1. Field of the Invention
The present invention relates to a light-emitting diode (LED) device. More particularly, the present invention relates to a serial-type LED device.
2. Description of the Related Art
An LED light source employs a plurality of LEDs to provide sufficient brightness. The LEDs can be coupled in series to drive so that each LED provides substantially the same brightness due to the same current flowing through each LED. However, the serial LEDs will not work if one of the LEDs does not work. In addition, the driving voltage applied to the serial LEDs increases as the number of the LEDs coupled in series increases so that the driving voltage may be too high to result in higher cost and the complexity of the circuit design.
To avoid the disadvantage of the serial LEDs, the LEDs can be divided into several groups, the LEDs of each group are coupled in series as a light string and all light strings are coupled in parallel so that the LEDs of each light string provide substantially the same brightness and each light string provides the same brightness by employing current balance technology. In addition, if one of the light strings does not work, the others of the light strings can still work. However, as the number of the light strings increases, the circuit design of current balance circuit becomes complex.
Accordingly, a serial-type LED device is provided for employing a simple current balance circuit and avoiding that all light strings will not work if one of the light strings does not work.
According to an aspect of the invention, a serial-type LED device includes a direct-current to direct-current (DC to DC) converter, p light source units and a dimming circuit. The DC to DC converter receives a first DC voltage and converts the first DC voltage to a second DC voltage according to a feedback signal. Each light source unit includes a first terminal, a second terminal, m light strings and m current balance units, and each light string includes a plurality of LEDs coupled in series so as to have a first terminal coupled to the first terminal of a corresponding light source unit and a second terminal coupled to the second terminal of the corresponding light source unit through a corresponding current balance unit. The p light source units are a first to a p-th light source units, the first terminal of the first light source unit is coupled to the DC to DC converter to receive the second DC voltage, and the second terminal of the i-th light source unit is coupled to the first terminal of the (i+1)-th light source unit, where m and p are integers greater than or equal to 2 and i is any integer from 1 to (p−1). The dimming circuit coupled to the second terminal of the p-th light source unit and the DC to DC converter outputs the feedback signal according to a dimming signal and a current outputted from the p-th light source unit.
In another embodiment, the m light strings of the q-th light source unit constitute a q-th light bar, where q is any integer from 1 to p, and the first to the p-th light bars are arranged to be a backlight of a display device.
In another embodiment, each current balance unit of the q-th light source unit includes a transistor, where q is any integer from 1 to p, each transistor includes a first terminal coupled to the second terminal of a corresponding light string; a second terminal coupled to the second terminal of the q-th light source unit; and, a control terminal, and the control terminals of the transistors are coupled to each other and to the first terminal of one of the transistors so that the transistors of the q-th light source unit constitute a q-th current mirror.
In another embodiment, the dimming circuit includes a first switch including a first terminal coupled to the second terminal of the p-th light source unit; a second terminal coupled to the DC to DC converter; and, a control terminal coupled to receive the dimming signal having a pulse-width modulation (PWM) waveform, and the first switch is turned on or off according to the dimming signal.
In another embodiment, the dimming circuit further includes a second switch including a first terminal coupled to the control terminal of the first switch; a second terminal coupled to a disable signal; and, a control terminal coupled to receive an on-off signal, and the second switch is turned on or off according to the on-off signal, wherein when the second switch is turned on, the disable signal is coupled to the control terminal of the first switch through the second switch so that the first switch is turned off, and when the second switch is turned off, the disable signal is not coupled to the control terminal of the first switch.
The foregoing and other features of the disclosure will be apparent and easily understood from a further reading of the specification, claims and by reference to the accompanying drawings in which:
Each light source unit includes a first terminal, a second terminal, m light strings and m current balance units, where m is an integer greater than or equal to 2. For example, the light source unit 11 includes the first terminal 111, the second terminal 112, the light strings S1-Sm and the current balance units T1-Tm. Each light string includes a plurality of LEDs coupled in series so as to have a first terminal coupled to the first terminal of a corresponding light source unit and a second terminal coupled to the second terminal of the corresponding light source unit through a corresponding current balance unit. For example, in the light source unit 11, each light string, such as S1, includes the LEDs D1-Dn coupled in series so as to have the first and the second terminals. The first terminal of the light string S1 is coupled to the first terminal 111 of a corresponding light source unit 11, and the second terminal of the light string S1 is coupled to the second terminal 112 of the corresponding light source unit 11 through a corresponding current balance unit T1. Therefore, the light strings S1-Sm are substantially coupled in parallel and controlled to achieve current balance through the current balance units T1-Tm.
The light source units 11-14 are the first light source unit 11, the second light source unit 12, the third light source unit 13 and the fourth light source unit 14. The first terminal 111 of the first light source unit 11 is coupled to the DC to DC converter 15 to receive the second DC voltage Vdc2, the second terminal 112 of the first light source unit 11 is coupled to the first terminal 121 of the second light source unit 12, the second terminal 122 of the second light source unit 12 is coupled to the first terminal 131 of the third light source unit 13, the second terminal 132 of the third light source unit 13 is coupled to the first terminal 141 of the fourth light source unit 14, and the second terminal 142 of the fourth light source unit 14 is coupled to the dimming circuit 16. Therefore, the light source units 11-14 are substantially coupled in series so as to employ a simple dimming circuit such as the dimming circuit 16. In addition, an input current Iin is equal to a current I1, I2, I3 or I4 outputted from the light source unit 11, 12, 13 or 14. is The dimming circuit 16 is coupled to the second terminal 142 of the fourth light source unit 14 and the DC to DC converter 15. The dimming circuit 16 outputs the feedback signal FB according to the current I4 outputted from the fourth light source unit 14, and the feedback signal FB, such as a current proportional to the current I4, is used to control the DC to DC converter 15 to modulate the second DC voltage Vdc2. The dimming circuit 16 can control the terminal 142 of the serial light source units 11-14 to be open or coupled to ground according a dimming signal DIM having a PWM waveform. The serial light source units 11-14 are turned on to provide light while the terminal 142 of the serial light source units 11-14 is coupled to ground, and the serial light source units 11-14 are turned off to provide no light while the terminal 142 of the serial light source units 11-14 is open, so that it achieves a PWM dimming.
In one embodiment, the light strings S1-Sm of the q-th light source unit constitute a q-th light bar, where q is any integer from 1 to p. For example, in the embodiment, p is 4. The light strings S1-Sm of the first light source unit 11 constitute the first light bar 113, the light strings S1-Sm of the second light source unit 12 constitute the second light bar 123, the light strings S1-Sm of the third light source unit 13 constitute the third light bar 133, and the light strings S1-Sm of the fourth light source unit 14 constitute the fourth light bar 143. The first to the fourth light bars can be arranged to be a backlight of a display device. For example, the first and the second light bars 113 and 123 are arranged on the upper side of the display panel of the display device, and the third and the fourth light bars 133 and 143 are arranged on the lower side of the display panel of the display device.
In one embodiment, each current balance unit of the q-th light source unit includes a transistor such as, but not limited to, an NPN bipolar junction transistor (BJT) or N-channel field-effect transistor (FET), where q is any integer from 1 to p. Each transistor comprises a first terminal coupled to the second terminal of a corresponding light string; a second terminal coupled to the second terminal of the q-th light source unit; and, a control terminal. The control terminals of the transistors are coupled to each other and the first terminal of one of the transistors so that the transistors of the q-th light source unit constitute a q-th current mirror. For example, in the embodiment, p is 4, and the current balance units T1-Tm of the first light source unit 11 are matched NPN BJTs each including a first terminal (i.e. a collector terminal), a second terminal (i.e. an emitter terminal) and a control terminal (i.e. a base terminal). The first terminal of the transistor T1 is coupled to the second terminal of a corresponding light string S1, the first terminal of the transistor T2 is coupled to the second terminal of a corresponding light string S2, . . . , and the first terminal of the transistor Tm is coupled to the second terminal of a corresponding light string Sm. The second terminals of the transistors T1-Tm are coupled to the second terminal 112 of the first light source unit 11. The control terminals of the transistors T1-Tm are coupled to each other and to the first terminal of one of the transistors T1-Tm, such as the first terminal of the transistor T1. Accordingly, the transistors T1-Tm of the first light source unit 11 constitute the first current mirror 114. In addition, the transistors T1-Tm of the second light source unit 12 constitute the second current mirror 124, the transistors T1-Tm of the third light source unit 13 constitute the third current mirror 134, and the transistors T1-Tm of the fourth light source unit 14 constitute the fourth current mirror 144. The current mirrors 114, 124, 134 and 144 cause the light bars 113, 123, 133 and 143 to achieve current balance, respectively.
When the second switch SW2 is turned on, the disable signal is coupled to the control terminal of the first switch SW1 through the second switch SW2 so that the first switch SW1 is turned off. When the second switch SW2 is turned off, the disable signal cannot be coupled to the control terminal of the first switch SW1, and the control terminal of the first switch SW1 will receive the dimming signal DIM so that the first switch SW1 is turned on or off according to the dimming signal DIM. In the embodiment, the first switch SW1 is implemented by an N-channel FET, and the second switch SW2 is implemented by a PNP BJT. The resistors R1-R3 is used to limit currents flowing through the switches SW1 and SW2 implemented by transistors. The capacitors C1 and C2 are used to filter high-frequency noise.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
098143826 | Dec 2009 | TW | national |
099206202 | Apr 2010 | TW | national |
The present application is a division of co-pending U.S. patent application Ser. No. 12/974,074 filed Dec. 21, 2010, which claims the priority benefit of Taiwan patent application serial no. 98143826, filed Dec. 21, 2009, and Taiwan patent application serial no. 99206202, filed Apr. 8, 2010, the contents of which are hereby incorporated by reference herein in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 12974074 | Dec 2010 | US |
Child | 13913737 | US |