Sequentially deployed transcatheter mitral valve prosthesis

Abstract
A sequentially deployed prosthetic cardiac valve includes a self-expanding frame having an atrial skirt, a ventricular skirt, and an annular region disposed therebetween. A first anterior tab is disposed on an anterior portion of the frame. A posterior tab is on a posterior portion of the self-expanding frame. The frame may be designed so that any portion may expand sequentially in any desired order. For example, a portion of the first anterior tab and a portion of the posterior tab may partially self-expand first. Next, the first anterior tab may fully self-expand before the posterior tab fully self-expands. The posterior tab may fully self-expand next followed by the ventricular skirt, or the ventricular skirt may self-expand next followed by full expansion of the posterior tab.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to medical devices and methods, and more particularly relates to the treatment of valve insufficiency, such as mitral insufficiency, also referred to as mitral regurgitation. The use of prosthetic valves delivered by traditional surgical implantation methods, or by a less invasive percutaneous catheter or by minimally invasive transapical methods are one possible treatment for valvar insufficiency (also referred to as regurgitation).


The heart of vertebrate animals is divided into four chambers, and is equipped with four valves (the mitral, aortic, pulmonary and tricuspid valves) that ensure that blood pumped by the heart flows in a forward direction through the cardiovascular system. The mitral valve of a healthy heart prevents the backflow of blood from the left ventricle into the left atrium of the heart, and comprises two flexible leaflets (anterior and posterior) that close when the left ventricle contracts. The leaflets are attached to a fibrous annulus, and their free edges are tethered by subvalvular chordae tendineae to papillary muscles in the left ventricle to prevent them from prolapsing into the left atrium during the contraction of the left ventricle.


Various cardiac diseases or degenerative changes may cause dysfunction in any of these portions of the mitral valve apparatus, causing the mitral valve to become abnormally narrowed or dilated, or to allow blood to leak (i.e. regurgitate) from the left ventricle back into the left atrium. Any such impairments compromise cardiac sufficiency, and can be debilitating or life threatening.


Numerous surgical methods and devices have accordingly been developed to treat mitral valve dysfunction, including open-heart surgical techniques for replacing, repairing or re-shaping the native mitral valve apparatus, and the surgical implantation of various prosthetic devices such as annuloplasty rings to modify the anatomy of the native mitral valve. More recently, less invasive transcatheter techniques for the delivery of replacement mitral valve assemblies have been developed. In such techniques, a prosthetic valve is generally mounted in a crimped state on the end of a flexible catheter and advanced through a blood vessel or the body of the patient until the valve reaches the implantation site. The prosthetic valve is then expanded to its functional size at the site of the defective native valve.


While these devices and methods are promising treatments for valvar insufficiency, they can be difficult to deliver, expensive to manufacture, or may not be indicated for all patients. Therefore, it would be desirable to provide improved devices and methods for the treatment of valvar insufficiency such as mitral insufficiency. At least some of these objectives will be met by the devices and methods disclosed below.


2. Description of the Background Art


By way of example, PCT international patent number PCT/US2008/054410 (published as PCT international publication no. WO2008/103722), the disclosure of which is hereby incorporated by reference, describes a transcatheter mitral valve prosthesis that comprises a resilient ring, a plurality of leaflet membranes mounted with respect to the ring so as to permit blood flow therethrough in one direction, and a plurality of tissue-engaging positioning elements movably mounted with respect to the ring and dimensioned to grip the anatomical structure of the heart valve annulus, heart valve leaflets, and/or heart wall. Each of the positioning elements defines respective proximal, intermediate, and distal tissue engaging regions cooperatively configured and dimensioned to simultaneously engage separate corresponding areas of the tissue of an anatomical structure, and may include respective first, second, and third elongate tissue-piercing elements. The valve prosthesis may also include a skirt mounted with respect to the resilient ring for sealing a periphery of the valve prosthesis against a reverse flow of blood around the valve prosthesis.


PCT international patent number PCT/US2009/041754 (published as PCT international publication no. WO2009/134701), the disclosure of which is hereby incorporated by reference, describes a prosthetic mitral valve assembly that comprises an anchor or outer support frame with a flared upper end and a tapered portion to fit the contours of the native mitral valve, and a tissue-based one-way valve mounted therein. The assembly is adapted to expand radially outwardly and into contact with the native heart tissue to create a pressure fit, and further includes tension members anchoring the leaflets of the valve assembly to a suitable location on the heart to function as prosthetic chordae tendineae.


Also known are prosthetic mitral valve assemblies that utilize a claw structure for attachment of the prosthesis to the heart (see, for example, U.S. patent publication no. US2007/0016286 to Hermann et al., the disclosure of which is hereby incorporated by reference), as are prosthetic mitral valve assemblies that rely on the application of axial rather than radial clamping forces to facilitate the self-positioning and self-anchoring of the prosthesis with respect to the native anatomical structure.


Another method which has been proposed as a treatment of mitral valve regurgitation is the surgical bow tie method, which recently has been adapted into a minimally invasive catheter based treatment where an implant is used to clip the valve leaflets together. This procedure is more fully disclosed in the scientific and patent literature, such as in U.S. Pat. No. 6,629,534 to St. Goar et al., the entire contents of which are incorporated herein by reference.


Other relevant publications include U.S. patent publication no. 2011/0015731 to Carpentier et al. and WO2011/137531 to Lane et al. While some of these devices and methods are promising, there still is a need for improved devices and methods that will further allow more accurate positioning of a prosthetic valve and that will also more securely anchor the valve in place. At least some of these objectives will be met by the exemplary embodiments disclosed herein.


SUMMARY OF THE INVENTION

The present invention generally relates to medical devices and methods, and more particularly prosthetic valves used to treat mitral regurgitation. While the present disclosure focuses on the use of a prosthetic valve for treating mitral regurgitation, this is not intended to be limiting. The prosthetic valves disclosed herein may also be used to treat other body valves including other heart valves or venous valves. Exemplary heart valves include the aortic valve, the tricuspid valve, or the pulmonary valve.


In a first aspect of the present invention, a method of delivering an implantable prosthetic valve to a patient's heart which has a mitral valve with an anterior leaflet and a posterior leaflet, comprises providing a prosthetic valve, wherein the prosthetic valve comprises an expandable frame having a first end, a second end opposite the first end, a first anterior tab on an anterior portion of the expandable frame, a posterior tab on a posterior portion of the expandable frame, and a ventricular skirt adjacent the first end of the expandable frame. The prosthetic valve has an expanded configuration for engaging the heart and a collapsed configuration. The prosthetic valve is delivered in the collapsed configuration to the patient's heart adjacent the mitral valve, and the first anterior tab is expanded radially outward such that a tip portion of the first anterior tab engages a first fibrous trigone on a first side of the anterior leaflet of the mitral valve. The anterior chordae tendineae adjacent the anterior leaflet are disposed between the first anterior tab and an outer anterior surface of the ventricular skirt. After radially expanding the first anterior tab, the posterior tab is radially expanded outward such that the posterior leaflet of the mitral valve and adjacent posterior chordae tendinae are disposed between the posterior tab and an outer posterior surface of the ventricular skirt. After radially expanding the posterior tab, the ventricular skirt is radially expanded outward thereby engaging the anterior and posterior leaflets. The anterior leaflet and the adjacent anterior chordae tendinae are captured between the first anterior tab and the outer anterior surface of the ventricular skirt. The posterior leaflet and the adjacent posterior chordae tendinae are captured between the posterior tab and the posterior outer surface of the ventricular skirt.


In another aspect of the present invention, a method of delivering an implantable prosthetic valve to a patient's heart having a mitral valve with an anterior leaflet and a posterior leaflet, comprises providing a prosthetic valve, wherein the prosthetic valve comprises an expandable frame having a first end, a second end opposite the first end, a first anterior tab on an anterior portion of the expandable frame, a posterior tab on a posterior portion of the expandable frame, and a ventricular skirt adjacent the first end of the expandable frame. The prosthetic valve has an expanded configuration for engaging the heart and a collapsed configuration. The prosthetic valve is delivered in the collapsed configuration to the patient's heart adjacent the mitral valve. The first anterior tab is expanded radially outward such that a tip portion of the first anterior tab engages a first fibrous trigone on a first side of the anterior leaflet of the mitral valve. The anterior leaflet and adjacent anterior chordae tendineae are disposed between the first anterior tab and an outer anterior surface of the ventricular skirt. After radially expanding the first anterior tab, the ventricular skirt is radially expanded outward thereby engaging the anterior leaflet such that the anterior leaflet and the adjacent anterior chordae tendinae are captured between the first anterior tab and the outer anterior surface of the ventricular skirt. After radially expanding the ventricular skirt, the posterior tab is radially expanded outward such that the posterior leaflet of the mitral valve and adjacent posterior chordae tendineae are disposed and captured between the posterior tab and an outer posterior surface of the ventricular skirt.


The method may further comprise providing a delivery catheter, wherein the prosthetic valve is releasably coupled thereto. Delivering the prosthetic valve may comprise transapical delivery of the prosthetic valve from a region outside the heart to the left ventricle of the heart, or the prosthetic valve may be delivered transseptally from the right atrium to the left atrium of the heart. Delivering the prosthetic valve may comprise positioning the prosthetic valve across the mitral valve so that the first end of the expandable frame is inferior to a portion of the mitral valve and the second end of the expandable frame is superior to a portion of the mitral valve.


Expanding the first anterior tab may comprise retracting a constraining sheath from the first anterior tab so that the first anterior tab is free to self-expand radially outward. The prosthetic valve may further comprise a second anterior tab on the anterior portion of the expandable frame, and the method may further comprise expanding the second anterior tab radially outward such that a tip portion of the second anterior tab engages a second fibrous trigone on a second side of the anterior leaflet opposite the first side of the anterior leaflet. The anterior leaflet and adjacent anterior chordae tendineae may be disposed between the second anterior tab and an outer surface of the ventricular skirt. The second anterior tab may expand radially outward concurrently with expansion of the first anterior tab. Prior to engaging the first fibrous trigone or the second fibrous trigone with the respective first or second anterior tab, and prior to disposing the anterior leaflet and the adjacent chordae tendineae between the first or second anterior tab and the outer surface of the ventricular skirt, the method may comprise partially expanding the first or the second anterior tab radially outward such that the first or the second anterior tab is transverse to a longitudinal axis of the prosthetic valve. Expanding the second anterior tab may comprise retracting a constraining sheath from the second anterior tab so that the second anterior tab is free to self-expand radially outward.


In some embodiments, prior to disposing the posterior leaflet of the mitral valve and the adjacent posterior chordae tendineae between the posterior tab and the outer posterior surface of the ventricular skirt, the method may comprise partially expanding the posterior tab radially outward such that the posterior tab is transverse to a longitudinal axis of the prosthetic valve. After the anterior leaflet and the adjacent anterior chordae tendineae are disposed between the first anterior tab and the outer anterior surface of the ventricular skirt, the method may comprise partially expanding the posterior tab radially outward such that the posterior tab is transverse to a longitudinal axis of the prosthetic valve, and wherein the posterior tab is partially expanded without disposing the posterior leaflet of the mitral valve and the adjacent posterior chordae tendinae between the posterior tab and the outer posterior surface of the ventricular skirt.


Radially expanding the ventricular skirt may comprise retracting a constraining sheath from the ventricular skirt so that the ventricular skirt is free to self-expand radially outward. The ventricular skirt may comprise a plurality of barbs, and expanding the ventricular skirt may comprise anchoring the plurality of barbs into heart tissue. The prosthetic valve may further comprise a plurality of commissures, and expanding the ventricular skirt may displace the anterior and posterior mitral valve leaflets radially outward thereby preventing interference between the commissures and both of the anterior and posterior leaflets. Expanding the ventricular skirt may displace the anterior and posterior valve leaflets radially outward without contacting an inner wall of the left ventricle, and without obstructing the left ventricular outflow tract. Expanding the ventricular skirt may expand the ventricular skirt asymmetrically such that an anterior portion of the ventricular skirt is substantially flat, and a posterior portion of the ventricular skirt is cylindrically shaped.


The method may further comprise reducing or eliminating mitral regurgitation. In some embodiments, the prosthetic valve may carry a therapeutic agent, and the method may further comprise eluting the therapeutic agent from the prosthetic valve into adjacent tissue. The prosthetic valve may also comprise an alignment element. A second fibrous trigone is disposed on a second side of the anterior leaflet opposite the first side of the anterior leaflet, and the method may further comprise aligning the alignment element with an aortic root and disposing the alignment element between the first and second fibrous trigones. Aligning the alignment element may comprise rotating the prosthetic valve.


The prosthetic valve may further comprise a plurality of commissures with a covering disposed thereover whereby a plurality of prosthetic valve leaflets are formed, and the method may further comprise releasing the plurality of prosthetic valve leaflets from a delivery catheter. The plurality of prosthetic valve leaflets may form a tricuspid valve that has an open configuration and a closed configuration. The plurality of prosthetic valve leaflets may be disposed away from one another in the open configuration thereby permitting antegrade blood flow therethrough, and the plurality of prosthetic valve leaflets may engage one another in the closed configuration thereby substantially preventing retrograde blood flow therethrough.


The prosthetic valve may further comprise an atrial skirt, and the method may further comprise expanding the atrial skirt radially outward so as to lie over a superior surface of the mitral valve, and engaging the atrial skirt against the superior surface of the mitral valve. Expanding the atrial skirt may comprise retracting a constraining sheath from the atrial skirt so that the atrial skirt is free to self-expand radially outward. The prosthetic valve may be moved upstream or downstream relative to the mitral valve to ensure that the atrial skirt engages the superior surface of the mitral valve. Engaging the atrial skirt against the superior surface may seal the atrial skirt against the superior surface of the mitral valve to prevent or substantially prevent blood flow therebetween.


The prosthetic valve may further comprise an annular region, and the method may further comprise expanding the annular region radially outward so as to conform with an annulus of the mitral valve, and engaging the annular region with the mitral valve annulus. Expanding the annular region may comprise retracting a constraining sheath from the annular region so that the annular region is free to self-expand radially outward. Expanding the annular region may comprise asymmetrically expanding the annular region such that an anterior portion of the annular region is substantially flat, and a posterior portion of the annular region is cylindrically shaped.


In another aspect of the present invention, a sequentially deployed prosthetic cardiac valve comprises a self-expanding frame having a first end, a second end opposite the first end, an atrial region near the second end, and a ventricular region near the first end. The self-expanding frame has an expanded configuration and a collapsed configuration. The expanded configuration is adapted to engage heart tissue, and the collapsed configuration is adapted to be delivered to a patient's heart. The prosthetic valve also includes a self-expanding atrial skirt disposed in the atrial region, a self-expanding ventricular skirt disposed in the ventricular region and a self-expanding annular region disposed between the atrial region and the ventricular region. A first self-expanding anterior tab is disposed on an anterior portion of the self-expanding frame in the ventricular region. A self-expanding posterior tab is disposed on a posterior portion of the self-expanding frame in the ventricular region. A portion of the first self-expanding anterior tab and a portion of the self-expanding posterior tab partially self-expand radially outward when a constraint is removed therefrom. The first anterior tab fully self-expands radially outward before the posterior tab fully self-expands radially outward when the constraint is removed therefrom. The posterior tab fully self-expands radially outward before ventricular skirt self-expands when the constraint is removed therefrom, and the ventricular skirt fully expands last.


In another aspect of the present invention, a sequentially deployed prosthetic cardiac valve comprises a self-expanding frame having a first end, a second end opposite the first end, an atrial region near the second end, and a ventricular region near the first end. The self-expanding frame has an expanded configuration and a collapsed configuration. The expanded configuration is adapted to engage heart tissue, and the collapsed configuration is adapted to be delivered to a patient's heart. The prosthetic cardiac valve also comprises a self-expanding atrial skirt disposed in the atrial region, a self-expanding ventricular skirt disposed in the ventricular region, and a self-expanding annular region disposed between the atrial region and the ventricular region. A first self-expanding anterior tab is disposed on an anterior portion of the self-expanding frame in the ventricular region. A self-expanding posterior tab is disposed on a posterior portion of the self-expanding frame in the ventricular region. A portion of the first self-expanding anterior tab and a portion of the self-expanding posterior tab partially self-expand radially outward when a constraint is removed therefrom. The first anterior tab self-expands radially outward before the ventricular skirt self-expands radially outward when the constraint is removed therefrom. The ventricular skirt self-expands radially outward before the posterior tab finishes self-expanding, and the posterior tab finishes self-expanding after the ventricular skirt self-expands.


At least a portion of the atrial skirt may be covered with tissue or a synthetic material. The atrial skirt may have a collapsed configuration and an expanded configuration. The collapsed configuration may be adapted for delivery to a patient's heart, and the expanded configuration may be radially expanded relative to the collapsed configuration and may be adapted to lie over a superior surface of the patient's native mitral valve, thereby anchoring the atrial skirt against a portion of the left atrium. The atrial skirt may comprise one or more radiopaque markers and may comprise a plurality of axially oriented struts connected together with a connector element thereby forming interconnected struts into a series of peaks and valleys. After self-expansion of the atrial skirt, the atrial skirt may form a flanged region adjacent the second end of the self-expanding frame. Also after self-expansion, the atrial skirt may have an asymmetrically D-shaped cross-section having a substantially flat anterior portion, and a cylindrically shaped posterior portion. The prosthetic valve may further comprise an alignment element coupled to an anterior portion of the atrial skirt, and the alignment element may be aligned with an aortic root of a patient's heart and may be disposed between two fibrous trigones of an anterior leaflet of the patient's mitral valve.


At least a portion of the annular region may be covered with tissue or a synthetic material. The annular region may have a collapsed configuration and an expanded configuration. The collapsed configuration may be adapted for delivery to the patient's heart, and the expanded configuration may be radially expanded relative to the collapsed configuration and may be adapted to conform with and adapted to engage an annulus of a patient's native mitral valve. After self-expanding, the annular region may have an asymmetrically D-shaped cross-section having a substantially flat anterior portion, and a cylindrically shaped posterior portion. The annular region may comprise a plurality of axially oriented struts connected together with a connector element, and the plurality of interconnected struts may form a series of peaks and valleys. One or more of the plurality of axially oriented struts may comprise one or more suture holes extending therethrough, and the suture holes may be sized to receive a suture.


At least a portion of the ventricular skirt may be covered with tissue or a synthetic material. After self-expanding, the ventricular skirt may comprise an asymmetrically D-shaped cross-section having a substantially flat anterior portion, and a cylindrically shaped posterior portion. The ventricular skirt may have a collapsed configuration and an expanded configuration. The collapsed configuration may be adapted for delivery to the patient's heart, and the expanded configuration may be radially expanded relative to the collapsed configuration and may be adapted to displace native mitral valve leaflets radially outward.


The first anterior tab may have a tip portion adapted to engage a first fibrous trigone on a first side of an anterior leaflet of a patient's mitral valve, and the first anterior tab may also be adapted to capture the anterior leaflet and adjacent chordae tendineae between the first anterior tab and an outer anterior surface of the ventricular skirt. The prosthetic cardiac valve may further comprise a second self-expanding anterior tab disposed on the anterior portion of the self-expanding frame in the ventricular region. The second anterior tab may have a tip portion adapted to engage a second fibrous trigone on a second side of the anterior leaflet of the patient's mitral valve opposite the first side of the anterior leaflet. The second anterior tab may be adapted to capture the anterior leaflet and adjacent chordae tendineae between the second anterior tab and the outer surface of the ventricular skirt. The first or the second anterior tabs may have a cover disposed thereover that increases the contact area between the tab and the cardiac tissue. The cover may include a fabric disposed over a polymer tab that is coupled to the first or second tab. The posterior tab may be adapted to being anchored over a posterior leaflet of the patient's mitral valve, such that the posterior tab is seated between the posterior leaflet and a ventricular wall of a patient's heart. The posterior tab may comprise a plurality of struts, and adjacent struts may be coupled together to form a plurality of expandable hinged joints. Upon radial expansion of the posterior tab, the plurality of struts may move away from one another thereby opening the hinged joints forming an elongate horizontal section which allows engagement and anchoring of the posterior tab with the sub-annular region between the posterior leaflet and the ventricular wall. Thus, the elongate horizontal section contacts a larger region of the sub-annular region as compared with a posterior tab that only has a tapered tip formed from a single hinge between struts. The ventricular skirt may further comprise a plurality of barbs coupled thereto. The plurality of barbs may be adapted to anchor the ventricular skirt into heart tissue. The ventricular skirt may also comprise a plurality of struts connected together with a connector element, and the plurality of interconnected struts may form a series of peaks and valleys. One or more of the struts may comprise one or more suture holes extending therethrough, the suture holes sized to receive a suture.


The prosthetic cardiac valve may further comprise a plurality of prosthetic valve leaflets. Each of the leaflets may have a first end and a free end, and the first end may be coupled with the self-expanding frame and the free end may be opposite of the first end. The prosthetic valve leaflets may have an open configuration in which the free ends of the prosthetic valve leaflets are disposed away from one another to allow antegrade blood flow therepast. The prosthetic valve leaflets may have a closed configuration in which the free ends of the prosthetic valve leaflets engage one another and substantially prevent retrograde blood flow therepast. The plurality of prosthetic valve leaflets may form a tricuspid valve. At least a portion of one or more prosthetic valve leaflets may comprise tissue or a synthetic material. One or more of the prosthetic valve leaflets may comprise a commissure post having a commissure tab, and the commissure tab may be adapted to be releasably engaged with a delivery device. The prosthetic cardiac valve may carry a therapeutic agent that is adapted to being eluted therefrom.


In still another aspect of the present invention, a delivery system for delivering a prosthetic cardiac valve to a patient's heart having a mitral valve with an anterior leaflet and a posterior leaflet, comprises a prosthetic cardiac valve, an inner guidewire shaft having a lumen extending therethrough, where the lumen is sized to slidably receive a guidewire, and a distal tissue penetrating tip coupled to a distal portion of the inner guidewire shaft. The distal tip is adapted to pass through and expand tissue in the heart, and a continuous flared region couples the inner guidewire shaft with the distal tip. The continuous flared region is configured to support the prosthetic cardiac valve thereby reducing or eliminating unwanted bending of the prosthetic cardiac valve. The delivery system also comprises a hub shaft concentrically disposed over the inner guidewire shaft. The prosthetic cardiac valve is releasably coupled to a distal portion of the hub shaft. A bell shaft is slidably and concentrically disposed over the hub shaft, and an outer sheath is slidably and concentrically disposed over the bell shaft. The prosthetic cardiac valve is housed in the outer sheath in a radially collapsed configuration. The delivery system also has a handle near a proximal end of the delivery system. The handle comprises an actuator mechanism adapted to advance and retract the bell shaft and the sheath. Proximal retraction of the outer sheath relative to the bell shaft may remove a constraint from the prosthetic cardiac valve thereby allowing the prosthetic cardiac valve to self-expand into engagement with the patient's mitral valve. The prosthetic cardiac valve may comprise a plurality of commissure posts, and the commissure posts may be releasably coupled with a distal portion of the hub shaft. Proximal retraction of the bell shaft relative to the hub shaft allows the commissure posts to uncouple from the hub shaft. The actuator mechanism may comprise a rotatable wheel.


These and other embodiments are described in further detail in the following description related to the appended drawing figures.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 is a schematic illustration of the left ventricle of a heart showing blood flow during systole with arrows.



FIG. 2 is a schematic illustration of the left ventricle of a heart having prolapsed leaflets in the mitral valve.



FIG. 3 is a schematic illustration of a heart in a patient suffering from cardiomyopathy where the heart is dilated and the leaflets do not meet.



FIG. 3A shows normal closure of the valve leaflets.



FIG. 3B shows abnormal closure of the valve leaflets.



FIG. 4 illustrates mitral valve regurgitation in the left ventricle of a heart having impaired papillary muscles.



FIGS. 5A-5B illustrate anatomy of the mitral valve.



FIG. 6 illustrates an exemplary embodiment of an uncovered frame in a prosthetic cardiac valve, with the frame flattened out and unrolled.



FIG. 7 illustrates another exemplary embodiment of an uncovered frame in a prosthetic cardiac valve, with the frame flattened out and unrolled.



FIG. 8 illustrates still another exemplary embodiment of an uncovered frame in a prosthetic cardiac valve, with the frame flattened out and unrolled.



FIG. 9A illustrates a perspective view of an uncovered frame in a prosthetic cardiac valve after it has expanded.



FIG. 9B illustrates a top view of the embodiment in FIG. 9A.



FIG. 10 illustrates the frame of FIG. 9A with the covering thereby forming a prosthetic cardiac valve.



FIGS. 11A-11D illustrate an exemplary embodiment of a delivery system used to transapically deliver a prosthetic cardiac valve.



FIGS. 12A-12L illustrate an exemplary method of implanting a prosthetic cardiac valve.



FIGS. 13A-13L illustrate another exemplary method of implanting a prosthetic cardiac valve.



FIGS. 14A-14D illustrate an exemplary embodiment of a tab covering.





DETAILED DESCRIPTION OF THE INVENTION

Specific embodiments of the disclosed device, delivery system, and method will now be described with reference to the drawings. Nothing in this detailed description is intended to imply that any particular component, feature, or step is essential to the invention.


Cardiac Anatomy. The left ventricle LV of a normal heart H in systole is illustrated in FIG. 1. The left ventricle LV is contracting and blood flows outwardly through the aortic valve AV, a tricuspid valve in the direction of the arrows. Back flow of blood or “regurgitation” through the mitral valve MV is prevented since the mitral valve is configured as a “check valve” which prevents back flow when pressure in the left ventricle is higher than that in the left atrium LA. The mitral valve MV comprises a pair of leaflets having free edges FE which meet evenly to close, as illustrated in FIG. 1. The opposite ends of the leaflets LF are attached to the surrounding heart structure along an annular region referred to as the annulus AN. The free edges FE of the leaflets LF are secured to the lower portions of the left ventricle LV through chordae tendineae CT (also referred to herein as the chordae) which include a plurality of branching tendons secured over the lower surfaces of each of the valve leaflets LF. The chordae CT in turn, are attached to the papillary muscles PM which extend upwardly from the lower portions of the left ventricle and interventricular septum IVS.


Referring now to FIGS. 2-4, a number of structural defects in the heart can cause mitral valve regurgitation. Ruptured chordae RCT, as shown in FIG. 2, can cause a valve leaflet LF2 to prolapse since inadequate tension is transmitted to the leaflet via the chordae. While the other leaflet LF1 maintains a normal profile, the two valve leaflets do not properly meet and leakage from the left ventricle LV into the left atrium LA will occur, as shown by the arrow.


Regurgitation also occurs in the patients suffering from cardiomyopathy where the heart is dilated and the increased size prevents the valve leaflets LF from meeting properly, as shown in FIG. 3. The enlargement of the heart causes the mitral annulus to become enlarged, making it impossible for the free edges FE to meet during systole. The free edges of the anterior and posterior leaflets normally meet along a line of coaptation C as shown in FIG. 3A, but a significant gap G can be left in patients suffering from cardiomyopathy, as shown in FIG. 3B.


Mitral valve regurgitation can also occur in patients who have suffered ischemic heart disease where the functioning of the papillary muscles PM is impaired, as illustrated in FIG. 4. As the left ventricle LV contracts during systole, the papillary muscles PM do not contract sufficiently to effect proper closure. The leaflets LF1 and LF2 then prolapse, as illustrated. Leakage again occurs from the left ventricle LV to the left atrium LA, as shown by the arrow.



FIG. 5A more clearly illustrates the anatomy of a mitral valve MV which is a bicuspid valve having an anterior side ANT and a posterior side POST. The valve includes an anterior (aortic) leaflet AL and a posterior (mural) leaflet PL. Chordae tendineae CT couple the valve leaflets AL, PL with the antero-lateral papillary muscle ALPM and the postero-medial papillary muscle PMPM. The valve leaflets AL, PL join one another along a line referred to as the antero-lateral commissure ALC and the posterior-medial commissure PMC. The annulus AN circumscribes the valve leaflets, and two regions adjacent an anterior portion of the annulus, on opposite sides of the anterior leaflet are referred to as the left fibrous trigone LFT and also the right fibrous trigone RFT. These areas are indicted generally by the solid triangles. FIG. 5B more clearly illustrates the left and right fibrous trigones, LFT, RFT.


While various surgical techniques as well as implantable devices have been proposed and appear to be promising treatments for mitral regurgitation, surgical approaches can require a lengthy recovery period, and implantable devices have varying clinical results. Therefore, there still is a need for improved devices and methods for treating mitral regurgitation. While the embodiments disclosed herein are directed to an implantable prosthetic mitral valve for treating mitral regurgitation, one of skill in the art will appreciate that this is not intended to be limiting, and the device and methods disclosed herein may also be used to treat other cardiac valves such as the tricuspid valve, aortic valve, pulmonary valve, etc, as well as other valves in the body such as venous valves.


Prosthetic Valve. Prosthetic valves have been surgically implanted in the heart as a treatment for mitral regurgitation. Some of these valves have been valves harvested from animals such as porcine valves, and others have been prosthetic mechanical valves with or without a tissue covering. More recently, minimally invasive catheter technology has been used to deliver prosthetic valves to the heart. These valves typically include an anchor for securing the valve to the patient's heart, and a valve mechanism, either a mechanical valve, a valve with animal tissue, or combinations thereof. The prosthetic valve once implanted, takes over for the malfunctioning native valve, thereby reducing or eliminating valvar insufficiency. While some of these valves appear promising, there still is a need for improved valves. Positioning and anchoring the prosthetic valve in the native anatomy remains a challenge. The following specification discloses exemplary embodiments of a prosthetic valve, a delivery system for the prosthetic valve, and methods of delivering the valve that overcome some of the challenges associated with existing prosthetic valves.



FIG. 6 illustrates an exemplary embodiment of a prosthetic cardiac valve in the collapsed configuration. Coverings from the frame (e.g. fabric or tissue) has been removed to permit observation of the underlying frame 600. The frame has been unrolled and flattened out. The prosthetic valve frame 600 has an atrial region 606, an annular region 608, and a ventricular region 610. The frame 600 is formed from a plurality of interconnected struts that form a series of peaks and valleys which can expand and contract relative to one another thereby permitting the frame to be loaded onto a delivery catheter in a collapsed configuration, and then radially expanded at a target treatment site for implantation. Preferred embodiments are self-expanding and may be fabricated using superelastic nitinol or other self-expanding materials. Shape memory alloys that spring open above a transition temperature may also be used, and expandable members may also be used to expand the frame when plastic deformation (e.g. balloon expansion) is required to open the frame.


Atrial region 606 has a skirt 616 which includes a plurality of interconnected struts that form a series of peaks and valleys. In this region, the struts are skewed relative to one another and thus the resulting cell pattern has an enlarged end and the opposite end tapers to a smaller end. In preferred embodiments, the anterior portion of the atrial skirt does not have a flanged region like the posterior portion, thus the anterior portion 602 of the atrial region may have shorter struts than the posterior region 604. Thus the peaks and valleys in the anterior portion are axially offset from those in the remaining posterior portion of the atrial region. This may be advantageous as it prevents the struts in the anterior portion of the atrial skirt from protruding upwards potentially impinging against the left atrium and causing perforations. Additionally, the shortened struts and offset peaks and valleys form an alignment element 614 that can assist the physician with visualization of delivery of the prosthetic valve to the mitral valve and also with alignment of the prosthetic valve prior to expansion of the prosthetic valve. Optional radiopaque markers 614a are disposed on either side of the offset peaks and valleys and further help with visualization during implantation of the valve. The atrial region preferably self-expands to either a cylindrical shape, or it may have a D-shaped cross-section where the anterior portion 602 is substantially flat, and the posterior portion 604 is cylindrically shaped. This allows the atrial skirt to conform to the anatomy of the native mitral valve, thereby preventing obstruction of the left ventricular outflow tract. Additionally, the atrial skirt may also be formed so that upon expansion, the skirt flares outward and forms a flange that can rest against a superior surface of the mitral valve. The flanged region is preferably along the posterior portion of the atrial skirt, and the anterior portion of the atrial skirt remains flangeless. Or, the flange may extend entirely around the atrial skirt. The atrial region is connected to the adjacent annular region 608 with connecting struts which are preferably linear and substantially parallel to the longitudinal axis of the frame.


The annular region 608 is also comprised of a plurality of axially oriented and interconnected struts that form peaks and valleys that allow radial expansion. The struts are preferably parallel with one another and parallel with the longitudinal axis of the frame. The annular region may also be self-expanding and expand into a cylindrical shape, or more preferably the annular region may expand to have a D-shaped cross-section as described above with respect to the atrial region. Thus, the annular region may similarly have a flat anterior portion, and a cylindrically shaped posterior portion. Upon delivery, the annular region is aligned with and expanded into engagement with the mitral valve annulus. Connector struts join the annular region with the ventricular region 610.


The ventricular region 610 also includes a plurality of interconnected struts that form peaks and valleys. Additionally, the struts in the ventricular region form the leaflet commissures 613 which are covered with fabric, pericardial tissue, or other materials to form the prosthetic valve leaflets. Holes in the commissures allow suture to be attached thereto. Struts in the ventricular region also form a ventricular skirt 628 which expands outward to engage the anterior and posterior mitral valve leaflets, and struts in the ventricular region also form the anterior tabs 624 and the posterior tab 630. The anterior tabs are designed to capture the anterior mitral valve leaflet between an inner surface of the anterior tab and outer surface of the ventricular skirt. Any adjacent chordae tendineae may also be captured therebetween. Also, the tip of the anterior tab engages the fibrous trigone on an anterior portion of the mitral valve, one on the left and one on the right side. The posterior tab similarly captures the posterior mitral valve leaflet between an inner surface of the posterior tab and an outer surface of the ventricular skirt, along with any adjacent chordae tendineae. This will be described in more detail below.


By controlling strut length or axial position of the anterior or posterior tabs along the frame, deployment of the tabs may be controlled. Thus in this exemplary embodiment, because the length of the struts in the anterior tabs and posterior tabs 624, 630 as well as their relative position along the frame are the same as one another, when a constraining sheath is retracted away from the tabs, the anterior and posterior tabs will partially spring outward together. As the constraining sheath is further retracted, the remainder of the anterior tabs will self-expand radially outward. Further retraction of the constraining sheath then allows the remainder of the posterior tab to finish it's radial expansion, and finally the ventricular skirt will radially expand outward. While strut lengths and axial position of the posterior tab and the ventricular skirt are similar, internal struts connect the ventricular skirt with the commissures, and this delays expansion of the ventricular skirt slightly, thus the posterior tab finishes expansion before the ventricular skirt. Using this sequence of deploying the prosthetic valve may allow the valve to more accurately be delivered and also more securely anchored into position.


Suture holes 621 are disposed along the struts of the annular region as well as the ventricular region to allow attachment of a cover such as pericardium or a polymer such as Dacron or ePTFE. The suture holes may also be disposed along any other part of the frame. Barbs 623 are disposed along the ventricular skirt 628 to help anchor the prosthetic valve to adjacent tissue. Commissure tabs or tabs 612 are disposed on the tips of the commissures 613 and may be used to releasably couple the commissures with a delivery system as will be described below. This allows the frame to expand first, and then the commissures may be released from the delivery system afterwards. One of skill in the art will appreciate that a number of strut geometries may be used, and additionally that strut dimensions such as length, width, thickness, etc. may be adjusted in order to provide the prosthesis with the desired mechanical properties such as stiffness, radial crush strength, commissure deflection, etc. Therefore, the illustrated geometry is not intended to be limiting.


The frame may be formed by electrical discharge machining (EDM), laser cutting, photochemical etching, or other techniques known in the art. Hypodermic tubing or flat sheets may be used to form the frame. Once the frame has been cut and formed into a cylinder (if required), it may be radially expanded into a desired geometry and heat treated using known processes to set the shape. Thus, the prosthetic valve may be loaded onto a delivery catheter in a collapsed configuration and constrained in the collapsed configuration with a constraining sheath. Removal of the constraining sheath will allow the prosthesis to self-expand into its unbiased pre-set shape. In other embodiments, an expandable member such as a balloon may be used to radially expand the prosthesis into its preferred expanded configuration.



FIG. 7 illustrates another exemplary embodiment of a prosthetic cardiac valve in the collapsed configuration, and similar to the previous embodiment with the major difference being the strut lengths in the anterior tabs, posterior tab, and ventricular skirt. Varying the strut lengths allow the sequence of expansion of the anterior and posterior tabs and ventricular skirt to be controlled. Coverings from the frame (e.g. fabric or tissue) has been removed to permit observation of the underlying frame 700. The frame has been unrolled and flattened out. The prosthetic valve frame 700 has an atrial region 706, an annular region 708, and a ventricular region 710. The frame 700 is formed from a plurality of interconnected struts that form a series of peaks and valleys which can expand and contract relative to one another thereby permitting the frame to be loaded onto a delivery catheter in a collapsed configuration, and then radially expanded at a target treatment site for implantation. Preferred embodiments are self-expanding and may be fabricated using superelastic nitinol or other self-expanding materials. Shape memory alloys that spring open above a transition temperature may also be used, and expandable members may also be used to expand the frame when plastic deformation (e.g. balloon expansion) is required to open the frame.


Atrial region 706 has a skirt 716 which includes a plurality of interconnected struts that form a series of peaks and valleys. In this region, the struts are skewed relative to one another and thus the resulting cell pattern has an enlarged end and the opposite end tapers to a smaller end. An anterior portion 702 of the atrial region has shorter struts than the posterior region 704. Thus the peaks and valleys in the anterior portion are axially offset from those in the remaining posterior portion of the atrial region. This allows creation of an alignment element 714 to help the physician deliver the prosthetic valve to the mitral valve and align the prosthetic valve prior to expansion of the prosthetic valve. Other aspects of the atrial region 706 are similar to those of the atrial region 606 in FIG. 6. Optional radiopaque markers 714a are disposed on either side of the offset peaks and valleys and help with visualization during implantation of the valve. The atrial region preferably self-expands to either a cylindrical shape, or it may have a D-shaped cross-section where the anterior portion 702 is substantially flat, and the posterior portion 704 is cylindrically shaped. This allows the atrial skirt to conform to the anatomy of the native mitral valve, thereby preventing obstruction of the left ventricular outflow tract. Additionally, the atrial skirt may also be formed so that upon expansion, the skirt flares outward and forms a flange that can rest against a superior surface of the mitral valve. The flanged region is preferably along the posterior portion of the atrial skirt, and the anterior portion of the atrial skirt remains flangeless. Or, the flange may extend entirely around the atrial skirt. The atrial region is connected to the adjacent annular region 708 with connecting struts which are preferably linear and substantially parallel to the longitudinal axis of the frame.


The annular region 708 is also comprised of a plurality of axially oriented and interconnected struts that form peaks and valleys that allow radial expansion. The struts are preferably parallel with one another and parallel with the longitudinal axis of the frame. The annular region may also be self-expanding and expand into a cylindrical shape, or more preferably the annular region may expand to have a D-shaped cross-section as described above with respect to the atrial region. Thus, the annular region may similarly have a flat anterior portion, and a cylindrically shaped posterior portion. Upon delivery, the annular region is aligned with and expanded into engagement with the mitral valve annulus. Connector struts join the annular region with the ventricular region 710.


The ventricular region 710 also includes a plurality of interconnected struts that form peaks and valleys. Additionally, the struts in the ventricular region form the leaflet commissures 713 which are covered with fabric, pericardial tissue, or other materials to form the prosthetic valve leaflets. Holes in the commissures allow suture to be attached thereto. Struts in the ventricular region also form a ventricular skirt 728 which expands outward to engage the anterior and posterior mitral valve leaflets, and struts in the ventricular region also form the anterior tabs 724 and the posterior tab 730. The anterior tabs are designed to capture the anterior mitral valve leaflet between an inner surface of the anterior tab and outer surface of the ventricular skirt. Any adjacent chordae tendineae may also be captured therebetween. Also, the tip of the anterior tab engages the fibrous trigone on an anterior portion of the mitral valve, one on the left and one on the right side. The posterior tab similar captures the posterior mitral valve leaflet between an inner surface of the posterior tab and an outer surface of the ventricular skirt, along with any adjacent chordae tendineae. This will be described in more detail below.


By controlling strut length or axial position of the anterior or posterior tabs along the frame, deployment of the tabs may be controlled. Thus in this exemplary embodiment, because the length of the struts in the anterior tabs and posterior tabs 724, 730 as well as their relative position along the frame are the same as one another, when a constraining sheath is retracted away from the tabs, the anterior and posterior tabs will partially spring outward together. As the constraining sheath is further retracted, the remainder of the anterior tabs will self-expand radially outward because they are the shortest relative to the struts in the ventricular skirt and the posterior tab. Further retraction of the constraining sheath then allows the ventricular skirt to radially expand, and finally further retraction of the sheath allows the remainder of the posterior tab to finish it's radial expansion. Using this sequence of deploying the prosthetic valve may allow the valve to more accurately be delivered and also more securely anchored into position.


Suture holes 721 are disposed along the struts of the annular region as well as the ventricular region to allow attachment of a cover such as pericardium or a polymer such as Dacron or ePTFE. The suture holes may also be disposed along any other part of the frame. Barbs 723 are disposed along the ventricular skirt 728 to help anchor the prosthetic valve to adjacent tissue. Commissure tabs or tabs 712 are disposed on the tips of the commissures 713 and may be used to releasably couple the commissures with a delivery system as will be described below. This allows the frame to expand first, and then the commissures may be released from the delivery system afterwards. One of skill in the art will appreciate that a number of strut geometries may be used, and additionally that strut dimensions such as length, width, thickness, etc. may be adjusted in order to provide the prosthesis with the desired mechanical properties such as stiffness, radial crush strength, commissure deflection, etc. Therefore, the illustrated geometry is not intended to be limiting. The frame may be formed similarly as described above with respect to FIG. 6.



FIG. 8 illustrates another exemplary embodiment of a prosthetic cardiac valve in the collapsed configuration, and is similar to the previous embodiments, with the major difference being that the posterior tab is designed to expand to form an elongate horizontal section which allows engagement and anchoring of the posterior tab with the sub-annular region between the posterior leaflet and the ventricular wall. Thus, the elongate horizontal section contacts a larger region of the sub-annular region as compared with a posterior tab that only has a tapered tip formed from a single hinge between struts. This provides enhanced anchoring of the prosthetic valve. In this exemplary embodiment, the anterior tabs will completely self-expand first, followed by the posterior tab and then the ventricular skirt. However, in some situations external factors such as the delivery system, anatomy, etc. may alter the sequence of expansion, and therefore this is not intended to be limiting. Coverings from the frame (e.g. fabric or tissue) have been removed to permit observation of the underlying frame 800. The frame has been unrolled and flattened out. The prosthetic valve frame 800 has an atrial region 806, an annular region 808, and a ventricular region 810. The frame 800 is formed from a plurality of interconnected struts that form a series of peaks and valleys which can expand and contract relative to one another thereby permitting the frame to be loaded onto a delivery catheter in a collapsed configuration, and then radially expanded at a target treatment site for implantation. Preferred embodiments are self-expanding and may be fabricated using superelastic nitinol or other self-expanding materials. Shape memory alloys that spring open above a transition temperature may also be used, and expandable members may also be used to expand the frame when plastic deformation (e.g. balloon expansion) is required to open the frame.


Atrial region 806 has a skirt 816 which includes a plurality of interconnected struts that form a series of peaks and valleys. In this region, the struts are skewed relative to one another and thus the resulting cell pattern has an enlarged end and the opposite end tapers to a smaller end. An anterior portion 802 of the atrial region has shorter struts than the posterior region 804. Thus the peaks and valleys in the anterior portion are axially offset from those in the remaining posterior portion of the atrial region. This allows creation of an alignment element 814 to help the physician deliver the prosthetic valve to the mitral valve and align the prosthetic valve prior to expansion of the prosthetic valve. Other aspects of the atrial region 806 are similar to those of the atrial region 606 in FIG. 6. Optional radiopaque markers 814a are disposed on either side of the offset peaks and valleys and help with visualization during implantation of the valve. The atrial region preferably self-expands to either a cylindrical shape, or it may have a D-shaped cross-section where the anterior portion 802 is substantially flat, and the posterior portion 804 is cylindrically shaped. This allows the atrial skirt to conform to the anatomy of the native mitral valve, thereby preventing obstruction of the left ventricular outflow tract. Additionally, the atrial skirt may also be formed so that upon expansion, the skirt flares outward and forms a flange that can rest against a superior surface of the mitral valve. The flanged region is preferably along the posterior portion of the atrial skirt, and the anterior portion of the atrial skirt remains flangeless. Or, the flange may extend entirely around the atrial skirt. The atrial region is connected to the adjacent annular region 808 with connecting struts which are preferably linear and substantially parallel to the longitudinal axis of the frame.


The annular region 808 is also comprised of a plurality of axially oriented and interconnected struts that form peaks and valleys that allow radial expansion. The struts are preferably parallel with one another and parallel with the longitudinal axis of the frame. The annular region may also be self-expanding and expand into a cylindrical shape, or more preferably the annular region may expand to have a D-shaped cross-section as described above with respect to the atrial region. Thus, the annular region may similarly have a flat anterior portion, and a cylindrically shaped posterior portion. Upon delivery, the annular region is aligned with and expanded into engagement with the mitral valve annulus. Connector struts join the annular region with the ventricular region 810.


The ventricular region 810 also includes a plurality of interconnected struts that form peaks and valleys. Additionally, the struts in the ventricular region form the leaflet commissures 813 which are covered with fabric, pericardial tissue, or other materials to form the prosthetic valve leaflets. Holes in the commissures allow suture to be attached thereto. Struts in the ventricular region also form a ventricular skirt 828 which expands outward to engage the anterior and posterior mitral valve leaflets, and struts in the ventricular region also form the anterior tabs 824 and the posterior tab 830. The anterior tabs are designed to capture the anterior mitral valve leaflet between an inner surface of the anterior tab and outer surface of the ventricular skirt. Any adjacent chordae tendineae may also be captured therebetween. Also, the tip of the anterior tab engages the fibrous trigone on an anterior portion of the mitral valve, one on the left and one on the right side. The posterior tab similarly captures the posterior mitral valve leaflet between an inner surface of the posterior tab and an outer surface of the ventricular skirt, along with any adjacent chordae tendineae. This will be described in more detail below. The posterior tab is similar to the posterior tabs described above in FIGS. 6-7, except that in this embodiment, the posterior tab comprises four interconnected struts as opposed to two interconnected struts. Thus, in this embodiment the plurality of interconnected struts form three hinged regions 836 along the tab. Upon expansion of the posterior tab, the hinged regions will also expand, thereby forming an elongate horizontal section which allows engagement and anchoring of the posterior tab with the sub-annular region between the posterior leaflet and the ventricular wall. This may help position and anchor the prosthetic valve better than posterior tabs which only have a smaller footprint or a single tapered tip for engagement with the posterior portion of the mitral valve. The posterior tab in this embodiment, may be substituted with any of the other posterior tabs described in this specification.


By controlling strut length or axial position of the anterior or posterior tabs along the frame, deployment of the tabs may be controlled. Thus in this exemplary embodiment, because the length of the struts in the anterior tabs and posterior tabs 824, 830 as well as their relative position along the frame are the same as one another, when a constraining sheath is retracted away from the tabs, the anterior and posterior tabs will partially spring outward together. As the constraining sheath is further retracted, the remainder of the anterior tabs will self-expand radially outward because they are the shortest relative to the struts in the ventricular skirt and the posterior tab. Further retraction of the constraining sheath then allows the remainder of the posterior tab to finish self-expanding, followed by self-expansion of the ventricular skirt. Using this sequence of deploying the prosthetic valve may allow the valve to more accurately be delivered and also more securely anchored into position.


Suture holes 821 are disposed along the struts of the annular region as well as the ventricular region to allow attachment of a cover such as pericardium or a polymer such as Dacron or ePTFE. The suture holes may also be disposed along any other part of the frame. Barbs 823 are disposed along the ventricular skirt 828 to help anchor the prosthetic valve to adjacent tissue. Commissure tabs or tabs 812 are disposed on the tips of the commissures 813 and may be used to releasably couple the commissures with a delivery system as will be described below. This allows the frame to expand first, and then the commissures may be released from the delivery system afterwards. One of skill in the art will appreciate that a number of strut geometries may be used, and additionally strut dimensions such as length, width, thickness, etc. may be adjusted in order to provide the prosthesis with the desired mechanical properties such as stiffness, radial crush strength, commissure deflection, etc. Therefore, the illustrated geometry is not intended to be limiting. The frame may be formed similarly as described above.



FIG. 9A illustrates the frame 900 of a prosthetic cardiac valve after it has expanded. Any of the frame embodiments described above may take this form as each of the above frames have similar geometry but they expand in different order. The frame includes the atrial skirt 906 with anterior portion 914 and posterior portion 916. A flanged region is formed around the posterior portion and the anterior portion remains flangeless. Additionally, the anterior portion is generally flat, while the posterior portion is cylindrically shaped, thereby forming a D-shaped cross-section which accommodates the mitral valve anatomy. FIG. 9B is a top view of the embodiment in FIG. 9A and more clearly illustrates the D-shaped cross-section.


The frame also includes the annular region 910 and ventricular skirt 912. Anterior tabs 904 (only one visible in this view) is fully expanded such that a space exists between the inner surface of the anterior tab and an outer surface of the ventricular skirt. This allows the anterior leaflet and adjacent chordae to be captured therebetween. Similarly, the posterior tab 902 is also fully deployed, with a similar space between the inner surface of the posterior tab 902 and an outer surface of the ventricular skirt. This allows the posterior leaflet and adjacent chordae tendineae to be captured therebetween. The commissure posts 908 are also visible and are disposed in the inner channel formed by the frame. The commissure posts are used to form the prosthetic mitral valve leaflets. The overall shape of the expanded frame is D-shaped, with the anterior portion flat and the posterior portion cylindrically shaped.



FIG. 10 illustrates the expanded frame covered with a cover 1002 such as pericardial tissue or a polymer such as ePTFE or a fabric like Dacron attached to the frame, thereby forming the prosthetic cardiac valve 1000. The atrial skirt may be entirely covered by a material, or in preferred embodiments, the covering is only disposed between adjacent struts 1012 in adjacent cells in the flanged portion of the atrial skirt. The area 1014 between adjacent struts within the same cell remain uncovered. This allows blood flow to remain substantially uninterrupted while the prosthetic valve is being implanted. Suture 1010 may be used to attach the cover to the frame. In this view, only the posterior tab 1006 is visible on the posterior portion of the prosthetic valve along with ventricular skirt 1008 and atrial skirt 1004.


Delivery System. FIGS. 11A-11D illustrate an exemplary embodiment of a delivery system that may be used to deliver any of the prosthetic cardiac valves disclosed in this specification. While the delivery system is designed to preferably deliver the prosthetic cardiac valve transapically, one of skill in the art will appreciate that it may also be modified so that the prosthetic valve may be delivered via a catheter transluminally, such using a transseptal route. One of skill in the art will appreciate that using a transseptal route may require the relative motion of the various shafts to be modified in order to accommodate the position of the delivery system relative to the mitral valve.



FIG. 11A illustrates a perspective view of delivery system 1100. The delivery system 1100 includes a handle 1112 near a proximal end of the delivery system and a distal tissue penetrating tip 1110. Four elongate shafts are included in the delivery system and include an outer sheath catheter shaft 1102, a bell catheter shaft 1104 which is slidably disposed in the outer sheath catheter shaft 1102, a hub catheter shaft 1106 which remains stationary relative to the other shafts, but the bell catheter shaft slides relative to the hub shaft, and finally an inner guidewire catheter shaft 1108 which is also fixed relative to the other shafts and has a lumen sized to receive a guidewire which passes therethrough and exits the distal tissue penetrating tip. An actuator mechanism 1114 is used to control movement of the various shafts as will be explained in greater detail below, and flush lines 1116, 1118 with luer connectors are used to flush the annular regions between adjacent shafts. Flush line 1118 is used to flush the annular space between the outer sheath catheter shaft 1102 and the bell catheter shaft 1104. Flush line 1116 is used to flush the annular space between the bell catheter 1104 and the hub catheter 1106. The inner guidewire catheter shaft 1108 is stationary relative to the hub catheter 1106 therefore the annular space may be sealed with an o-ring or other material. Luer connector 1122 allows flushing of the guidewire lumen and a hemostatic valve such as a Tuohy-Borst may be coupled to the luer connector to allow a guidewire to be advanced through the guidewire catheter shaft while maintaining hemostasis. Screws 1120 keep the handle housing coupled together. FIG. 11B illustrates a side view of the delivery system 1100.



FIG. 11C is a partial exploded view of the delivery system 1100 and more clearly illustrates the components in the handle 1112 and how they interact. The handle 1112 includes a housing having two halves 1112a, 1112b which hold all the components. The handle is preferably held together with screws 1120 and nuts 1120b, although it may also be sealed using other techniques such as a press fit, snap fit, adhesive bonding, ultrasonic welding, etc. Rotation of actuator wheel 1114 is translated into linear motion of threaded insert 1124. The outer sheath catheter shaft 1102 is coupled to the threaded insert 1124, therefore rotation of actuator wheel 1114 in one direction will advance the sheath catheter shaft 1102, and rotation in the opposite direction will retract the sheath catheter shaft 1102. Further rotation of actuator wheel 1114 retracts threaded insert 1124 enough to bump into pins 1126 which are coupled to insert 1128, thereby also moving insert 1128. The bell catheter shaft 1106 is coupled to insert 1128, therefore further rotation of the actuator wheel 1114 will move the outer shaft 1102 and also move the bell catheter shaft 1106. Rotation of the actuator wheel in the opposite direction advances the sheath and threaded insert 1124 disengages from pins 1126. Spring 1130 returns insert 1128 to its unbiased position, thereby returning the bell catheter shaft to its unbiased position.


Any of the prosthetic cardiac valves disclosed herein may be carried by delivery system 1100. The atrial skirt, annular skirt, anterior tabs, posterior tab and ventricular skirt are loaded over the bell catheter shaft and disposed under the outer sheath catheter shaft 1102. The ventricular skirt is loaded proximally so that it is closest to the handle 1112 and the atrial skirt is loaded most distally so it is closest to the tip 1110. Therefore, retraction of outer sheath catheter shaft 1102 plays a significant part in controlling deployment of the prosthetic cardiac valve. The atrial skirt therefore expands first when the outer sheath catheter is retracted. The prosthetic valve commissures may be coupled with a hub 1106a on the distal portion of hub catheter 1106 and then the bell catheter shaft is disposed thereover, thereby releasably engaging the commissures with the delivery catheter. Once other portions of the prosthetic cardiac valve have expanded, the commissures may be released.



FIG. 11D highlights the distal portion of the delivery system 1100. Outer sheath catheter shaft 1102 advances and retracts relative to bell catheter shaft 1104 which is slidably disposed in the outer sheath catheter shaft 1102. Hub catheter shaft 1106 is shown slidably disposed in bell catheter shaft 1104 and with bell catheter shaft 1104 retracted so as to expose the hub 1106a having slots 1106b that hold the prosthetic valve commissures. Inner guidewire catheter shaft 1108 is the innermost shaft and has a tapered conical section 1130 which provides a smooth transition for the prosthetic valve and prevents unwanted bending or buckling of the prosthetic cardiac valve frame. Tissue penetrating tip 1110 is adapted to penetrate tissue, especially in a cardiac transapical procedure.


Delivery Method. A number of methods may be used to deliver a prosthetic cardiac valve to the heart. Exemplary methods of delivering a prosthetic mitral valve may include a transluminal delivery route which may also be a transseptal technique which crosses the septum between the right and left sides of the heart, or in more preferred embodiments, a transapical route may be used such as illustrated in FIGS. 12A-12L. The delivery device previously described above may be used to deliver any of the embodiments of prosthetic valves described herein, or other delivery devices and other prosthetic valves may also be used, such as those disclosed in U.S. patent application Ser. No. 13/096,572, previously incorporated herein by reference. However, in this preferred exemplary embodiment, the prosthetic cardiac valve of FIG. 6 is used so that the anterior tabs deploy first, followed by the posterior tab, and then the ventricular skirt.



FIG. 12A illustrates the basic anatomy of the left side of a patient's heart including the left atrium LA and left ventricle LV. Pulmonary veins PV return blood from the lungs to the left atrium and the blood is then pumped from the left atrium into the left ventricle across the mitral valve MV. The mitral valve includes an anterior leaflet AL on an anterior side A of the valve and a posterior leaflet PL on a posterior side P of the valve. The leaflets are attached to chordae tendineae CT which are subsequently secured to the heart walls with papillary muscles PM. The blood is then pumped out of the left ventricle into the aorta Ao with the aortic valve AV preventing regurgitation.



FIG. 12B illustrates transapical delivery of a delivery system 1202 through the apex of the heart into the left atrium LA via the left ventricle LV. The delivery system 1202 may be advanced over a guidewire GW into the left atrium, and a tissue penetrating tip 1204 helps the delivery system pass through the apex of the heart by dilating the tissue and forming a larger channel for the remainder of the delivery system to pass through. The delivery catheter carries prosthetic cardiac valve 1208. Once the distal portion of the delivery system has been advanced into the left atrium, the outer sheath 1206 may be retracted proximally (e.g. toward the operator) thereby removing the constraint from the atrial portion of the prosthetic valve 1208. This allows the atrial skirt 1210 to self-expand radially outward. In FIG. 12C, as the outer sheath is further retracted, the atrial skirt continues to self-expand and peek out, until it fully deploys as seen in FIG. 12D. The atrial skirt may have a cylindrical shape or it may be D-shaped as discussed above with a flat anterior portion and a cylindrical posterior portion so as to avoid interfering with the aortic valve and other aspects of the left ventricular outflow tract. The prosthesis may be oriented and properly positioned by rotating the prosthesis and visualizing the alignment element previously described. Also, the prosthetic cardiac valve may be advanced upstream or downstream to properly position the atrial skirt. In preferred embodiments, the atrial skirt forms a flange that rests against a superior surface of the mitral valve and this anchors the prosthetic valve and prevents it from unwanted movement downstream into the left ventricle.


As the outer sheath 1206 continues to be proximally retracted, the annular region of the prosthetic cardiac valve self-expands next into engagement with the valve annulus. The annular region also preferably has the D-shaped geometry, although it may also be cylindrical or have other geometries to match the native anatomy. In FIG. 12E, retraction of sheath 1206 eventually allows both the anterior 1212 and posterior 1214 tabs to partially self-expand outward preferably without engaging the anterior or posterior leaflets or the chordae tendineae. In this embodiment, further retraction of the outer sheath 1206 then allows both the anterior tabs 1212 (only one visible in this view) to complete their self-expansion so that the anterior leaflet is captured between an inner surface of each of the anterior tabs and an outer surface of the ventricular skirt 1216, as illustrated in FIG. 12F. The posterior tab 1214 remains partially open, but has not completed its expansion yet. Additionally, the tips of the anterior tabs also anchor into the left and right fibrous trigones of the mitral valve, as will be illustrated in greater detail below.


In FIG. 12G, further retraction of the outer sheath 1206 then releases the constraints from the posterior tab 1214 allowing it to complete its self-expansion, thereby capturing the posterior leaflet PL between an inner surface of the posterior tab 1214 and an outer surface of the ventricular skirt 1218. In FIG. 12H, the sheath is retracted further releasing the ventricular skirt 1220 and allowing the ventricular skirt 1220 to radially expand outward, further capturing the anterior and posterior leaflets between the outer surface of the ventricular skirt and their respective anterior or posterior tabs. Expansion of the ventricular skirt also pushes the anterior and posterior leaflets outward, thereby ensuring that the native leaflets do not interfere with any portion of the prosthetic valve or the prosthetic valve leaflets. The prosthetic valve is now anchored in position above the mitral valve, along the annulus, to the valve leaflets, and below the mitral valve, thereby securing it in position.


Further actuation of the delivery device now retracts the outer sheath 1206 and the bell catheter shaft 1222 so as to remove the constraint from the hub catheter 1224, as illustrated in FIG. 121. This permits the prosthetic valve commissures 1226 to be released from the hub catheter, thus the commissures expand to their biased configuration. The delivery system 1202 and guidewire GW are then removed, leaving the prosthetic valve 1208 in position where it takes over for the native mitral valve, as seen in FIG. 12J.



FIGS. 12K and 12L highlight engagement of the anterior and posterior tabs with the respective anterior and posterior leaflets. In FIG. 12K, after anterior tabs 1212 have been fully expanded, they capture the anterior leaflet AL and adjacent chordae tendineae between an inside surface of the anterior tab and an outer surface of the ventricular skirt 1220. Moreover, the tips 1228 of the anterior tabs 1212 are engaged with the fibrous trigones FT of the anterior side of the mitral valve. The fibrous trigones are fibrous regions of the valve thus the anterior tabs further anchor the prosthetic valve into the native mitral valve anatomy. One anterior tab anchors into the left fibrous trigone, and the other anterior tabs anchors into the right fibrous trigone. The trigones are on opposite sides of the anterior side of the leaflet. FIG. 12L illustrates engagement of the posterior tab 1214 with the posterior leaflet PL which is captured between an inner surface of the posterior tab and an outer surface of the ventricular skirt 1220. Additionally, adjacent chordae tendineae are also captured between the posterior tab and ventricular skirt.



FIGS. 13A-13L illustrate another exemplary embodiment of a delivery method. This embodiment is similar to that previously described, with the major difference being the order in which the prosthetic cardiac valve self-expands into engagement with the mitral valve. Any delivery device or any prosthetic cardiac valve disclosed herein may be used, however in preferred embodiments, the embodiment of FIG. 7 is used. Varying the order may allow better positioning of the implant, easier capturing of the valve leaflets, and better anchoring of the implant. This exemplary method also preferably uses a transapical route, although transseptal may also be used.



FIG. 13A illustrates the basic anatomy of the left side of a patient's heart including the left atrium LA and left ventricle LV. Pulmonary veins PV return blood from the lungs to the left atrium and the blood is then pumped from the left atrium into the left ventricle across the mitral valve MV. The mitral valve includes an anterior leaflet AL on an anterior side A of the valve and a posterior leaflet PL on a posterior side P of the valve. The leaflets are attached to chordae tendineae CT which are subsequently secured to the heart walls with papillary muscles PM. The blood is then pumped out of the left ventricle into the aorta AO with the aortic valve AV preventing regurgitation.



FIG. 13B illustrates transapical delivery of a delivery system 1302 through the apex of the heart into the left atrium LA via the left ventricle LV. The delivery system 1302 may be advanced over a guidewire GW into the left atrium, and a tissue penetrating tip 1304 helps the delivery system pass through the apex of the heart by dilating the tissue and forming a larger channel for the remainder of the delivery system to pass through. The delivery catheter carries prosthetic cardiac valve 1308. Once the distal portion of the delivery system has been advanced into the left atrium, the outer sheath 1306 may be retracted proximally (e.g. toward the operator) thereby removing the constraint from the atrial portion of the prosthetic valve 1308. This allows the atrial skirt 1310 to self-expand radially outward. In FIG. 13C, as the outer sheath is further retracted, the atrial skirt continues to self-expand and peek out, until it fully deploys as seen in FIG. 13D. The atrial skirt may have a cylindrical shape or it may be D-shaped as discussed above with a flat anterior portion and a cylindrical posterior portion so as to avoid interfering with the aortic valve and other aspects of the left ventricular outflow tract. The prosthesis may be oriented and properly positioned by rotating the prosthesis and visualizing the alignment element previously described. Also, the prosthetic cardiac valve may be advanced upstream or downstream to properly position the atrial skirt. In preferred embodiments, the atrial skirt forms a flange that rests against a superior surface of the mitral valve and this anchors the prosthetic valve and prevents it from unwanted movement downstream into the left ventricle.


As the outer sheath 1306 continues to be proximally retracted, the annular region of the prosthetic cardiac valve self-expands next into engagement with the valve annulus. The annular region also preferably has the D-shaped geometry, although it may also be cylindrical or have other geometries to match the native anatomy. In FIG. 13E, retraction of sheath 1306 eventually allows both the anterior 1312 and posterior 1314 tabs to partially self-expand outward preferably without engaging the anterior or posterior leaflets or the chordae tendineae. In this embodiment, further retraction of the outer sheath 1306 then allows both the anterior tabs 1312 (only one visible in this view) to complete their self-expansion so that the anterior leaflet is captured between an inner surface of each of the anterior tabs and an outer surface of the ventricular skirt 1316, as illustrated in FIG. 13F. The posterior tab 1214 remains partially open, but has not completed its expansion yet. Additionally, the tips of the anterior tabs also anchor into the left and right fibrous trigones of the mitral valve, as will be illustrated in greater detail below.


In FIG. 13G, further retraction of the outer sheath 1306 then releases the constraint from the ventricular skirt 1320 allowing the ventricular skirt to radially expand. This then further captures the anterior leaflets AL between the anterior tab 1312 and the ventricular skirt 1316. Expansion of the ventricular skirt also pushes the anterior and posterior leaflets outward, thereby ensuring that the native leaflets do not interfere with any portion of the prosthetic valve or the prosthetic valve leaflets. Further retraction of sheath 1306 as illustrated in FIG. 13H releases the constraint from the posterior tab 1314 allowing it to complete its self-expansion, thereby capturing the posterior leaflet PL between an inner surface of the posterior tab 1314 and an outer surface of the ventricular skirt 1318. The prosthetic valve is now anchored in position above the mitral valve, along the annulus, to the valve leaflets, and below the mitral valve, thereby securing it in position.


Further actuation of the delivery device now retracts the outer sheath 1306 and the bell catheter shaft 1322 so as to remove the constraint from the hub catheter 1324, as illustrated in FIG. 131. This permits the prosthetic valve commissures 1326 to be released from the hub catheter, thus the commissures expand to their biased configuration. The delivery system 1302 and guidewire GW are then removed, leaving the prosthetic valve 1308 in position where it takes over for the native mitral valve, as seen in FIG. 13J.



FIGS. 13K and 13L highlight engagement of the anterior and posterior tabs with the respective anterior and posterior leaflet. In FIG. 13K, after anterior tabs 1312 have been fully expanded, they capture the anterior leaflet AL and adjacent chordae tendineae between an inside surface of the anterior tab and an outer surface of the ventricular skirt 1320. Moreover, the tips 1328 of the anterior tabs 1312 are engaged with the fibrous trigones FT of the anterior side of the mitral valve. The fibrous trigones are fibrous regions of the valve thus the anterior tabs further anchor the prosthetic valve into the native mitral valve anatomy. One anterior tab anchors into the left fibrous trigone, and the other anterior tabs anchors into the right fibrous trigone. The trigones are on opposite sides of the anterior side of the leaflet. FIG. 13L illustrates engagement of the posterior tab 1314 with the posterior leaflet PL which is captured between an inner surface of the posterior tab and an outer surface of the ventricular skirt 1320. Additionally, adjacent chordae tendineae are also captured between the posterior tab and ventricular skirt.


Tab Covering. In the exemplary embodiments described above, the tabs (anterior trigonal tabs and posterior ventricular tab) are generally narrow and somewhat pointy. The embodiment previously described with respect to FIG. 8 includes a horizontal strut on the posterior tab that helps distribute force across a greater area and thereby reduces trauma to the tissue. FIGS. 14A-14D illustrate another embodiment that is preferably used with the anterior trigonal tabs to help reduce trauma. It may also be used with the posterior tab if desired.



FIG. 14A illustrates an anterior trigonal tab 1402 having a tip 1404. This tip can be narrow and pointy and thereby induce tissue trauma when deployed into the tissue. Therefore, in some embodiments, it may be desirable to place a cover over the tip to help reduce tissue trauma. FIG. 14B illustrates a polymer tab 1406 that may be attached to the trigonal tab 1402. In other embodiments, the tab may be formed from other materials such as fabric, metals, or other materials known in the art. The polymer tab may be laser cut from a sheet of polymer and includes a long axial portion 1408 and an enlarged head region 1410. A plurality of suture holes 1412 may be pre-cut into the polymer tab 1406 and the holes are sized to receive suture material. Precut holes on the polymer tab may be aligned with pre-cut holes on the trigonal tab and then the polymer tab may be secured to the trigonal tab with sutures, adhesives, or other coupling techniques known in the art. A fabric cover 1414 having two symmetric halves separated by a hinged area 1416 is then wrapped around the polymer tab and attached to the polymer tab by sutures, thereby forming a shroud around the trigonal tab. The fabric may be Dacron, ePTFE, or any other biocompatible material known in the art. Thus, the cover increases the surface area of contact between the trigonal tabs and the tissue thereby reducing potential trauma and likelihood of piercing the heart wall. Additionally, the material may allow tissue ingrowth which further helps to anchor the prosthesis. Materials and dimensions are also selected in order to maintain the low profile of the device during delivery in the collapsed configuration.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method of delivering an implantable prosthetic valve to a patient's heart, the patient's heart having a mitral valve with an anterior leaflet and a posterior leaflet, said method comprising: providing a prosthetic valve, wherein the prosthetic valve comprises an expandable frame having a first end, a second end opposite the first end, a first anterior tab on an anterior portion of the expandable frame, a posterior tab on a posterior portion of the expandable frame, and a ventricular skirt adjacent the first end of the expandable frame;delivering the prosthetic valve in a collapsed configuration to the patient's heart;expanding the first anterior tab radially outward such that the first anterior tab engages a first fibrous trigone on a first side of the anterior leaflet of the mitral valve;after radially expanding the first anterior tab, radially expanding the ventricular skirt outward thereby engaging the anterior leaflet,wherein the anterior leaflet and adjacent anterior chordae tendineae are disposed between the first anterior tab and an outer anterior surface of the ventricular skirt;after radially expanding the ventricular skirt, radially expanding the posterior tab outward such that the posterior leaflet of the mitral valve and adjacent posterior chordae tendinae are disposed between the posterior tab and an outer posterior surface of the ventricular skirt.
  • 2. The method of claim 1, wherein delivering the prosthetic valve comprises transapically delivering the prosthetic valve from a region outside the heart to the left ventricle of the heart.
  • 3. The method of claim 1, wherein delivering the prosthetic valve comprises transseptally delivering the prosthetic valve from the right atrium to the left atrium of the heart.
  • 4. The method of claim 1, wherein delivering the prosthetic valve comprises positioning the prosthetic valve across the mitral valve so that the first end of the expandable frame is inferior to a portion of the mitral valve and the second end of the expandable frame is superior to a portion of the mitral valve.
  • 5. The method of claim 1, wherein expanding the first anterior tab comprises retracting a constraining sheath from the first anterior tab so that the first anterior tab is free to self-expand radially outward.
  • 6. The method of claim 1, wherein the prosthetic valve further comprises a second anterior tab on the anterior portion of the expandable frame, the method further comprising expanding the second anterior tab radially outward such that the second anterior tab engages a second fibrous trigone on a second side of the anterior leaflet opposite the first side of the anterior leaflet, and wherein the anterior leaflet and adjacent anterior chordae tendineae are disposed between the second anterior tab and the outer anterior surface of the ventricular skirt.
  • 7. The method of claim 6, wherein the second anterior tab expands radially outward concurrently with the radial expansion of the first anterior tab.
  • 8. The method of claim 6, wherein prior to engaging the first fibrous trigone or the second fibrous trigone with the respective first or second anterior tab, and prior to disposing the anterior leaflet and the adjacent chordae tendineae between the first or second anterior tab and the outer anterior surface of the ventricular skirt, the method comprises partially expanding the first or the second anterior tab radially outward such that the first or the second anterior tab is transverse to a longitudinal axis of the prosthetic valve.
  • 9. The method of claim 6, wherein expanding the second anterior tab comprises retracting a constraining sheath from the second anterior tab so that the second anterior tab is free to self-expand radially outward.
  • 10. The method of claim 1, wherein radially expanding the ventricular skirt comprises retracting a constraining sheath from the ventricular skirt so that the ventricular skirt is free to self-expand radially outward.
  • 11. The method of claim 1, wherein expanding the ventricular skirt displaces the anterior and posterior valve leaflets radially outward without contacting an inner wall of the left ventricle, and without obstructing a left ventricular outflow tract.
  • 12. The method of claim 1, wherein radially expanding the ventricular skirt expands the ventricular skirt asymmetrically such that an anterior portion of the ventricular skirt is substantially flat, and a posterior portion of the ventricular skirt is cylindrically shaped.
  • 13. The method of claim 1, wherein prior to disposing the posterior leaflet of the mitral valve and the adjacent posterior chordae tendineae between the posterior tab and the outer posterior surface of the ventricular skirt, the method comprises partially expanding the posterior tab radially outward such that the posterior tab is transverse to a longitudinal axis of the prosthetic valve.
  • 14. The method of claim 1, wherein after the anterior leaflet and the adjacent chordae tendineae are disposed between the first anterior tab and the outer anterior surface of the ventricular skirt, the method comprises partially expanding the posterior tab radially outward such that the posterior tab is transverse to a longitudinal axis of the prosthetic valve, and wherein the posterior tab is partially expanded without disposing the posterior leaflet of the mitral valve and the adjacent posterior chordae tendineae between the posterior tab and the outer posterior surface of the ventricular skirt.
  • 15. The method of claim 1, wherein the prosthetic valve comprises an alignment element, and wherein a second fibrous trigone is disposed on a second side of the anterior leaflet opposite the first side of the anterior leaflet, the method further comprising aligning the alignment element with an aortic root and disposing the alignment element between the first and second fibrous trigones.
  • 16. The method of claim 15, wherein aligning the alignment element comprises rotating the prosthetic valve.
  • 17. The method of claim 1, wherein the prosthetic valve further comprises an atrial skirt, the method further comprising: expanding the atrial skirt radially outward so as to lie over a superior surface of the mitral valve; andengaging the atrial skirt against the superior surface of the mitral valve.
  • 18. The method of claim 17, wherein expanding the atrial skirt comprises retracting a constraining sheath from the atrial skirt so that the atrial skirt is free to self-expand radially outward.
  • 19. The method of claim 1, wherein the prosthetic valve further comprises an annular region, the method further comprising: expanding the annular region radially outward so as to conform with an annulus of the mitral valve; andengaging the annular region with the mitral valve annulus.
  • 20. The method of claim 19, wherein expanding the annular region comprises retracting a constraining sheath from the annular region so that the annular region is free to self-expand radially outward.
  • 21. The method of claim 19, wherein expanding the annular region comprises asymmetrically expanding the annular region such that an anterior portion of the annular region is substantially flat, and a posterior portion of the annular region is cylindrically shaped.
CROSS-REFERENCE

The present application is a continuation of U.S. patent application Ser. No. 15/046,371 now U.S. Pat. No. 9,713,529 filed Feb. 17, 2016 which is a continuation of U.S. patent application Ser. No. 13/679,920 filed Nov. 16, 2012, now U.S. Pat. No. 9,308,087 which is a non-provisional of, and claims the benefit of U.S. Provisional Patent Application No. 61/563,156 filed Nov. 23, 2011; the entire contents of which are incorporated herein by reference. The present application is related to U.S. patent application Ser. No. 13/096,572 filed Apr. 28, 2011, now U.S. Pat. No. 8,579,964, the entire contents of which are incorporated herein by reference.

US Referenced Citations (949)
Number Name Date Kind
3548417 Kischer Dec 1970 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3739402 Kahn et al. Jun 1973 A
4056854 Boretos et al. Nov 1977 A
4079468 Liotta et al. Mar 1978 A
4204283 Bellhouse et al. May 1980 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4339831 Johnson Jul 1982 A
4340977 Brownlee et al. Jul 1982 A
4470157 Love Sep 1984 A
4477930 Totten et al. Oct 1984 A
4490859 Black et al. Jan 1985 A
4553545 Maass et al. Nov 1985 A
4655771 Wallsten et al. Apr 1987 A
4733665 Palmaz et al. Mar 1988 A
4776337 Palmaz et al. Oct 1988 A
4777951 Cribier et al. Oct 1988 A
4865600 Carpentier et al. Sep 1989 A
4950227 Savin et al. Aug 1990 A
4994077 Dobben Feb 1991 A
5067957 Jervis Nov 1991 A
5197978 Hess et al. Mar 1993 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5344427 Cottenceau et al. Sep 1994 A
5370685 Stevens Dec 1994 A
5397355 Marin et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5439446 Barry Aug 1995 A
5474563 Myler et al. Dec 1995 A
5509930 Love Apr 1996 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5575818 Pinchuk Nov 1996 A
5607444 Lam Mar 1997 A
5607469 Frey Mar 1997 A
5669919 Sanders et al. Sep 1997 A
5697382 Love et al. Dec 1997 A
D390957 Fontaine Feb 1998 S
5713952 Vanney et al. Feb 1998 A
5725519 Penner et al. Mar 1998 A
5769812 Stevens et al. Jun 1998 A
5807398 Shaknovich Sep 1998 A
5810873 Morales Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855601 Bessler et al. Jan 1999 A
5868777 Lam Feb 1999 A
5868782 Frantzen Feb 1999 A
5876437 Vanney et al. Mar 1999 A
5879381 Moriuchi et al. Mar 1999 A
5902334 Dwyer et al. May 1999 A
5928281 Huynh et al. Jul 1999 A
5935108 Katoh et al. Aug 1999 A
5954764 Parodi Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5992000 Humphrey et al. Nov 1999 A
6004328 Solar Dec 1999 A
6015431 Thornton et al. Jan 2000 A
6042606 Frantzen Mar 2000 A
6053940 Wijay Apr 2000 A
6074417 Peredo Jun 2000 A
6086612 Jansen Jul 2000 A
6113612 Swanson et al. Sep 2000 A
6113631 Jansen Sep 2000 A
6132458 Staehle et al. Oct 2000 A
6152937 Peterson et al. Nov 2000 A
6159237 Alt et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6168616 Brown, III Jan 2001 B1
6251093 Valley et al. Jun 2001 B1
6280466 Kugler et al. Aug 2001 B1
6306141 Jervis Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6336938 Kavteladze et al. Jan 2002 B1
6352543 Cole Mar 2002 B1
6358277 Duran Mar 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6458153 Bailey et al. Oct 2002 B1
6475237 Drasler et al. Nov 2002 B2
6482228 Norred Nov 2002 B1
6511491 Grudem et al. Jan 2003 B2
6517573 Pollock et al. Feb 2003 B1
6527800 McGuckin, Jr. et al. Mar 2003 B1
6551303 Van Tassel et al. Apr 2003 B1
6582462 Andersen et al. Jun 2003 B1
6602281 Klein Aug 2003 B1
6610088 Gabbay Aug 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6641606 Ouriel et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
D484979 Fontaine Jan 2004 S
6676698 McGuckin et al. Jan 2004 B2
6682537 Ouriel et al. Jan 2004 B2
6695878 McGuckin et al. Feb 2004 B2
6702843 Brown et al. Mar 2004 B1
6712836 Berg et al. Mar 2004 B1
6723123 Kazatchkov et al. Apr 2004 B1
6730118 Spenser et al. May 2004 B2
6733523 Shaolian et al. May 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6767362 Schreck Jul 2004 B2
6780200 Jansen Aug 2004 B2
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6858034 Hijlkema et al. Feb 2005 B1
6875231 Anduiza et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908477 McGuckin et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6926732 Derus et al. Aug 2005 B2
6929660 Ainsworth et al. Aug 2005 B1
6936058 Forde et al. Aug 2005 B2
6979350 Moll et al. Dec 2005 B2
7014653 Ouriel et al. Mar 2006 B2
7018401 Hyodoh et al. Mar 2006 B1
7018406 Seguin et al. Mar 2006 B2
7025780 Gabbay Apr 2006 B2
7044962 Elliot et al. May 2006 B2
7044966 Svanidze et al. May 2006 B2
7087088 Berg et al. Aug 2006 B2
7147660 Chobotov et al. Dec 2006 B2
7147661 Chobotov et al. Dec 2006 B2
7147663 Berg et al. Dec 2006 B1
7153322 Alt Dec 2006 B2
7186265 Sharkawy et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7252682 Seguin Aug 2007 B2
D553747 Fliedner Oct 2007 S
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7329278 Seguin et al. Feb 2008 B2
7338520 Bailey et al. Mar 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7435257 Lashinski et al. Oct 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Haug et al. Nov 2008 B2
7455689 Johnson Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7527646 Rahdert et al. May 2009 B2
7585321 Cribier Sep 2009 B2
7608114 Levine et al. Oct 2009 B2
7615072 Rust et al. Nov 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7628805 Spenser et al. Dec 2009 B2
7632298 Hijlkema et al. Dec 2009 B2
7637945 Solem et al. Dec 2009 B2
7637946 Solem et al. Dec 2009 B2
7682390 Seguin Mar 2010 B2
7708775 Rowe et al. May 2010 B2
7712606 Salahieh et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
D622387 Igaki Aug 2010 S
D622388 Igaki Aug 2010 S
7771463 Ton et al. Aug 2010 B2
7771472 Hendricksen et al. Aug 2010 B2
7780725 Haug et al. Aug 2010 B2
7785360 Freitag Aug 2010 B2
7799072 Greenberg Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7806917 Xiao Oct 2010 B2
7806919 Bloom et al. Oct 2010 B2
7815589 Meade et al. Oct 2010 B2
7815673 Bloom et al. Oct 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7837727 Goetz et al. Nov 2010 B2
7846203 Cribier Dec 2010 B2
7871435 Carpentier et al. Jan 2011 B2
7892281 Seguin et al. Feb 2011 B2
D635261 Rossi Mar 2011 S
D635262 Rossi Mar 2011 S
7896915 Guyenot et al. Mar 2011 B2
7914569 Nguyen et al. Mar 2011 B2
7914575 Guyenot et al. Mar 2011 B2
7919112 Pathak et al. Apr 2011 B2
7947075 Goetz et al. May 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7967853 Eidenschink et al. Jun 2011 B2
7972377 Lane Jul 2011 B2
7972378 Tabor et al. Jul 2011 B2
7981151 Rowe Jul 2011 B2
7993392 Righini et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
7993395 Vanermen et al. Aug 2011 B2
7998196 Mathison Aug 2011 B2
8009887 Ionasec et al. Aug 2011 B2
8016870 Chew et al. Sep 2011 B2
8016877 Seguin et al. Sep 2011 B2
8029564 Johnson et al. Oct 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052747 Melnikov et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8057538 Bergin et al. Nov 2011 B2
8057539 Ghione et al. Nov 2011 B2
8057540 Letac et al. Nov 2011 B2
8062350 Gale et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8066763 Alt Nov 2011 B2
8070799 Righini et al. Dec 2011 B2
8070800 Lock et al. Dec 2011 B2
8070801 Cohn Dec 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8075611 Millwee et al. Dec 2011 B2
8075615 Eberhardt et al. Dec 2011 B2
8078279 Dennis et al. Dec 2011 B2
8080054 Rowe Dec 2011 B2
8083793 Lane et al. Dec 2011 B2
8088158 Brodeur Jan 2012 B2
8088404 Udipi et al. Jan 2012 B2
8092520 Quadri Jan 2012 B2
8100964 Spence Jan 2012 B2
8105375 Navia et al. Jan 2012 B2
8105377 Liddicoat Jan 2012 B2
8109995 Paniagua et al. Feb 2012 B2
8109996 Stacchino et al. Feb 2012 B2
8114154 Righini et al. Feb 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8119704 Wang et al. Feb 2012 B2
8123801 Milo Feb 2012 B2
8128681 Shoemaker et al. Mar 2012 B2
8128688 Ding et al. Mar 2012 B2
8136218 Millwee et al. Mar 2012 B2
8137398 Tuval et al. Mar 2012 B2
8137687 Chen et al. Mar 2012 B2
8142492 Forster et al. Mar 2012 B2
8142494 Rahdert et al. Mar 2012 B2
8147504 Ino et al. Apr 2012 B2
8155754 Nygren et al. Apr 2012 B2
8157852 Bloom et al. Apr 2012 B2
8157853 Laske et al. Apr 2012 B2
8158187 Chen et al. Apr 2012 B2
8163014 Lane et al. Apr 2012 B2
8167926 Hartley et al. May 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8168275 Lee et al. May 2012 B2
8170645 Solar et al. May 2012 B2
8177799 Orban, III May 2012 B2
8177836 Lee et al. May 2012 B2
8180428 Kaiser et al. May 2012 B2
8182528 Salahieh et al. May 2012 B2
8182530 Huber et al. May 2012 B2
8182829 Kleiner et al. May 2012 B2
8187851 Shah et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8202529 Hossainy et al. Jun 2012 B2
8211169 Lane et al. Jul 2012 B2
8216261 Solem et al. Jul 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8219229 Cao et al. Jul 2012 B2
8220121 Hendriksen et al. Jul 2012 B2
8221482 Cottone et al. Jul 2012 B2
8221493 Bailey et al. Jul 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8231930 Castro et al. Jul 2012 B2
D665079 Zago Aug 2012 S
D665080 Zago Aug 2012 S
8236045 Benichou et al. Aug 2012 B2
8236241 Carpentier et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8246675 Zegdi Aug 2012 B2
8246677 Ryan Aug 2012 B2
8246678 Haug et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8262724 Seguin et al. Sep 2012 B2
8273118 Bergin Sep 2012 B2
8273120 Dolan Sep 2012 B2
8276533 Chambers et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308798 Pintor et al. Nov 2012 B2
8313520 Barbut et al. Nov 2012 B2
8313525 Tuval et al. Nov 2012 B2
8317854 Ryan et al. Nov 2012 B1
8323335 Rowe et al. Dec 2012 B2
8323336 Hill et al. Dec 2012 B2
8337541 Quadri et al. Dec 2012 B2
8348995 Tuval et al. Jan 2013 B2
8349001 Mensah et al. Jan 2013 B2
8349003 Shu et al. Jan 2013 B2
8353921 Schaller et al. Jan 2013 B2
8353948 Besselink et al. Jan 2013 B2
8353953 Giannetti et al. Jan 2013 B2
8357387 Dove et al. Jan 2013 B2
8361137 Perouse Jan 2013 B2
8361537 Shanley Jan 2013 B2
8366769 Huynh et al. Feb 2013 B2
8377116 Hsu et al. Feb 2013 B2
8377499 Kleiner et al. Feb 2013 B2
8382816 Pollock et al. Feb 2013 B2
RE44075 Williamson et al. Mar 2013 E
8398707 Bergin Mar 2013 B2
8398708 Meiri et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8408214 Spenser Apr 2013 B2
8409274 Li et al. Apr 2013 B2
8414635 Hyodoh et al. Apr 2013 B2
8414643 Tuval et al. Apr 2013 B2
8414644 Quadri et al. Apr 2013 B2
8414645 Dwork et al. Apr 2013 B2
8430902 Bergheim Apr 2013 B2
8430927 Bonhoeffer Apr 2013 B2
8444689 Zhang May 2013 B2
8449466 Duhay et al. May 2013 B2
8449599 Chau et al. May 2013 B2
8449625 Campbell et al. May 2013 B2
8454684 Bergin et al. Jun 2013 B2
8454685 Hariton et al. Jun 2013 B2
8460335 Carpenter Jun 2013 B2
8460365 Haverkost et al. Jun 2013 B2
8460366 Rowe et al. Jun 2013 B2
8460370 Zakay et al. Jun 2013 B2
8460373 Fogarty et al. Jun 2013 B2
8470023 Eidenschink et al. Jun 2013 B2
8470024 Ghione et al. Jun 2013 B2
8475521 Suri et al. Jul 2013 B2
8475522 Jimenez et al. Jul 2013 B2
8475523 Duffy Jul 2013 B2
8479380 Malewicz et al. Jul 2013 B2
8480730 Maurer et al. Jul 2013 B2
8480731 Elizondo et al. Jul 2013 B2
8486137 Suri et al. Jul 2013 B2
8491650 Wiemeyer et al. Jul 2013 B2
8500688 Engel et al. Aug 2013 B2
8500755 Ino et al. Aug 2013 B2
8500798 Rowe et al. Aug 2013 B2
8500801 Eberhardt et al. Aug 2013 B2
8500802 Lane et al. Aug 2013 B2
8506620 Ryan Aug 2013 B2
8506625 Johnson Aug 2013 B2
8511244 Holecek et al. Aug 2013 B2
8512397 Rolando et al. Aug 2013 B2
8512398 Alkhatib Aug 2013 B2
8512399 Lafontaine Aug 2013 B2
8512401 Murray, III et al. Aug 2013 B2
8518106 Duffy et al. Aug 2013 B2
8518108 Huynh et al. Aug 2013 B2
8529621 Alfieri et al. Sep 2013 B2
8535368 Headley et al. Sep 2013 B2
8539662 Stacchino et al. Sep 2013 B2
8545742 Gada et al. Oct 2013 B2
8551162 Fogarty et al. Oct 2013 B2
8562663 Mearns et al. Oct 2013 B2
8562672 Bonhoeffer et al. Oct 2013 B2
8562673 Yeung et al. Oct 2013 B2
8565872 Pederson Oct 2013 B2
8568472 Marchand et al. Oct 2013 B2
8579964 Lane et al. Nov 2013 B2
8579965 Bonhoeffer et al. Nov 2013 B2
8584849 McCaffrey Nov 2013 B2
8585749 Shelso Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8585756 Bonhoeffer et al. Nov 2013 B2
8591570 Revuelta et al. Nov 2013 B2
8591574 Lambrecht et al. Nov 2013 B2
8597348 Rowe et al. Dec 2013 B2
8603154 Strauss et al. Dec 2013 B2
8603160 Salahieh et al. Dec 2013 B2
8603161 Drews et al. Dec 2013 B2
8608648 Banik et al. Dec 2013 B2
8617236 Paul et al. Dec 2013 B2
8623074 Ryan Jan 2014 B2
8623080 Fogarty et al. Jan 2014 B2
8628566 Eberhardt et al. Jan 2014 B2
8632586 Spenser et al. Jan 2014 B2
8632608 Carpentier et al. Jan 2014 B2
8640521 Righini et al. Feb 2014 B2
8641639 Manstrom et al. Feb 2014 B2
8647381 Essinger et al. Feb 2014 B2
8652201 Oberti et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8653632 Pederson et al. Feb 2014 B2
8663318 Ho Mar 2014 B2
8663319 Ho Mar 2014 B2
8668730 McGuckin, Jr. et al. Mar 2014 B2
8668733 Salahieh et al. Mar 2014 B2
8672992 Orr Mar 2014 B2
8672997 Drasler et al. Mar 2014 B2
8672998 Lichtenstein et al. Mar 2014 B2
8672999 Cali et al. Mar 2014 B2
8673000 Tabor et al. Mar 2014 B2
8679174 Ottma et al. Mar 2014 B2
8679404 Liburd et al. Mar 2014 B2
8685083 Perier et al. Apr 2014 B2
8685086 Navia et al. Apr 2014 B2
8690787 Blomqvist et al. Apr 2014 B2
8690936 Nguyen et al. Apr 2014 B2
8696742 Pintor et al. Apr 2014 B2
8707957 Callister et al. Apr 2014 B2
8715207 Righini et al. May 2014 B2
8715337 Chuter et al. May 2014 B2
8715343 Navia et al. May 2014 B2
8721707 Boucher et al. May 2014 B2
8721708 Sequin et al. May 2014 B2
8721713 Tower et al. May 2014 B2
8721714 Kelley May 2014 B2
8728154 Alkhatib May 2014 B2
8728155 Montorfano et al. May 2014 B2
8731658 Hampton et al. May 2014 B2
8734484 Ahlberg et al. May 2014 B2
8740930 Goodwin Jun 2014 B2
8740974 Lambrecht et al. Jun 2014 B2
8740975 Yang et al. Jun 2014 B2
8740976 Tran et al. Jun 2014 B2
8747458 Tuval et al. Jun 2014 B2
8747459 Nguyen et al. Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8753384 Leanna Jun 2014 B2
8758432 Solem et al. Jun 2014 B2
8764814 Solem Jul 2014 B2
8764820 Dehdashtian et al. Jul 2014 B2
8771302 Woolfson et al. Jul 2014 B2
8771344 Tran et al. Jul 2014 B2
8771345 Tuval et al. Jul 2014 B2
8771346 Tuval et al. Jul 2014 B2
8777975 Kashkarov et al. Jul 2014 B2
8778018 Iobbi Jul 2014 B2
8784478 Tuval et al. Jul 2014 B2
8784480 Taylor et al. Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790387 Nguyen et al. Jul 2014 B2
8790395 Straubinger et al. Jul 2014 B2
8790396 Bergheim et al. Jul 2014 B2
8791171 Pacetti et al. Jul 2014 B2
8795356 Quadri et al. Aug 2014 B2
8801776 House et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808370 Nitzan et al. Aug 2014 B2
8821569 Gurskis et al. Sep 2014 B2
8821570 Dumontelle et al. Sep 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8828079 Thielen et al. Sep 2014 B2
8834561 Figulla et al. Sep 2014 B2
8834564 Tuval et al. Sep 2014 B2
8840661 Manasse Sep 2014 B2
8845718 Tuval et al. Sep 2014 B2
8845720 Conklin Sep 2014 B2
8852267 Cattaneo Oct 2014 B2
8858620 Salahieh et al. Oct 2014 B2
8858621 Oba et al. Oct 2014 B2
8870936 Rowe Oct 2014 B2
8870947 Shaw Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8876712 Yee et al. Nov 2014 B2
8876883 Rust Nov 2014 B2
8876893 Dwork et al. Nov 2014 B2
8876894 Tuval et al. Nov 2014 B2
8876895 Tuval et al. Nov 2014 B2
8882831 Alkhatib Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8894703 Salahieh et al. Nov 2014 B2
8906081 Cully et al. Dec 2014 B2
8911455 Quadri et al. Dec 2014 B2
8911844 Ford Dec 2014 B2
8926688 Burkart et al. Jan 2015 B2
8926693 Duffy et al. Jan 2015 B2
8932349 Jenson et al. Jan 2015 B2
8940887 Chatterton et al. Jan 2015 B2
8945208 Jimenez et al. Feb 2015 B2
8945209 Bonyuet et al. Feb 2015 B2
8945210 Cartledge et al. Feb 2015 B2
8951280 Cohn et al. Feb 2015 B2
8951299 Paul et al. Feb 2015 B2
8961583 Hojeibane et al. Feb 2015 B2
8961589 Kleiner et al. Feb 2015 B2
8961593 Bonhoeffer et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8968393 Rothstein Mar 2015 B2
8968395 Hauser et al. Mar 2015 B2
8974524 Yeung et al. Mar 2015 B2
8979922 Thambar et al. Mar 2015 B2
8986372 Murry, III et al. Mar 2015 B2
8986713 Cleek et al. Mar 2015 B2
8992608 Salahieh et al. Mar 2015 B2
8998978 Wang Apr 2015 B2
8998979 Seguin et al. Apr 2015 B2
8998980 Shipley et al. Apr 2015 B2
8998981 Tuval et al. Apr 2015 B2
8999369 Gale et al. Apr 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9005277 Pintor et al. Apr 2015 B2
9011521 Haug et al. Apr 2015 B2
9011523 Seguin Apr 2015 B2
9011524 Eberhardt Apr 2015 B2
9011528 Ryan et al. Apr 2015 B2
9023100 Quadri et al. May 2015 B2
9028545 Taylor May 2015 B2
9029418 Dove et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9055937 Rowe et al. Jun 2015 B2
9078749 Lutter et al. Jul 2015 B2
9078751 Naor Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095431 Yu et al. Aug 2015 B2
9125738 Figulla et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9161834 Taylor et al. Oct 2015 B2
9241790 Lane et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9308087 Lane et al. Apr 2016 B2
D755384 Pesce et al. May 2016 S
9333074 Quadri et al. May 2016 B2
9554897 Lane et al. Jan 2017 B2
9713529 Lane et al. Jul 2017 B2
9770329 Lane et al. Sep 2017 B2
20010007956 Letac et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010047180 Grudem et al. Nov 2001 A1
20010047200 White et al. Nov 2001 A1
20020016623 Kula et al. Feb 2002 A1
20020022853 Swanson et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020045929 Diaz Apr 2002 A1
20020052644 Shaolian et al. May 2002 A1
20020055772 McGuckin et al. May 2002 A1
20020111619 Keast et al. Aug 2002 A1
20020183827 Derus et al. Dec 2002 A1
20030040792 Gabbay Feb 2003 A1
20030105517 White et al. Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030120263 Ouriel et al. Jun 2003 A1
20030120330 Ouriel et al. Jun 2003 A1
20030120333 Ouriel et al. Jun 2003 A1
20030125797 Chobotov et al. Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030176914 Rabkin et al. Sep 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030220683 Minasian et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040087900 Thompson et al. May 2004 A1
20040093058 Cottone et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040102842 Jansen May 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040133273 Cox Jul 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040186561 McGuckin et al. Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215325 Penn et al. Oct 2004 A1
20040225353 McGuckin et al. Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040243230 Navia et al. Dec 2004 A1
20040249433 Freitag Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050033398 Seguin Feb 2005 A1
20050038470 Van Der Burg et al. Feb 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090887 Pryor Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050107872 Mensah et al. May 2005 A1
20050125020 Meade et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050154444 Quadri Jul 2005 A1
20050159811 Lane Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050182486 Gabbay Aug 2005 A1
20050203616 Cribier Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060020247 Kagan et al. Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060020334 Lashinski et al. Jan 2006 A1
20060052802 Sterman et al. Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060064120 Levine et al. Mar 2006 A1
20060095115 Bladillah et al. May 2006 A1
20060106454 Osborne et al. May 2006 A1
20060116625 Renati et al. Jun 2006 A1
20060129235 Seguin et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060173537 Yang et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060212110 Osborne et al. Sep 2006 A1
20060224232 Chobotov Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20060293698 Douk Dec 2006 A1
20060293745 Carpentier et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070050020 Spence Mar 2007 A1
20070050021 Johnson Mar 2007 A1
20070067016 Jung Mar 2007 A1
20070100432 Case et al. May 2007 A1
20070118206 Colgan et al. May 2007 A1
20070118207 Amplatz et al. May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070185559 Shelso Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070219620 Eells et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070250151 Pereira Oct 2007 A1
20070255391 Hojeibane et al. Nov 2007 A1
20070255394 Ryan Nov 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20070270932 Headley et al. Nov 2007 A1
20070270937 Leanna Nov 2007 A1
20070293940 Schaeffer et al. Dec 2007 A1
20080009934 Schneider et al. Jan 2008 A1
20080021546 Patz et al. Jan 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082164 Friedman Apr 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080087581 Eisenhut et al. Apr 2008 A1
20080097571 Denison et al. Apr 2008 A1
20080114441 Rust et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080125859 Salahieh et al. May 2008 A1
20080133003 Seguin et al. Jun 2008 A1
20080140175 Boucher et al. Jun 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080147183 Styrc Jun 2008 A1
20080154358 Tansley et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080208307 Ben-Muvhar et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080228201 Zarbatany et al. Sep 2008 A1
20080228254 Ryan Sep 2008 A1
20080243233 Ben-Muvhar et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080262596 Xiao Oct 2008 A1
20080262603 Giaquinta et al. Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20080275549 Rowe Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080319526 Hill et al. Dec 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090012602 Quadri Jan 2009 A1
20090054976 Tuval et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076531 Richardson et al. Mar 2009 A1
20090076585 Hendriksen et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082844 Zacharias et al. Mar 2009 A1
20090082847 Zacharias et al. Mar 2009 A1
20090088832 Chew et al. Apr 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090118744 Wells et al. May 2009 A1
20090118824 Samkov May 2009 A1
20090118826 Khaghani May 2009 A1
20090125096 Chu et al. May 2009 A1
20090132035 Roth et al. May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090149946 Dixon Jun 2009 A1
20090157175 Benichou Jun 2009 A1
20090163934 Raschdorf, Jr. et al. Jun 2009 A1
20090171438 Chuter et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177262 Oberti et al. Jul 2009 A1
20090182407 Leanna et al. Jul 2009 A1
20090182413 Burkart et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090216314 Quadri Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20140039611 Straubinger et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090227992 Nir et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090248132 Bloom et al. Oct 2009 A1
20090248133 Bloom et al. Oct 2009 A1
20090258958 Ford Oct 2009 A1
20090259306 Rowe Oct 2009 A1
20090264989 Bonhoeffer et al. Oct 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090270972 Lane Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281618 Hill et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090292350 Eberhardt et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20090318871 Zarbatany et al. Dec 2009 A1
20100004740 Seguin et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049306 House et al. Feb 2010 A1
20100082089 Quadri et al. Apr 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100094411 Tuval et al. Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100114299 Ben Muvhar et al. May 2010 A1
20100114305 Kang et al. May 2010 A1
20100121461 Sobrino-Serrano et al. May 2010 A1
20100131054 Tuval et al. May 2010 A1
20100161027 Orr Jun 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100179633 Solem et al. Jul 2010 A1
20100179647 Carpenter et al. Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249894 Oba et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100256723 Murray Oct 2010 A1
20100262157 Silver et al. Oct 2010 A1
20100268332 Tuval et al. Oct 2010 A1
20100274345 Rust Oct 2010 A1
20100280606 Naor Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100305685 Millwee et al. Dec 2010 A1
20100312333 Navia et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015731 Carpentier et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110022165 Oba et al. Jan 2011 A1
20110029067 McGuckin, Jr. Feb 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110166644 Keeble et al. Jul 2011 A1
20110178597 Navia et al. Jul 2011 A9
20110202128 Duffy Aug 2011 A1
20110208290 Straubinger et al. Aug 2011 A1
20110208297 Tuval et al. Aug 2011 A1
20110208298 Tuval Aug 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110224785 Hacohen Sep 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110282438 Drews et al. Nov 2011 A1
20110301704 Alfieri et al. Dec 2011 A1
20110313515 Quadri et al. Dec 2011 A1
20110319981 Hill et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120012487 Tian et al. Jan 2012 A1
20120016342 Brecker Jan 2012 A1
20120016411 Tuval Jan 2012 A1
20120022605 Jahns et al. Jan 2012 A1
20120022639 Hacohen et al. Jan 2012 A1
20120022642 Haug et al. Jan 2012 A1
20120029627 Salahieh et al. Feb 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120041550 Salahieh et al. Feb 2012 A1
20120041551 Spenser et al. Feb 2012 A1
20120053681 Alkhatib et al. Mar 2012 A1
20120059452 Boucher et al. Mar 2012 A1
20120059454 Millwee et al. Mar 2012 A1
20120078353 Quadri Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120179051 Pfeiffer et al. Jul 2012 A1
20120179239 Quadri Jul 2012 A1
20120179243 Yang et al. Jul 2012 A1
20120185033 Ryan Jul 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120259405 Weber et al. Oct 2012 A1
20120259409 Nguyen et al. Oct 2012 A1
20120271398 Essinger et al. Oct 2012 A1
20120283820 Tseng et al. Nov 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120290062 McNamara et al. Nov 2012 A1
20120296418 Bonyuet et al. Nov 2012 A1
20120303116 Gorman, III et al. Nov 2012 A1
20120310328 Olson et al. Dec 2012 A1
20120323316 Chau et al. Dec 2012 A1
20120330409 Haug et al. Dec 2012 A1
20130006294 Kashkarov et al. Jan 2013 A1
20130018458 Yohanan et al. Jan 2013 A1
20130030418 Taft et al. Jan 2013 A1
20130030523 Padala et al. Jan 2013 A1
20130046378 Millwee et al. Feb 2013 A1
20130053949 Pintor et al. Feb 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130095264 Sowinski et al. Apr 2013 A1
20130096671 Iobbi Apr 2013 A1
20130110226 Gurskis May 2013 A1
20130110227 Quadri et al. May 2013 A1
20130110230 Solem May 2013 A1
20130116777 Pintor et al. May 2013 A1
20130131788 Quadri et al. May 2013 A1
20130131793 Quadri et al. May 2013 A1
20130138203 Quadri May 2013 A1
20130138207 Quadri et al. May 2013 A1
20130144375 Giasolli et al. Jun 2013 A1
20130144378 Quadri et al. Jun 2013 A1
20130144380 Quadri et al. Jun 2013 A1
20130144381 Quadri et al. Jun 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130166024 Drews et al. Jun 2013 A1
20130172983 Clerc et al. Jul 2013 A1
20130184813 Quadri et al. Jul 2013 A1
20130184814 Huynh et al. Jul 2013 A1
20130211508 Lane et al. Aug 2013 A1
20130236889 Kishimoto et al. Sep 2013 A1
20130238087 Taylor Sep 2013 A1
20130245615 Koltz Sep 2013 A1
20130245736 Alexander et al. Sep 2013 A1
20130253635 Straubinger et al. Sep 2013 A1
20130253637 Wang et al. Sep 2013 A1
20130253639 Alkhatib Sep 2013 A1
20130253641 Lattouf Sep 2013 A1
20130253642 Brecker Sep 2013 A1
20130261737 Costello Oct 2013 A1
20130261738 Clague et al. Oct 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130289695 Tian et al. Oct 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130325098 Desai et al. Dec 2013 A1
20130325121 Whatley et al. Dec 2013 A1
20130331714 Manstrom et al. Dec 2013 A1
20130338764 Thornton et al. Dec 2013 A1
20130338765 Braido et al. Dec 2013 A1
20130345786 Behan Dec 2013 A1
20130345803 Bergheim, III Dec 2013 A1
20140018912 Delaloye et al. Jan 2014 A1
20140031930 Keidar et al. Jan 2014 A1
20140039612 Dolan Feb 2014 A1
20140039614 Delaloye et al. Feb 2014 A1
20140044689 Liu et al. Feb 2014 A1
20140046219 Sauter et al. Feb 2014 A1
20140046427 Michalak Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052242 Revuelta et al. Feb 2014 A1
20140081393 Hasenkam et al. Mar 2014 A1
20140086934 Shams Mar 2014 A1
20140088685 Yevzlin et al. Mar 2014 A1
20140088694 Rowe et al. Mar 2014 A1
20140100420 Mortier et al. Apr 2014 A1
20140100651 Kheradvar et al. Apr 2014 A1
20140100653 Savage et al. Apr 2014 A1
20140107761 Gale et al. Apr 2014 A1
20140142694 Tabor et al. May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172085 Quadri et al. Jun 2014 A1
20140172086 Quadri et al. Jun 2014 A1
20140186417 Trollsas et al. Jul 2014 A1
20140194978 Seguin et al. Jul 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194982 Kovalsky et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140214153 Ottma et al. Jul 2014 A1
20140214154 Nguyen et al. Jul 2014 A1
20140214155 Kelley Jul 2014 A1
20140214160 Naor Jul 2014 A1
20140215791 Soundararajan et al. Aug 2014 A1
20140221823 Keogh et al. Aug 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140222139 Nguyen et al. Aug 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140230515 Tuval et al. Aug 2014 A1
20140236288 Lambrecht et al. Aug 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140249622 Carmi et al. Sep 2014 A1
20140256035 Strasly et al. Sep 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257475 Gross et al. Sep 2014 A1
20140257476 Montorfano et al. Sep 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140277402 Essinger et al. Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140277423 Alkhatib et al. Sep 2014 A1
20140277427 Ratz et al. Sep 2014 A1
20140296973 Bergheim et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140309728 Dehdashtian et al. Oct 2014 A1
20140309731 Quadri et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140336754 Gurskis et al. Nov 2014 A1
20140350565 Yacoby et al. Nov 2014 A1
20140350666 Righini Nov 2014 A1
20140356519 Hossainy et al. Dec 2014 A1
20140358223 Rafiee et al. Dec 2014 A1
20140364404 Cleek et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140370071 Chen et al. Dec 2014 A1
20140371845 Tuval et al. Dec 2014 A1
20140371847 Madrid et al. Dec 2014 A1
20140371848 Murray, III et al. Dec 2014 A1
20140379067 Nguyen et al. Dec 2014 A1
20140379068 Thielen et al. Dec 2014 A1
20140379077 Tuval et al. Dec 2014 A1
20150012085 Salahieh et al. Jan 2015 A1
20150018938 Von Segesser et al. Jan 2015 A1
20150018944 O'Connell et al. Jan 2015 A1
20150032153 Quadri et al. Jan 2015 A1
20150045881 Lim Feb 2015 A1
20150066140 Quadri et al. Mar 2015 A1
20150081009 Quadri et al. Mar 2015 A1
20150086603 Hossainy et al. Mar 2015 A1
20150088252 Jenson et al. Mar 2015 A1
20150105856 Rowe et al. Apr 2015 A1
20150142103 Vidlund May 2015 A1
20150148731 McNamara et al. May 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150209137 Quadri et al. Jul 2015 A1
20150209141 Braido et al. Jul 2015 A1
20150216653 Freudenthal Aug 2015 A1
20150216655 Lane et al. Aug 2015 A1
20150238315 Rabito et al. Aug 2015 A1
20150257878 Lane et al. Sep 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150328000 Ratz et al. Nov 2015 A1
20150342736 Rabito et al. Dec 2015 A1
20160038281 Delaloye et al. Feb 2016 A1
20160157999 Lane et al. Jun 2016 A1
Foreign Referenced Citations (91)
Number Date Country
2017232067 Oct 2017 AU
2304325 Oct 2000 CA
101262833 Sep 2008 CN
3128704 Feb 1983 DE
102006052564 Dec 2007 DE
0657147 Jun 1995 EP
1255510 Apr 2007 EP
1472996 Sep 2009 EP
2566416 Mar 2013 EP
2782523 Oct 2014 EP
2782523 Apr 2015 EP
2782523 Jun 2018 EP
1264471 Feb 1972 GB
1315844 May 1973 GB
2245495 Jan 1992 GB
2398245 Aug 2004 GB
2002540889 Dec 2002 JP
2008541865 Nov 2008 JP
2010518947 Jun 2010 JP
2011500241 Jan 2011 JP
2017148551 Aug 2017 JP
WO-9749355 Dec 1997 WO
WO-0053104 Sep 2000 WO
WO-0061034 Oct 2000 WO
WO-0135861 May 2001 WO
WO-0135870 May 2001 WO
WO-0172239 Oct 2001 WO
WO-0236048 May 2002 WO
WO-0238084 May 2002 WO
WO-03028522 Apr 2003 WO
WO-03092554 Nov 2003 WO
WO-2004014257 Feb 2004 WO
WO-2004014474 Feb 2004 WO
WO-2004058097 Jul 2004 WO
WO-2005011534 Feb 2005 WO
WO-2005041810 May 2005 WO
WO-2005087140 Sep 2005 WO
WO-2006070372 Jul 2006 WO
WO-2006085304 Aug 2006 WO
WO-2006089236 Aug 2006 WO
WO-2006097931 Sep 2006 WO
WO-2006113906 Oct 2006 WO
WO-2006127765 Nov 2006 WO
WO-2007025028 Mar 2007 WO
WO-2007034488 Mar 2007 WO
WO-2007058857 May 2007 WO
WO-2006097931 Jul 2007 WO
WO-2007097983 Aug 2007 WO
WO-2007122459 Nov 2007 WO
WO-2007123658 Nov 2007 WO
WO-2007134290 Nov 2007 WO
WO-2007122459 Jan 2008 WO
WO-2008005535 Jan 2008 WO
WO-2008013915 Jan 2008 WO
WO-2007097983 Mar 2008 WO
WO-2008070797 Jun 2008 WO
WO-2008013915 Jul 2008 WO
WO-2008091515 Jul 2008 WO
WO-2008103722 Aug 2008 WO
WO-2008103722 Oct 2008 WO
WO-2008125153 Oct 2008 WO
WO-2008150529 Dec 2008 WO
WO-2009026563 Feb 2009 WO
WO-2009033469 Mar 2009 WO
WO-2009045331 Apr 2009 WO
WO-2009052188 Apr 2009 WO
WO-2009053497 Apr 2009 WO
WO-2009091509 Jul 2009 WO
WO-2009094500 Jul 2009 WO
WO-2009108615 Sep 2009 WO
WO-2009134701 Nov 2009 WO
WO-2009137359 Nov 2009 WO
WO-2009149462 Dec 2009 WO
WO-2009155561 Dec 2009 WO
WO-2010004546 Jan 2010 WO
WO-2010008549 Jan 2010 WO
WO-2009134701 Feb 2010 WO
WO-2010037141 Apr 2010 WO
WO-2010040009 Apr 2010 WO
WO-2010057262 May 2010 WO
WO-2010098857 Sep 2010 WO
WO-2010138853 Dec 2010 WO
WO-2011025945 Mar 2011 WO
WO-2011072084 Jun 2011 WO
WO-2011109813 Sep 2011 WO
WO-2011137531 Nov 2011 WO
WO-2012035279 Mar 2012 WO
WO-2012162228 Nov 2012 WO
WO-2012177942 Dec 2012 WO
WO-2013072496 May 2013 WO
WO-2013075215 May 2013 WO
Non-Patent Literature Citations (157)
Entry
US 8,062,357 B2, 11/2011, Salahieh et al. (withdrawn)
US 8,221,315 B2, 07/2012, Lambrecht et al. (withdrawn)
“European Application Serial No. 18171652.3, Communication Pursuant to Article 94(3) EPC dated Jun. 11, 2019”, 3 pgs.
“European Application Serial No. 18171652.3, Response filed May 14, 2019 to Extended European Search Report dated Aug. 3, 2018”, 52 pgs.
50 Early-to Late-Stage Medical Device Companies Seeking Investment and Partnering Opportunities to Present in 3 Weeks at Investment in Innovation (In3) Medical Device Summit. Businesswire.com. Dated May 27, 2008. 3 pages.
Al-Attar. Next generation surgical aortic biological prostheses: sutureless valves. European Society of Cardiology. Dec. 21, 2011; 10(14):1-3.
Banai, et al. Tiara: a novel catheter-based mitral valve bioprosthesis: initial experiments and short-term pre-clinical results. J Am Coll Cardiol. Oct. 9, 2012;60(15):1430-1. doi: 10.1016/j.jacc.2012.05.047. Epub Sep. 12, 2012.
Bavaria. CardiAQ Valve Technologies (CVT) discloses successful results of acute in vivo study of its novel transcatheter mitral valve implantation (TMVI) system. Enhanced Online News. Sep. 28, 2009. Accessed: Mar. 8, 2012. http://eon.businesswire.com/news/eon/20090928005120/en/CardiAQ-Valve-Technologies/Heart/heart-failure.
Bavaria. CardiAQ Valve Technologies. TCT Company Overview. Transcatheter Cardiovascular Therapeutics Conference. San Francisco, CA. Sep. 21-25, 2009.
Berreklouw, et al. Sutureless mitral valve replacement with bioprostheses and Nitinol attachment rings: feasibility in acute pig experiments. J Thorac Cardiovasc Surg. Aug. 2011;142(2):390-5.e1. doi: 10.1016/j.jtcvs.2010.12.018. Epub Feb. 4, 2011.
Boudjemline, et al. Steps toward the percutaneous replacement of atrioventricular valves an experimental study. J Am Coll Cardiol. Jul. 19, 2005;46(2):360-5.
Brinkman, et al. Transcatheter cardiac valve interventions. Surg Clin North Am. Aug. 2009;89(4):951-66, x. doi: 10.1016/j.suc.2009.06.004.
CardiAQ's Complaint and Jury Demand; U.S. District Court—District of Massachusetts; Case No. 1:14-cv-12405-ADB; CardiAQ Valve, Technologies Inc. v. Neovasc Inc. and Neovasc Tiara Inc.; filed Jun. 6, 2014. 22 pages.
CardiAQ's First Amended Complaint and Jury Demand; U.S. District Court—District of Massachusetts; Case No. 1:14-cv-12405-ADB; CardiAQ Valve, Technologies Inc. v. Neovasc Inc. and Neovasc Tiara Inc.; filed Aug. 12, 2014. 21 pages.
CardiAQ's Objection in Patent Vindication Action in regard to EP 2 566 416; Administrative Court of Munich; CardiAQ Valve Technologies, Inc., v. Neovasc Tiara Inc.; filed on Jun. 25, 2014. 22 pages.
CardiAQ's Second Amended Complaint and Jury Demand; U.S. District Court—District of Massachusetts; Case No. 1:14-cv-12405-ADB; CardiAQ Valve, Technologies Inc. v. Neovasc Inc. and Neovasc Tiara Inc.; filed Jan. 15, 2015. 25 pages.
CardiAQ Valve Technologies (CVT) Elects Michael Mack, MD, to its Scientific Advisory Board. “CVT's Transcatheter Mitral Valve Implanation (TMVI) platform might be the ‘next big thing’ in the cardiac cath lab.” BusinessWire. Dated Jun. 2, 2009. 4 pages.
CardiAQ Valve Technologies (“CVT”) to disclose data during ‘EuroPCR 2010’ about the world's first successful in vivo transcatheter delivery of a mitral heart valve implant. Irvine, California, Businesswire.com. Dated May 20, 2010. 2 pages.
CardiAQ Valve Technologies. Percutaneous mitral valve replacement. Start-Up. Jun. 2009; 14(6):48-49.
CardiAQ Valve Technologies to pursue first-in-man studies of its transcatheter mitral valve system. Cardiac Interventions Today. Jan. 12, 2010.
Carpentier-Edwards. Why compromise in the mitral position? Edwards Lifesciences. 2004.
Chiam, et al. Percutaneous transcatheter aortic valve implantation: assessing results, judging outcomes, and planning trials: the interventionalist perspective. JACC Cardiovasc Interv. Aug. 2008;1(4):341-50. doi: 10.1016/j.jcin.2008.03.018.
Company Fact Sheet—CardiAQ Valve Technologies. 2009. 1 page.
Company Overview—CardiAQ Valve Technologies. Dated Jun. 25, 2009 at TVT. 17 pages.
Condado, et al. Percutaneous treatment of heart valves. Rev Esp Cardiol. Dec. 2006;59(12):1225-31.
Co-pending U.S. Appl. No. 15/161,020, filed May 20, 2016.
CoreValve USA. An advanced TAVR design. Medtronic.com. Accessed Jan. 27, 2015.
Court's Memorandum & Order; U.S. District Court—District of Massachusetts; Case No. 1:14-cv-12405-ADB; CardiAQ Valve, Technologies Inc. v. Neovasc Inc. and Neovasc Tiara Inc.; filed Nov. 6, 2014. 14 pages.
De Backer, et al. Percutaneous transcatheter mitral valve replacement: an overview of devices in preclinical and early clinical evaluation. Circ Cardiovasc Interv. Jun. 2014;7(3):400-9. doi: 10.1161/CIRCINTERVENTIONS.114.001607.
Defendants Neovasc Inc.'s and Neovasc Tiara Inc.'s Answer to Plaintiff's First Amended Complaint; U.S. District Court—District of Massachusetts; Case No. 1:14-cv-12405-ADB; CardiAQ Valve, Technologies Inc. v. Neovasc Inc. and Neovasc Tiara Inc.; filed Nov. 20, 2014. 20 pages.
Defendants Neovasc Inc.'s and Neovasc Tiara Inc.'s Answer to Plaintiffs Second Amended Complaint; U.S. District Court—District of Massachusetts; Case No. 1:14-cv-12405-ADB; CardiAQ Valve, Technologies Inc. v. Neovasc Inc. and Neovasc Tiara Inc.; filed Jan. 29, 2015. 22 pages.
Edwards Lifesciences 2005 annual report. Accessed Jan. 27, 2015.
European Extended Search Report dated Jan. 30, 2014 for EP Application No. EP 11798780.
European Extended Search Report dated Feb. 28, 2013 for EP Application No. EP 06827638.
European search report and opinion dated Dec. 10, 2013 for EP Application No. 11777065.1.
European search report and written opinion dated Mar. 18, 2015 for EP Application No. 12851477.5.
Exhibits accompanying CardiAQ's Objection in Patent Vindication Action in regard to EP 2 566 416; filed on Jun. 25, 2014. 306 pages.
Exhibits accompanying Neovasc's Statement of Defense in Patent Vindication Action in regard to EP 2 566 416; filed on Dec. 9, 2014. 67 pages.
Fanning, et al. Transcatheter aortic valve implantation (TAVI): valve design and evolution. Int J Cardiol. Oct. 3, 2013;168(3):1822-31. doi: 10.1016/j.ijcard.2013.07.117. Epub Aug. 20, 2013.
Feldman, et al. Prospects for percutaneous valve therapies. Circulation. Dec. 11, 2007;116(24):2866-77.
Fitzgerald. Tomorrow's technology: percutaneous mitral valve replacement, chordal shortening and beyond. Transcatheter Valve Therapies (TVT) Conference. Seattle, WA. Jun. 7, 2010.
Gillespie, et al. Sutureless mitral valve replacement: initial steps toward a percutaneous procedure. Ann Thorac Surg. Aug. 2013;96(2):670-4. doi: 10.1016/j.athoracsur.2013.02.065.
Grube, et al. Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J Am Coll Cardiol. Jul. 3, 2007;50(1):69-76. Epub Jun. 6, 2007.
Grube, et al. Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study. Circulation. Oct. 10, 2006;114(15):1616-24. Epub Oct. 2, 2006.
Harmon, et al. Effect of acute myocardial infarction on the angle between the mitral and aortic valve plane. Am J Cardiol. Aug. 1, 1999;84(3):342-4, A8.
Herrman. Trancatheter mitral valve implantation. Cardiac Interventions Today. Aug./Sep. 2009; 81-85.
Horvath, et al. Transapical aortic valve replacement under real-time magnetic resonance imaging guidance: experimental results with balloon-expandable and self-expanding stents. Eur J Cardiothorac Surg. Jun. 2011;39(6):822-8. doi: 10.1016/j.ejcts.2010.09.030. Epub Oct. 22, 2010.
International Search Report and Written Opinion dated Feb. 29, 2012 for PCT/US2011/041306.
International search report and written opinion dated Mar. 8, 2013 for PCT/CA2012/001060.
International Search Report and Written Opinion dated Mar. 26, 2008 for PCT/US2007/016855.
International Search Report and Written Opinion dated Jun. 25, 2008 for PCT/US2006/043526.
International search report and written opinion dated Sep. 27, 2011 for PCT/CA2011/000662.
International Search Report and Written Opinion dated Dec. 11, 2009 for PCT/US2009/058893.
International Search Report and Written Opinion dated Dec. 18, 2009 for PCT/US2009/059299.
International Search Report and Written Opinion dated Dec. 22, 2010 for PCT/US2010/031313.
Ionasec, et al. Personalized modeling and assessment of the aortic-mitral coupling from 4D TEE and CT. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):767-75.
Karimi, et al. Percutaneous Valve Therapies. SIS 2007 Year book. Chapter 11. 11 pages.
Kronemyer. CardiAQ Valve Technologies: Percutaneous Mitral Valve Replacement. Start Up—Windhover Review of Emerging Medical Ventures, vol. 14, No. 6, Jun. 2009, pp. 48-49.
Kumar, et al. Design considerations and quantitative assessment for the development of percutaneous mitral valve stent. Med Eng Phys. Jul. 2014;36(7):882-8. doi: 10.1016/j.medengphy.2014.03.010. Epub Apr. 16, 2014.
Lansac, et al. Dynamic balance of the aortomitral junction. J Thorac Cardiovasc Surg. May 2002;123(5):911-8.
Lauten, et al. Experimental evaluation of the JenaClip transcatheter aortic valve. Catheter Cardiovasc Interv. Sep. 1, 2009;74(3):514-9. doi: 10.1002/ccd.22093.
Lauten; et al., “Experimental evaluation of the JenaClip transcatheter aortic valve.”, Sep. 1, 2009, 74(3), 514-9.
Leon, et al. Transcatheter aortic valve replacement in patients with critical aortic stenosis: rationale, device descriptions, early clinical experiences, and perspectives. Semin Thorac Cardiovasc Surg. 2006 Summer;18(2):165-74.
Lozonschi, et al. Transapical mitral valved stent implantation. Ann Thorac Surg. Sep. 2008;86(3):745-8. doi: 10.1016/j.athoracsur.2008.05.039.
Lutter, et al. Off-pump transapical mitral valve replacement. Eur J Cardiothorac Surg. Jul. 2009;36(1):124-8; discussion 128. doi: 10.1016/j.ejcts.2009.02.037. Epub Apr. 25, 2009.
Lutter, et al. Transapical mitral valve implantation: the Lutter valve. Heart Lung Vessel. 2013;5(4):201-6.
Lutter, G et al.: “Transcatheter Mitral Valve Replacement—Early Animal Results,” Universitatsklinikum, Schleswig-Holstein. Aug. 28, 2012.
Ma, et al. Double-crowned valved stents for off-pump mitral valve replacement. Eur J Cardiothorac Surg. Aug. 2005;28(2):194-8; discussion 198-9.
Mack. Advantages and limitations of surgical mitral valve replacement; lessons for the transcatheter approach. Jun. 7, 2010. Texas Cardiovascular Innovative Ventures (TCIV) Conference. Dallas, TX. Dec. 8, 2010.
Mack, Michael, M.D., “Antegrade Transcatheter Mitral valve Implantation: A Short-term Experience in Swine Model.” Applicant believes this may have been presented on May of 2011 at TVT. 10 pages.
Maisano, et al. Mitral transcatheter technologies. Rambam Maimonides Med J. Jul. 25, 2013;4(3):e0015. doi: 10.5041/RMMJ.10115. Print Jul. 2013.
Masson, et al. Percutaneous treatment of mitral regurgitation. Circ Cardiovasc Interv. Apr. 2009;2(2):140-6. doi: 10.1161/CIRCINTERVENTIONS.108.837781.
Medical Devices Today. CardiAQ Valve Technologies. Start-Up—Jul. 17, 2009. Accessed: Mar. 8, 2012. http:/www.medicaldevicestoday.com/2009/07/medical-device-start-up-cardiaq-valve-technologies-percutaneous-mitral-valve-replacement.html.
Navia, et al. Sutureless implantation a expandable mitral stent-valve prosthesis in acute animal model. TCT728. JACC. Nov. 8, 2011. vol. 58, No. 20 Suppl B. B194.
Neovasc corporate presentation, Oct. 2009. 21 pages. Available at http://www.neovasc.com/investors/documents/Neovasc-Corporate-Presentation-October-2009.pdf.
Neovasc Ostial Products Overview. 1 page. https://web.archive.org/web/20090930050359/https://www.neovasc.com/vascular-products/ostialproducts/default.php (Neovasc website archived as of Sep. 30, 2008).
Neovasc's Statement of Defense in Patent Vindication Action in regard to EP 2 566 416; Administrative Court of Munich; CardiAQ Valve Technologies, Inc., v. Neovasc Tiara Inc.; filed on Dec. 9, 2014. 39 pages.
Neovasc Surgical Products: An Operating Division of Neovasc Inc. Dated Apr. 2009. 17 pages.
Nkomo, et al. Burden of valvular heart diseases: a population-based study. Lancet. Sep. 16, 2006;368(9540):1005-11.
Notice of allowance dated Jan. 14, 2016 for U.S. Appl. No. 13/679,920.
Notice of Allowance dated Jun. 1, 2017 for U.S. Appl. No. 15/046,371.
Notice of allowance dated Sep. 26, 2013 for U.S. Appl. No. 13/096,572.
“Notice of allowance dated Nov. 5, 2015 for U.S. Appl. No. 14/692,605.”
“Notice of allowance dated Dec. 2, 2015 for U.S. Appl. No. 14/685,418.”
Office action dated Apr. 22, 2016 for U.S. Appl. No. 14/046,606.
Office action dated Jun. 4, 2013 for U.S. Appl. No. 13/096,572.
Office action dated Jul. 22, 2015 for U.S. Appl. No. 13/679,920.
“Office action dated Aug. 12, 2015 for U.S. Appl. No. 14/685,418.”
“Office action dated Aug. 14, 2015 for U.S. Appl. No. 14/692,605.”
“Office action dated Sep. 18, 2015 for U.S. Appl. No. 14/046,606.”
Office action dated Dec. 7, 2015 for U.S. Appl. No. 13/679,920.
Ormiston, et al. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation. Jul. 1981;64(1):113-20.
Orton. Mitralseal: hybrid trancatheter mitral valve replacement. Colorado State University. 2011; 311-312. https://www.acvs.org/files/proceedings/2011/data/papers/102.pdf.
Ostrovsky, Gene, “A Trial of Zenith Fenestrated AAA Endovascular Graft Goes On,” medGadget, Aug. 1, 2008, 9 pages. Available at: http://www.medgadget.com/2008/08/a_trial_of_zenith_fenestrated_aaa_endovascular_graft_goes_on.html.
Ostrovsky. Transcatheter mitral valve implantation technology from CardiAQ. Posted Jan. 15, 2010. Accessed Jun. 27, 2012 from http://medgadget.com/2010/01/transcatheter_mitral_valve_implantation_technology_from_cardiaq.html.
Otto. Clinical practice. Evaluation and management of chronic mitral regurgitation. N Engl J Med. Sep. 6, 2001;345(10):740-6.
Piazza, et al. Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circ Cardiovasc Interv. Aug. 2008;1(1):74-81. doi: 10.1161/CIRCINTERVENTIONS.108.780858.
Pluth, et al. Aortic and mitral valve replacement with cloth-covered Braunwald-Cutter prosthesis. A three-year follow-up. Ann Thorac Surg. Sep. 1975;20(3):239-48.
Preston-Maher, et al. A Technical Review of Minimally Invasive Mitral Valve Replacements. Cardiovasc Eng Technol. 2015;6(2):174-184. Epub Nov. 25, 2014.
Quadri, Arshad M.D., “Transcatheter Mitral Valve Implantation (TMVI) (An Acute In Vivo Study),” Applicant believes this may have been presented on Sep. 22, 2010 at TCT. 19 pages.
Quadri, et al. CVT is developing a non-surgical apporach to replacing mitral valves that may be the alternative to open-chest surgery. CardiAQ Valve Technologies. May 8, 2009.
Ratz. CardiAQ Valve Technologies. Innovations in heartvalve therapy. IN3 San Francisco. Jun. 18, 2008. PowerPoint presentation in 19 slides.
Ratz, et al. “Any experiences making an expandable stent frame?” Arch-Pub.com, Architecture Forums: Modeling, Multiple forum postings from Feb. 3, 2009 to Feb. 4, 2009, http://www.arch-pub.com/Any-experiences-making-an-expandable-stent-frame_10601513.html. 5 pages.
Ratz, J. Brent et al., “Fabric, Skin, Cloth expansion . . . best approach?,” AREA by Autodesk, 3ds Max: Modeling, Forum postings from Feb. 18, 2009 to Feb. 19, 2009, http://forums.autodesk.com/t5/modeling/fabric-skin-cloth-expansion-best-approach/td-p/4062607. 3 pages.
Ratz, J. Brent et al., “Isolating Interpolation,” Arch-Pub.com, Architecture Forums: Animation and Rigging, Forum postings from Feb. 9, 2009 to Feb. 10, 2009, http://www.arch-pub.com/Isolating-Interpolation_10593153.html. 2 pages.
Ratz, J. Brent, “In3 Company Overview,” Jun. 24, 2009. 15 pages.
Ratz, J. Brent, “LSI EMT Spotlight,” May 15, 2009. 21 pages.
Ribiero, et al. Balloon-expandable prostheses for transcatheter aortic valve replacement. Prog Cardiovasc Dis. May-Jun. 2014;56(6):583-95. doi: 10.1016/j.pcad.2014.02.001. Epub Mar. 1, 2014.
Ross, Renal Ostial Stent System with Progressi-flex Technology, Evasc Medical Systems. 1 page. Applicant requests the Examiner to consider this reference to be prior art as of Jun. 2009.
Ruiz. Overview of novel transcatheter valve technologies. Glimpse into the future. New transcatheter mitral valve treatment. Euro PCR. Paris, France. May 27, 2010.
Seidel, et al. A mitral valve prosthesis and a study of thrombosis on heart valves in dogs. J Surg Res. May 1962;2:168-75.
Shuto, et al. Percutaneous transvenous Melody valve-in-ring procedure for mitral valve replacement. J Am Coll Cardiol. Dec. 6, 2011;58(24):2475-80. doi: 10.1016/j.jacc.2011.09.021.
Sondergaard, et al. First-in-human CardiAQ transcatheter mitral valve implantation via transapical approach. TCT-811. JACC. Sep. 13, 2014. vol. 64, No. 11 Suppl B. B237.
Spencer, et al. Surgical treatment of valvular heart disease. Part V. Prosthetic replacement of the mitral valve. American Heart Journal. Oct. 1968; 76(4):576-580.
Spillner, et al. New sutureless ‘atrial mitral-valve prosthesis’ for minimally invasive mitral valve therapy. Textile Research Journal. 2010:1-7.
TAVR. Engager system. Precise Valve positioning. Accessed Jan. 28, 2015.
The JenaValve—the prosthesis. JenaValve Technology. Accessed Jan. 28, 2015.
Timek, et al. Aorto-mitral annular dynamics. Ann Thorac Surg. Dec. 2003;76(6):1944-50.
Tsang, et al. Changes in aortic-mitral coupling with severe aortic stenosis. JACC. Mar. 9, 2010; vol. 55. Issue 1A.
Update—CardiAQ Valve Technologies. Presented on Jun. 6, 2010 at TVT. 12 pages.
Van Mieghem, et al. Anatomy of the mitral valvular complex and its implications for transcatheter interventions for mitral regurgitation. J Am Coll Cardiol. Aug. 17, 2010;56(8):617-26. doi: 10.1016/j.jacc.2010.04.030.
Veronesi, et al. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging. Jan. 2009;2(1):24-31. doi: 10.1161/CIRCIMAGING.108.785907. Epub Dec. 2, 2008.
Vu, et al. Novel sutureless mitral valve implantation method involving a bayonet insertion and release mechanism: a proof of concept study in pigs. J Thorac Cardiovasc Surg. Apr. 2012;143(4):985-8. doi: 10.1016/j.jtcvs.2012.01.037. Epub Feb. 11, 2012.
Walther, et al. Transapical approach for sutureless stent-fixed aortic valve implantation: experimental results. Eur J Cardiothorac Surg. May 2006;29(5):703-8. Epub Apr. 5, 2006.
Webb, et al. Transcatheter aortic valve implantation: the evolution of prostheses, delivery systems and approaches. Arch Cardiovasc Dis. Mar. 2012;105(3):153-9. doi: 10.1016/j.acvd.2012.02.001. Epub Mar. 16, 2012.
Yamada, et al. The left ventricular ostium: an anatomic concept relevant to idiopathic ventricular arrhythmias. Circ Arrhythm Electrophysiol. Dec. 2008;1(5):396-404. doi: 10.1161/CIRCEP.108.795948.
“U.S. Appl. No. 13/679,920, Corrected Notice of Allowance Mar. 14, 2016”, 4 pgs.
“U.S. Appl. No. 13/679,920, Examiner Interview Summary dated Dec. 15, 2015”, 3 pgs.
“U.S. Appl. No. 13/679,920, Preliminary Amendment filed Sep. 23, 2014”, 12 pgs.
“U.S. Appl. No. 13/679,920, Response filed Jul. 10, 2015 to Restriction Requirement dated Jun. 22, 2015”, 1 pg.
“U.S. Appl. No. 13/679,920, Response filed Nov. 24, 2015 to Non Final Office Action dated Jul. 22, 2015”, 13 pgs.
“U.S. Appl. No. 13/679,920, Response filed Dec. 18, 2015 to Final Office Action dated Dec. 7, 2015”, 12 pgs.
“U.S. Appl. No. 13/679,920, Restriction Requirement dated Jun. 22, 2015”, 5 pgs.
“Australian Application Serial No. 2012343294, First Examination Report dated Sep. 23, 2016”, 6 pgs.
“Australian Application U.S. Appl. No. 2017232067, First Examination Report dated Apr. 28, 2018”, 6 pgs.
“Australian Application Serial No. 2017232067, Response filed Dec. 12, 2018”, 33 pgs.
“Canadian Application Serial No. 2,856,088, Office Action dated Sep. 21, 2018”, 3 pgs.
“Canadian Application Serial No. 2,856,088, Response filed Mar. 15, 2019 to Office Action dated Sep. 21, 2018”, 26 pgs.
“Chinese Application Serial No. 201280067082.0, Office Action dated Mar. 10, 2016”, with English translation of claims, 10 pgs.
“Chinese Application Serial No. 201280067082.0, Office Action dated Sep. 28, 2015”, with English translation of claims, 8 pgs.
“Chinese Application Serial No. 201280067082.0, Response filed Jan. 26, 2016”, with English translation, 20 pgs.
“Chinese Application Serial No. 201280067082.0, Response filed Mar. 25, 2016”, with English translation, 50 pgs.
“Chinese Application Serial No. 201280067082.0, Response filed May 24, 2016”, with English translation, 18 pgs.
“Chinese Application Serial No. 201610764348.7, Office Action dated Sep. 13, 2017”, with English translation of claims, 9 pgs.
“Engager system. Precise Valve positioning”, TAVR, (Jan. 28, 2015), 2 pgs.
“European Application Serial No. 12851477.5, Communication Pursuant to Article 94(3) EPC dated May 2, 2017”, 5 pgs.
“European Application Serial No. 12851477.5, Intention to Grant dated Apr. 26, 2018”, 81 pgs.
“European Application Serial No. 12851477.5, Intention to Grant dated Nov. 16, 2017”, 83 pgs.
“European Application Serial No. 12851477.5, Response filed Aug. 30, 2017 to Communication Pursuant to Article 94(3) EPC dated May 2, 2017”, 2 pgs.
“European Application Serial No. 12851477.5, Response filed Oct. 19, 2015 to Extended European Search Report dated Mar. 18, 2015”, 32 pgs.
“European Application Serial No. 18171652.3, Extended European Search Report dated Aug. 3, 2018”, 6 pgs.
“International Application Serial No. PCT/CA2012/001060, International Preliminary Report on Patentability dated Jun. 5, 2014”, 7 pgs.
“Japanese Application Serial No. 2014542648, Amendment filed Mar. 3, 2017”, with English translation of claims, 7 pgs.
“Japanese Application Serial No. 2014542648, Amendment filed Nov. 16, 2015”, with English translation of claims, 31 pgs.
“Japanese Application Serial No. 2014542648, Office Action dated Sep. 29, 2016”, with English translation of claims, 10 pgs.
“Japanese Application Serial No. 2017-083678, Notification of Reasons for Rejection dated Dec. 14, 2017”, with English translation, 5 pgs.
“Australian Application Seial No. 2019202290, First Examination Report dated Aug. 5, 2019”, 2 pgs.
Related Publications (1)
Number Date Country
20170281336 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
61563156 Nov 2011 US
Continuations (2)
Number Date Country
Parent 15046371 Feb 2016 US
Child 15628924 US
Parent 13679920 Nov 2012 US
Child 15046371 US