP |
2344074 | Mar 2019 | EP |
2552356 | Mar 2019 | EP |
2598044 | Mar 2019 | EP |
2659861 | Mar 2019 | EP |
2670357 | Mar 2019 | EP |
2898902 | Mar 2019 | EP |
2948098 | Mar 2019 | EP |
2948101 | Mar 2019 | EP |
2967865 | Mar 2019 | EP |
2974695 | Mar 2019 | EP |
3027243 | Mar 2019 | EP |
3145445 | Mar 2019 | EP |
3151783 | Mar 2019 | EP |
3151784 | Mar 2019 | EP |
3278768 | Mar 2019 | EP |
3320943 | Mar 2019 | EP |
1793745 | Apr 2019 | EP |
1855623 | Apr 2019 | EP |
2129333 | Apr 2019 | EP |
2149349 | Apr 2019 | EP |
2438888 | Apr 2019 | EP |
2484309 | Apr 2019 | EP |
2519268 | Apr 2019 | EP |
2528545 | Apr 2019 | EP |
2536358 | Apr 2019 | EP |
2661239 | Apr 2019 | EP |
2709563 | Apr 2019 | EP |
2736451 | Apr 2019 | EP |
2810619 | Apr 2019 | EP |
2810622 | Apr 2019 | EP |
2879589 | Apr 2019 | EP |
2921198 | Apr 2019 | EP |
2986256 | Apr 2019 | EP |
3090704 | Apr 2019 | EP |
3116445 | Apr 2019 | EP |
3141217 | Apr 2019 | EP |
3193745 | Apr 2019 | EP |
3241525 | Apr 2019 | EP |
1703870 | May 2019 | EP |
1708642 | May 2019 | EP |
2240121 | May 2019 | EP |
2663259 | May 2019 | EP |
2695586 | May 2019 | EP |
2726018 | May 2019 | EP |
2954872 | May 2019 | EP |
3071150 | May 2019 | EP |
3110370 | May 2019 | EP |
3111890 | May 2019 | EP |
3182932 | May 2019 | EP |
3192472 | May 2019 | EP |
3238661 | May 2019 | EP |
3284503 | May 2019 | EP |
3302364 | May 2019 | EP |
3315094 | May 2019 | EP |
3316818 | May 2019 | EP |
1624792 | Jun 2019 | EP |
1737394 | Jun 2019 | EP |
1858451 | Jun 2019 | EP |
1895944 | Jun 2019 | EP |
1968487 | Jun 2019 | EP |
2004095 | Jun 2019 | EP |
2010102 | Jun 2019 | EP |
2131788 | Jun 2019 | EP |
2560580 | Jun 2019 | EP |
2618782 | Jun 2019 | EP |
2868296 | Jun 2019 | EP |
2961358 | Jun 2019 | EP |
2967847 | Jun 2019 | EP |
2985006 | Jun 2019 | EP |
3033048 | Jun 2019 | EP |
3116446 | Jun 2019 | EP |
3119451 | Jun 2019 | EP |
3131503 | Jun 2019 | EP |
3213718 | Jun 2019 | EP |
3275390 | Jun 2019 | EP |
3300692 | Jun 2019 | EP |
3326585 | Jun 2019 | EP |
3338737 | Jun 2019 | EP |
3357457 | Jun 2019 | EP |
3372198 | Jun 2019 | EP |
1659981 | Jul 2019 | EP |
1924223 | Jul 2019 | EP |
2249745 | Jul 2019 | EP |
2296744 | Jul 2019 | EP |
2331019 | Jul 2019 | EP |
2368527 | Jul 2019 | EP |
2509542 | Jul 2019 | EP |
2555710 | Jul 2019 | EP |
2575682 | Jul 2019 | EP |
2575683 | Jul 2019 | EP |
2640431 | Jul 2019 | EP |
2641572 | Jul 2019 | EP |
2649964 | Jul 2019 | EP |
2767260 | Jul 2019 | EP |
2777615 | Jul 2019 | EP |
2838476 | Jul 2019 | EP |
2861186 | Jul 2019 | EP |
2877124 | Jul 2019 | EP |
2877132 | Jul 2019 | EP |
2921565 | Jul 2019 | EP |
2938291 | Jul 2019 | EP |
2999433 | Jul 2019 | EP |
3145450 | Jul 2019 | EP |
3254644 | Jul 2019 | EP |
3315093 | Jul 2019 | EP |
3344189 | Jul 2019 | EP |
1861043 | Aug 2019 | EP |
2303190 | Aug 2019 | EP |
2593171 | Aug 2019 | EP |
2632393 | Aug 2019 | EP |
2663355 | Aug 2019 | EP |
2665509 | Aug 2019 | EP |
2688525 | Aug 2019 | EP |
2699201 | Aug 2019 | EP |
2755564 | Aug 2019 | EP |
2769681 | Aug 2019 | EP |
2793751 | Aug 2019 | EP |
2900177 | Aug 2019 | EP |
2967536 | Aug 2019 | EP |
3050541 | Aug 2019 | EP |
3102152 | Aug 2019 | EP |
3157607 | Aug 2019 | EP |
3231392 | Aug 2019 | EP |
3284411 | Aug 2019 | EP |
3328318 | Aug 2019 | EP |
3348233 | Aug 2019 | EP |
3366262 | Aug 2019 | EP |
2368525 | Sep 2019 | EP |
2542186 | Sep 2019 | EP |
2656863 | Sep 2019 | EP |
3003221 | Sep 2019 | EP |
3003452 | Sep 2019 | EP |
3220971 | Sep 2019 | EP |
3223874 | Sep 2019 | EP |
3288495 | Sep 2019 | EP |
3311776 | Sep 2019 | EP |
3334379 | Sep 2019 | EP |
1740265 | Oct 2019 | EP |
2039756 | Oct 2019 | EP |
2456506 | Oct 2019 | EP |
2470122 | Oct 2019 | EP |
2613738 | Oct 2019 | EP |
2637607 | Oct 2019 | EP |
2674174 | Oct 2019 | EP |
2811923 | Oct 2019 | EP |
2901967 | Oct 2019 | EP |
3010431 | Oct 2019 | EP |
3019091 | Oct 2019 | EP |
3019123 | Oct 2019 | EP |
3057522 | Oct 2019 | EP |
3067075 | Oct 2019 | EP |
3146937 | Oct 2019 | EP |
3238777 | Oct 2019 | EP |
3359211 | Oct 2019 | EP |
3388026 | Oct 2019 | EP |
3432806 | Oct 2019 | EP |
2043559 | Nov 2019 | EP |
2358297 | Nov 2019 | EP |
2358308 | Nov 2019 | EP |
2405863 | Nov 2019 | EP |
2701633 | Nov 2019 | EP |
2898857 | Nov 2019 | EP |
2967853 | Nov 2019 | EP |
3009104 | Nov 2019 | EP |
3021792 | Nov 2019 | EP |
3076900 | Nov 2019 | EP |
3111889 | Nov 2019 | EP |
3142607 | Nov 2019 | EP |
3167850 | Nov 2019 | EP |
3397205 | Nov 2019 | EP |
2647354 | Oct 2015 | ER |
2815844 | Jan 2003 | FR |
2826863 | Sep 2003 | FR |
2828091 | Nov 2003 | FR |
2847800 | Oct 2005 | FR |
2858543 | Feb 2006 | FR |
2828263 | May 2007 | FR |
2874812 | Jun 2007 | FR |
2874813 | Jun 2007 | FR |
2883721 | Jun 2007 | FR |
2894131 | Dec 2008 | FR |
2899096 | Dec 2008 | FR |
2910269 | Feb 2009 | FR |
2909857 | Mar 2009 | FR |
2906454 | Apr 2009 | FR |
2906998 | Apr 2009 | FR |
2913879 | Jun 2009 | FR |
2916959 | Sep 2009 | FR |
2892939 | Jan 2010 | FR |
2915678 | Apr 2010 | FR |
2930137 | Apr 2010 | FR |
2915903 | Jun 2010 | FR |
2916627 | Sep 2010 | FR |
2920644 | Sep 2010 | FR |
2932376 | Apr 2011 | FR |
2947716 | Sep 2011 | FR |
2945440 | Dec 2012 | FR |
2951549 | Aug 2013 | FR |
2964855 | Oct 2013 | FR |
2977792 | Oct 2013 | FR |
2980968 | Dec 2013 | FR |
2986149 | Dec 2014 | FR |
2997288 | Jan 2015 | FR |
2998167 | Jan 2015 | FR |
2996747 | Feb 2015 | FR |
2996748 | Feb 2015 | FR |
3004638 | May 2015 | FR |
2982763 | Jul 2015 | FR |
2991162 | Jul 2015 | FR |
3006582 | Jul 2015 | FR |
3001121 | Jan 2016 | FR |
2998166 | Feb 2016 | FR |
3021862 | May 2016 | FR |
3004917 | Jun 2016 | FR |
3006884 | Jun 2016 | FR |
3023704 | Aug 2016 | FR |
3008885 | Dec 2016 | FR |
3033494 | Mar 2017 | FR |
3057154 | Oct 2018 | FR |
3058631 | Jan 2019 | FR |
3058632 | Jan 2019 | FR |
3060292 | Jan 2019 | FR |
3063631 | Mar 2019 | FR |
3020265 | Sep 2019 | FR |
3072013 | Sep 2019 | FR |
243370 | Aug 1926 | GB |
2407146 | Apr 2006 | GB |
2398245 | Mar 2007 | GB |
2433700 | Dec 2007 | GB |
2478498 | Jul 2012 | GB |
2536538 | Jul 2016 | GB |
2530487 | Dec 2016 | GB |
2517609 | May 2017 | GB |
2538749 | Aug 2017 | GB |
2538072 | Nov 2017 | GB |
2548891 | Jul 2018 | GB |
2023859 | Dec 2012 | IE |
WO-2008103722 | Aug 2008 | WO |
WO-2009134701 | Nov 2009 | WO |
WO-2011137531 | Nov 2011 | WO |
WO-2013075215 | May 2013 | WO |
WO-2019036810 | Feb 2019 | WO |
Entry |
---|
“International Application Serial No. PCT/CA2018/051019, International Search Report dated Nov. 19, 2018”, 5 pgs. |
“International Application Serial No. PCT/CA2018/051019, Written Opinion dated Nov. 19, 2018”, 6 pgs. |
“International Application Serial No. PCT/CA2018/051019, International Preliminary Report on Patentability dated Mar. 5, 2020”, 8 pgs. |
“European Application Serial 18849180.7 Response filed Oct. 9, 2020 to Communication pursuant to Rules 161(1) and 162 EPC dated Apr. 1, 2020”, 18 pgs. |
Number | Date | Country | |
---|---|---|---|
20190060071 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62550368 | Aug 2017 | US |