Claims
- 1. A semiconductor memory having a clock input, comprising:
- n selectors, each respectively having a plurality of data input terminals and a data output terminal, and outputting from its data output terminal, data input from one of said plurality of data input terminals in accordance with a state of a selection control signal;
- (n-1) one-bit shift registers, each having a clock signal input terminal, one data signal input terminal, and an output terminal, said one-bit shift registers being alternately arranged with said n selectors such that a given one of said (n-1) one-bit shift registers receives, at its data signal input terminal, an output from a data output terminal of a selector connected to said data signal input terminal of said given one-bit shift register and supplies an output to a data input terminal (A) of a selector connected to an output terminal of said given one-bit shift register, and said (n-1) one-bit shift registers each being arranged to hold and output data received at its data signal input terminal in an immediately preceding clock input cycle and receive data input at its data signal input terminal when the clock input is set at a first state and to output data received in a second state of the clock input and invalidate data input to its data signal input terminal; and
- an output data latch circuit, having a clock signal input terminal, and a data input terminal receiving an output selected by a last selector of said n selectors, for outputting data supplied to its data input terminal when the clock input is set in the first state, and holding the output data and invalidating data input to its data input terminal when the clock input is set in the second state, wherein a noise filter is inserted in a clock input supply path to said n one-bit shift registers, and said noise filter is not inserted in a clock input supply path to said output data latch circuit.
- 2. A semiconductor memory according to claim 1, further comprising n read data latch circuits, each having a read control signal input terminal and one data input terminal, said n read data latch circuits being arranged in correspondence with said n selectors such that each data input terminal of said n read data latch circuits receives a corresponding bit of parallel data, an output from each of said read data latch circuits being input to a data input terminal (B) of the corresponding one of said n selectors, and said read data latch circuits each being arranged to output data supplied to its data input terminal when a read control signal is set in a first state, and to hold the output data and invalidate data input to its data input terminal when the read control signal input is set in a second state.
- 3. A semiconductor memory having a clock input, comprising:
- n selectors, each respectively having a plurality of data input terminals, and selecting, as its output, data input from one of said plurality of data input terminals in accordance with a state of a selection control signal;
- n one-bit shift registers, each having a clock signal input terminal and one data signal input terminal, said one-bit shift registers being alternately arranged with said n selectors such that a data input terminal of a first shift register receives serially input write data, a given one of any remaining (n-1) one-bit shift registers receives an output selected by a selector connected to a data signal input terminal of said given one-bit shift register and supplies an output to a data input terminal (A) of a selector connected to an output terminal of said given one-bit shift register, and said remaining (n-1) one-bit shift registers each being arranged to hold and output data received at its data signal input terminal in an immediately preceding clock input cycle and receive data input at its data signal input terminal when the clock input is set in a first state and to output data received in a second state of the clock input and invalidate data input to its data signal input terminal;
- an output data latch circuit, having a clock signal input terminal and having a data signal input terminal which receives an output selected by a last selector of said n selectors, said output data latch circuit outputting data supplied to its data signal input terminal when the clock input is set in the first state, and holding the output data and invalidating data input to its data signal input terminal when the clock input is set in the second state;
- n read data latch circuits, each having a read control signal input terminal and one data input terminal, said n read data latch circuits being arranged in correspondence with said n selectors such that each data input terminal of said n read data latch circuits receives a corresponding bit of parallel data, an output from each of said read data latch circuits being input to a data input terminal (B) of the corresponding one of said n selectors, and said read data latch circuits each being arranged to output data supplied to its data input terminal when a read control signal input is set in a first state, and to hold the output data and invalidate data input to its data input terminal when the read control signal input is set in a second state; and
- n write data latch circuits, each having a write control signal input terminal and one data input terminal, said n write data latch circuits being arranged in correspondence with said n one-bit shift registers such that each data input terminal of said n write data latch circuits receives an output from the corresponding one of said n one-bit shift register, and said write data latch circuits each being arranged to output, to a selected memory cell in a memory array, data supplied to its data input terminal when a write control signal input is set in a first state, and to hold the output data and invalidate data input at its data input terminal when the write control signal input is set in a second state.
- 4. A semiconductor memory according to claim 3, wherein a noise filter is inserted in a clock input supply path to said n one-bit shift register, and said noise filter is not inserted in a clock input supply path to said output data latch circuit.
- 5. A semiconductor memory having a clock input, comprising:
- n selectors, each respectively having a plurality of data input terminals, and selecting, as its output, data input from one of said plurality of data input terminals in accordance with a state of a selection control signal;
- n one-bit shift registers, each having a clock signal input terminal and one data signal input terminal, said one-bit shift registers being alternately arranged with said n selectors such that a data input terminal of a first shift register receives serially input write data, a given one of any remaining (n-1) one-bit shift registers receives an output selected by a selector connected to a data signal input terminal of said given one-bit shift register and supplies an output to a data input terminal (A) of a selector connected to an output terminal of said given one-bit shift register, and said remaining (n-1) one-bit shift registers each being arranged to hold and output data received at its data signal input terminal in an immediately preceding clock input cycle and receive data input at its data signal input terminal when the clock input is set in a first state and to output data received in a second state of the clock input and invalidate data input to its data signal input terminal;
- an output data latch circuit, having a clock signal input terminal, and having a data signal input terminal which receives an output selected by a last selector of said n selectors, said output data latch circuit outputting data supplied to its data signal input terminal when the clock input is set in the first state, and holding the output data and invalidating data input to its data signal input terminal when the clock input is set in the second state;
- n read data latch circuits, each having a red control signal input terminal and one data input terminal, said n read data latch circuits being arranged in correspondence with said n selectors such that each data input terminal of said n read data latch circuits receives a corresponding bit of parallel data, an output from each of said read data latch circuits being input to a data input terminal (B) of the corresponding one of said n selectors, and said read data latch circuits each being arranged to output data supplied to its data input terminal when a read control signal input is set in a first state, and to hold the output data and invalidate data input to its data input terminal when the read control signal input is set in a second state;
- n address data latch circuits, each having an address latch control signal input terminal and one address data input terminal, said n address data latch circuits in correspondence with said n one-bit shift registers such that each address data input terminal of said n address data latch circuits receives an output from the corresponding one of said n one-bit shift registers, and said n address data latch circuits each being arranged to output, to an address decoder of said semiconductor memory, data supplied to its address data input terminal when an address latch control signal input is set in a first state, and to hold the output data and invalidate data input to its address data input terminal when the address latch control signal input is set in a second state.
- 6. A semiconductor memory according to claim 5, wherein a noise filter is inserted in a clock input supply path to said n one-bit shift registers, and said noise filter is not inserted in a clock input supply path to said output data latch circuit.
Priority Claims (1)
Number |
Date |
Country |
Kind |
63-228060 |
Sep 1988 |
JPX |
|
Parent Case Info
This application is a continuation of application Ser. No. 07/405,884, filed Sept. 11, 1989, now abandoned.
US Referenced Citations (8)
Foreign Referenced Citations (2)
Number |
Date |
Country |
0171518 |
Feb 1986 |
EPX |
0224004 |
Jun 1987 |
EPX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
405884 |
Sep 1989 |
|