Serially-connectable light string

Information

  • Patent Grant
  • 11424583
  • Patent Number
    11,424,583
  • Date Filed
    Tuesday, September 17, 2019
    4 years ago
  • Date Issued
    Tuesday, August 23, 2022
    a year ago
  • Inventors
  • Original Assignees
    • Blooming International Limited
  • Examiners
    • Riyami; Abdullah A
    • Nguyen; Thang H
    Agents
    • Christensen, Fonder, Dardi & Herbebrt PLLC
    • Fonder; John
Abstract
A serially-connectable light string includes a first power wire, a second power wire, a first electrical connector, a second electrical connector and a plurality of light emitting diodes. The first power wire and the second power wire are arranged in parallel. The first electrical connector is connected to one end of first power wire and one end of the second power wire. The second electrical connector is connected to the other end of first power wire and the other end of the second power wire. The first electrical connector and the second electrical connector respectively include a plurality terminal portions corresponding to the first power wire and the second power wire.
Description
RELATED APPLICATIONS

The present application claims priority to Chinese Patent Application No. 201910533343.7, filed on Jun. 19, 2019 and Chinese Patent Application No. 201910773566.0, filed Aug. 21, 2019, which said applications are incorporated by reference in their entirety herein.


FIELD OF THE INVENTION

This disclosure relates to a light string, and more particularly to a serially-connectable light string.


BACKGROUND OF THE INVENTION

A light string includes plural light sources directly soldered onto the power wire at intervals, so as to form a string-shaped illumination device without a lamp holder in the art. To small-sized light sources, such as small bulbs, light-emitting diodes, light strings are a common arrangement of the light sources. A light string is as flexible as the power wire is, such that the light string is easily arranged in any configuration to comply with requirements for special illumination or decoration.


The length of a light string is generally fixed or predetermined. If it is required to elongate the length of the light string, multiple light strings have to be soldered together according to the circuit design of the light string. The soldering process is difficult to perform on a light string with thin power wires, and soldering defects usually result.


SUMMARY

An embodiment of this disclosure provides a serially-connectable light string to solve the above-mentioned problem.


The present disclosure discloses a serially-connectable light string, including a first power wire, a second power wire, a first electrical connector, a second electrical connector and plurality of light emitting diodes. The first power wire and the second power wire are arranged in parallel. The first electrical connector is connected to one end of a first power wire and one end of a second power wire. The second electrical connector is connected to the other end of first power wire and the other end of the second power wire. The first electrical connector and the second electrical connector respectively include a plurality of terminal pins corresponding to the first power wire and the second power wire. The plurality of light emitting diodes are connected to the first power wire.


In one or more embodiments, the serially-connectable light string further includes a terminal-shorting pin, inserted into the second electrical connector for short-circuiting the first power wire and the second power wire in the second electrical connector.


In one or more embodiments, the first electrical connector and the second electrical connector are a cable plug and a cable socket, or the electrical connector and the second electrical connector are a headphone-style plug and a headphone-style socket.


In one or more embodiments, the serially connectable light string further includes a fixing case, for covering the first electrical connector and the second electrical connector.


In one or more embodiments, the first electrical connector and the second electrical connector respectively include a plurality of through holes, and the first power wire and the second power wire pass through the through holes and are reverse folded to form the plurality of terminal pins; and the fixing case further includes a circuit board, and the circuit board includes printed wires (conductors) for contacting the plurality of terminal pins of the first electrical connector and the second electrical connector.


In one or more embodiments, the plurality of light emitting diodes are connected into a series circuit, and the two ends of the series circuit are respectively connected to the first power wire and the second power wire, respectively.


In one or more embodiments, the light emitting diodes are connected in parallel between the first power wire and the second power wire.


In one or more embodiments, the plurality of light emitting diodes are arranged into a plurality of parallel circuits and the parallel circuits are connected in series.


In one or more embodiments, the serially-connectable light string further includes a plurality of transparent lamp caps; wherein each of the lamp caps includes a body, two guiding portions and a guiding groove, a bottom of the body is equipped with an accommodating dent or recess, and a flange extending outward, the two guiding portions extend outward from an edge of the flange, and the guiding groove extends from the bottom of the body to the guiding portion via the flange.


According to embodiments of this disclosure, plural serially-connectable light strings can be easily connected in series, so as to elongate the length of a light string as required, and in some embodiments, a soldering process is not required.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description given herein below for illustration only, and thus not limitative of the present invention, wherein:



FIG. 1 is a schematic view of a serially-connectable light string according to a first embodiment of this disclosure.



FIG. 2 is a circuit diagram of the serially-connectable light string according to the first embodiment of this disclosure.



FIG. 3 is another circuit diagram of the serially-connectable light string according to the first embodiment of this disclosure.



FIG. 4 is a schematic view of a first electrical connector and a second electrical connector according to the first embodiment of this disclosure.



FIG. 5 is a perspective view of another first electrical connector and another second electrical connector according to the first embodiment of this disclosure.



FIG. 6 is a cross-sectional view of a fixing case covering the first electrical connector and the second electrical connector according to the first embodiment of this disclosure.



FIG. 7 is an exploded view of yet another first electrical connector according to the first embodiment of this disclosure.



FIG. 8 and FIG. 9 are perspective views of the yet another first electrical connector according to the first embodiment of this disclosure.



FIG. 10 is an exploded view of another fixing case according to the first embodiment of this disclosure.



FIG. 11 is a perspective view of the first electrical connector and the second electrical connector connected to each other via another fixing case according to the first embodiment of this disclosure.



FIG. 12 is a circuit diagram of the serially-connectable light string according to a second embodiment of this disclosure.



FIG. 13 is a circuit diagram of the serially-connectable light string according to a third embodiment of this disclosure.



FIG. 14, FIG. 15 and FIG. 16 are circuit diagrams of the serially-connectable light string according to a fourth embodiment of this disclosure.



FIG. 17 and FIG. 18 are cross-sectional views showing the soldering structure of the light emitting diode according to one or more embodiments of this disclosure.



FIG. 19 is a top view of the first power wire and the second power wire according to one or more embodiment of this disclosure.



FIG. 20 is a cross-sectional view of the first power wire and the second power wire according to one or more embodiments of this disclosure.



FIG. 21 is a cross-sectional view showing the soldering structure of the light emitting diode according to one or more embodiments of this disclosure.



FIG. 22 is a top view showing the soldering structure of the light emitting diode according to one or more embodiments of this disclosure.



FIG. 23 is a top view showing the soldering structure of the light emitting diode according to one or more embodiments of this disclosure.



FIG. 24 is a bottom view showing the soldering structure of the light emitting diode according to one or more embodiments of this disclosure.



FIG. 25 and FIG. 26 are perspective views of a lamp cap according to one or more embodiments according to this disclosure.





DETAILED DESCRIPTION

Referring to FIG. 1 and FIG. 2, a serially-connectable light string 100 according to a first embodiment includes a first power wire 110, a second power wire 120, a first electrical connector 130, a second electrical connector 140, and a plurality of light emitting diodes 150 (LEDs 150). As described further below, electrically conductive wires 110 and 120 may be covered by an insulation portion.


It will be understood, and as also described further below, the phrase “serially-connectable light string” means that the light string may be connected to another light string in an end-to-end fashion, to form a series of connected light strings. However, “serially connectable” is not intended to be limited to an electrical series connection between light strings, but rather, the electrical connection between light strings may be any electrical connection, including a series electrical connection or a parallel electrical connection. In an embodiment, such a connection between light strings may be made during a manufacturing process, or made by a user after the manufacture and sale of individual light strings.


As shown in FIG. 1 and FIG. 2, the first power wire 110 and the second power wire 120 are arranged in parallel. The first electrical connector 130 is connected to one end (a first end) of first power wire 110 and one end (a first end) of the second power wire 120, and the second electrical connector 140 is connected to the other end (second end) of first power wire 110 and the other end (second end) of the second power wire 120. The first electrical connector 130 and the second electrical connector 140 respectively include a plurality of terminal pins 132, 142 corresponding to the first power wire 110 and the second power wire 120. The first electrical connector 130 and the second electrical connector 140 are paired, for example, as a plug and a socket, respectively. Therefore, the first electrical connector 130 is configured to be insertable into a second electrical connector 140 of another serially-connectable light string 100. In such an embodiment, terminals 132 of a second light string 100 are in electrical connection with terminals 142 of the first light string 100.


In the embodiment depicted in FIG. 2, a shorting pin or shorting plug 160 is inserted into second electrical connector 140 such that the second ends of wires 110 and 120 are electrically connected together, or “shorted”. Such a configuration completes a series connection of the electrical circuit of the depicted first light string 100, such that the plurality of LEDs 150 are connected to one another in electrical series.


In an embodiment, shorting pin or plug 160 may take the form of a pin or other electrical shunt or connecting device that is integral to second connector 140 and not readily removable by a user. In other embodiments, shorting pin or plug 160 may form a shorting plug 160 that is insertable into second connector 140 and that electrically connects terminals 142 and wires 110 and 120. In one such embodiment, shorting plug 160 may be removable by a user so as to connect a second light string 100 to the first light string 100, as described further below and as depicted in FIG. 3, so as to connect the two serially-connectable light strings 100 into a single long serial circuit. The unused first electrical connector 130 can be connected to a power source, so as to provide a driving voltage Vd to the first power wire 110 and electrically ground the second power wire 120.


As shown in FIG. 2, the plurality of LEDs 150 are connected to the first power wire 110. In the first embodiment, the plurality of LEDs 150 are arranged on the first power wire 110 and serially connected. In the first embodiment, the serially-connectable light string 100 further includes the terminal-shorting pin 160, inserted to the second electrical connector 140 for short-circuiting the first power wire 110 and the second power wire 120, at their second ends, in the second electrical connector 140. When applying the driving voltage Vd to the first power wire 110 and the second power wire 120 via the first electrical connector 130, the first power wire 110, the second power wire 120 and the terminal shorting pin 160 form a circuit loop to drive the plurality of LEDs 150 to emit light.


As shown in FIG. 3, when a longer light string is required, a second serially-connectable light string 100 (right-side light string as depicted) is connected to the first serially-connectable light string 100 (left-side light string as depicted). In this configuration, the terminal shorting pin or plug 160 is not inserted into the second connector 140 of the first light string 100, as depicted in FIG. 2, but rather, the terminal shorting pin 160 is inserted into the second electrical connector 140 of this second serially connectable light string 100. The first electrical connector 130 of the second serially connectable light string 100 is connected to the second electrical connector 140 of the first serially-connectable light string 100, so as to elongate the length of the light string. This causes the plurality of LEDs 150 of the first light string 100 to be electrically connected in series to the plurality of LEDs 150 of the second light string 100. Known light strings typically connect in an end-to-end fashion in parallel, in part because the voltage output of a connected voltage source is fixed. However, in the light string system of the present invention, light strings 100 may be connected plugged into one another so as to form series circuits, including a single series circuit as depicted, that includes light elements, such as LEDs 150 from both light strings. As long as the driving voltage Vd and the output current are able to drive the plurality of LEDs 150 of the multiple light strings, typically meaning providing a higher voltage and current, plural serially-connectable light strings 100 can be serially-connected to satisfy any required length.


As shown in FIG. 4, FIG. 5 and FIG. 6, the first electrical connector 130 and the second electrical connector 140 can be any type of connector, as long as the connector includes at least two sets of terminal pins 132, 142 to respectively connect to the first power wire 110 and the second power wire 120, including their respective conductors. In an embodiment, terminals 132 may comprise male terminals and terminals 142 may comprise female terminals; in another embodiment, terminals 132 may comprise female terminals and terminals 142 may comprise male terminals. Other types of connecting terminals may be used that are not strictly male-female terminals. As shown in FIG. 4, in an embodiment, the first electrical connector 130 and the second electrical connector 140 can be a cable plug and a cable socket. As shown in FIG. 5, the first electrical connector 130 and the second electrical connector 140 can be a headphone-style plug and a headphone-style socket.


As shown in FIG. 6, for the purpose of water-proofing or preventing exposure of terminals so as to avoid electric shock, the second serially connectable light string 100 further includes a fixing case, latching case, cover, or housing 170, also referred to herein as a joining cover or case, for joining and covering the first electrical connector 130 and the second electrical connector 140 after the two connectors are connected, and for maintaining the connection between the connectors 130 and 140. The joining case 170 prevents the first electrical connector 130 and the second electrical connector 140 from being separated, and also prevents the first electrical connector 130 and the second electrical connector 140 from getting wet when the light string is exposed to water or to wet conditions, which otherwise could lead to a short-circuit. The joining case 170 can be composed of a plurality of members latching to each other, which, in an embodiment, can be easily to assembled and disassembled. In an alternative embodiment, the joining case 170 can be a heat shrink tube, directly and tightly wrapping the first electrical connector 130 and the second electrical connector 140 after the two connectors are connected.


Referring to FIG. 7 to FIG. 11, in an embodiment, the first electrical connector 130 and the second electrical connector 140 are both electrical plugs, and the joining case 170 is an electrical socket.


As shown in FIG. 7, FIG. 8, and FIG. 9, in an embodiment, each light string includes three wires, first power wire 110, second power wire 120 and third power wire 180, rather than just two wires as depicted and described in the previous embodiment. In this embodiment, the first electrical connector 130 includes a first or insertable body portion 136 and a second or wire-portion 137. In an embodiment, first portion 136 defines a plurality of through holes 134, and the first power wire 110, the second power wire 120 and the third power wire 180 are configured to receive the power wires such that the wires 110, 120, and 180 extend through the through holes 134. In an embodiment, first portion 136 also defines grooves 136a on a first surface 139, which may be a top surface.


In an embodiment, second portion 137 may define a plurality of wire-receiving slots 141 that are configured to respectively receive portions of power wires 110, 120 and 180. In an embodiment, the received portions of power wires 110, 120 and 180 comprise end or terminal portions of the wires.


The first power wire 110, the second power wire 120 and the third power wire 180 are initially inserted through the through holes 134 of portion 136 of first electrical connector 130. The power wires 110, 120, 180 are then reverse folded, or folded back onto the surface 139 of an insertable portion 136 of the first electrical connector 130 and into grooves 136a.


In an embodiment, the portions of wires 110, 120 and 180 extending out from through holes 134 and back onto surface 137 comprise uninsulated conductors, including wire portions 110a, 120a, and 180a. Wire portions 110a, 120a and 180a comprise all or portions of those uninsulated conductor portions of wires 110, 120 and 180, respectively, that extend out of through holes 134 and bend back or curve away from, then follow, the longitudinal axis defined by each respective wire. A portion of each or wire portion 110a, 120a and 180a, extends outwardly and away from first portion 136 along the respective longitudinal axes of wires 110, 120 and 180, then bends or curves transversely, or as depicted, perpendicularly, to the longitudinal wire axes, then extends in parallel to the longitudinal axes. As such, terminal portions of wires 110, 120 and 180 are radially displaced from other portions of wires 110, 120 and 180, respectively, and extending in parallel to the main longitudinal axes of the wires. These wire portions 110a, 120a and 180a, and in particular are used as, or form, the electrical contact points of the end of the light string. In other words, these wire portions 110a, 120a, and 180a form the plurality of “terminals” 132 in this embodiment. Therefore, in this case, the process for soldering the power wires 110, 120, 180 to terminal pins 132 is not required, as portions of the power wires form the terminals 132. In an embodiment, wire portions 110a, 120a and 180a comprise terminal portions of wires 110, 120 and 180 that are configured to electrically contact terminal portions of corresponding power wires of another light set 100 via intermediate conducting structures or paths, as described further below.


The plurality of grooves 136a disposed on the surface 139 of the insert portion 136 receive portions 110a, 120a and 180a of the first power wire 110, the second power wire 120 and the third power wire 180, respectively, and position the wires such that they are not in electrical or mechanical contact with one another.


In an embodiment, slots 141 of second portion 137 receive portions of wires 110/110a, 120/120a and 180/180a, so as to further secure the wires to connector 130 and to insulate wires 110, 120 and 180 from one another, thereby preventing accidental shorting or connecting of the respective wires.


In an embodiment, the second electrical connector 140 is substantially identical to the first electrical connector 130; the detail of the second electrical connector 140 is omitted hereinafter.


In other embodiments, it will be understood that light strings 100, rather than including three power wires, may include fewer, such as two power wires, or more power wires, such as four or more power wires.


As shown in FIG. 10, in an embodiment, the joining case 170 further includes a circuit board 172, and the circuit board 172 includes printed conductors 172a. In an embodiment, the printed conductors extend from one end to the other end of the circuit board 172, for contacting the plurality of terminals 132, 142, i.e., wire terminal portions 110a, 120a, and 180a of wires 110, 120 and 180, of the first electrical connector 130 to corresponding terminals or wire portions of the second electrical connector 140. In other embodiments, the conductors 172 may be interrupted and may not be electrically conductive in a continuous manner, as described further below.


As shown in FIG. 10, when connecting the first electrical connector 130 and the second electrical connector 140, the position of the first electrical connector 130 and the second electrical connector 140 relative to the joining case 170 is adjustable according to the arrangement of the circuit board 172, for having the power wires serving as the terminals 132, 142 facing the printed wires 172a. In the depicted embodiment, printed circuit board 172 is positioned between an inner wall of joining case 170 and connector 130 such that wire portions 110a, 120a and 180a are adjacent to a conductor-side of board 172, such that wire portions 110a, 120a and 180a are in electrical connection with conductors 172a.


As shown in FIG. 11, the first or insertable portion 136 is inserted into the fixing case 170 to have the terminal 132, 142 (wire portion sets 110a, 120a and 180a of connectors 130 and 140) contact the printed wires 172a; therefore, the first electrical connector 130 and the second electrical connector 140 are electrically connected by the circuit board 172, and the fixing case 170 covers the first electrical connector 130 and the second electrical connector 140. In this embodiment, the reverse folded portions (serving as the electrical terminals 132, 142) of the first power wire 110, the second power wire 120 and the third power wire 180 are clamped by the fixing case 170, which, in an embodiment, has a tensile strength higher than the tensile strength of soldering.


In an embodiment, conductors 172a include first conductor 173, second conductor 175 and third conductor 177. As depicted, second conductor 175 is generally continuous from one end of board 172 to the other, such that a power wire 120 of a first light set 100 is electrically connected to a power wire 120 of a second light set 100 when the connector system is assembled. However, in the depicted embodiment, conductors 173 and 177 are each not continuous. In such an embodiment, wires 110 of two light sets 100 would not be connected, and wires 180 would not be connected due to a discontinuity represented by element 172b. In other embodiments, all conductors 173, 175 and 177 are continuous, or any combination of conductors are continuous. As such, various electrical connections may be made between wires of connectors 130 and 140 of first and second light sets 100, respectively.


Furthermore, the first electrical connector 130 and the second electrical connector includes locking structure, which in an embodiment respectively includes at least one latch 138, 148. The joining case 170 includes latch holes 174 corresponding to the latches 138,148. In an embodiment, as depicted, latches 138 and 148 form projections that extend upwardly from a second or bottom surface 179 of a first portion 136 of a connector. When the insertable portions 136 of the first electrical connector 130 and the second electrical connector 140 are respectively inserted into the fixing case 170, the latches 138, 148 are respectively received into one of the latch holes 174, such that the first electrical connector 130 and the second electrical connector 140 are securely fixed to the joining case 170.


As shown in FIG. 10, in addition to the printed wires or conductors 172a for electrical bridging, the circuit board 172 may be further equipped with electronic components, such as resistors, transistors, etc., so as to change an electrical connection state between the first electrical connector 130 and the second electrical connector 140.


Referring to FIG. 12, a serially-connectable light string 100 according to a second embodiment includes a first power wire 110, a second power wire 120, a first electrical connector, a second electrical connector 140, and a plurality of LEDs 150.


In the second embodiment, the plurality of LEDs 150 are connected into a series circuit, and two ends of the series circuit are respectively connected the first power wire 110 and the second power wire 120. By such an approach, the series circuit is electrically grounded via the second power wire 120. In this embodiment, the terminal shorting pin 160 as shown in the first embodiment at FIG. 2 is not required.


Referring to FIG. 13, a serially connectable light string 100 according to a third embodiment includes a first power wire 110, a second power wire 120, a first electrical connector, a second electrical connector 140, and a plurality of LEDs 150.


In the third embodiment, the LEDs 150 are connected in parallel between the first power wire 110 and the second power wire 120. That is, two ends of each LED 150 are respectively connected to the first power wire 110 and the second power wire 120. By such an approach, each LED 150 is electrically grounded via the second power wire 120. In this embodiment, the terminal shorting pin 160 as shown in the first embodiment is also not required.


Referring to FIG. 14, FIG. 15 and FIG. 16, a three-wire serially connectable light string 100 according to a fourth embodiment includes a first power wire 110, a second power wire 120, a third power wire 180, a first electrical connector, a second electrical connector 140, and a plurality of LEDs 150.


In the fourth embodiment, the LEDs 150 are connected into a circuit including series circuits and parallel circuits, and two ends of the complex circuit are respectively connected to the first power wire 110 and the second power wire 120. By such an approach, the circuit is electrically grounded via the second power wire 120. In this embodiment, the terminal shorting pin 160 as shown in the first embodiment is not required.


As shown in FIG. 14, the serially connectable light string 100 further includes a third power wire 180. The ends of each LED 150 are respectively connected to the first power wire 110 and the third power wire 180, or the ends of each LED 150 are respectively connected to the third power wire 180 and the second power wire 120; therefore, the third power wire 180 serves as connection node between the LEDs 150, to form the circuit including series circuits and parallel circuits between the first power wire 110 and the second power wire 120. As shown in FIG. 15, the connection of the LEDs 150 is substantially identical to that of FIG. 14, the difference is that the LEDs 150 are arranged alternatively or arranged in groups. In this embodiment the plurality of terminal pins 132,142 of the first electrical connector 130 and the second electrical connector 140 are arranged for two ends of the first power wire 110, the second power wire 120, and the third power wire 180, that is, the first electrical connector 130 and the second electrical connector 140 respectively includes three terminal pins 132, 142.


As shown in FIG. 16, the serially-connectable light string 100 may further include a fourth power wire 190. The serially connectable light string 100 includes a third cut-off point C3, a second cut-off point C2 and a first cut-off point C1 interrupting, or creating a discontinuity in, the fourth power wire 190, the third power wire 180 and the first power wire 110 in sequence, to form the circuit loop in FIG. 16. Each “cut-off point” defines a gap or discontinuity in an otherwise continuous wire. Unlike conventional light strings, a cut-off point wire gap may be very small, such that each wire extends substantially from connector 130 to connector 140, with the exception of a cut-off point gap. In an embodiment, a cut-off point gap is created by cutting the wire without removing a section of the wire; in another embodiment, a cut-off point gap is created by cutting out a small portion of the wire. In either embodiment, the gap created along a wire axis may be less than 1%, or in a range of 1% to 5%, of an overall wire length between connectors 130 and 140. The small range allows for easy manufacturing of the light string using substantially continuous wires.


The terminal shorting pin 160 is inserted to the second electrical connector 140 for short-circuiting the first power wire 110 and the second power wire 120 in the second electrical connector 140. Therefore, two ends of each LED 150 are respectively connected to the first power wire 110 and the third power wire 180, or two ends of each LED 150 are respectively connected to the third power wire 180 and the fourth power wire 190. Therefore, among the cut-off points C1, C2, C3 the LEDs 150 are connected in parallel, and after the cut-off points C1, C2, C3, the parallel circuit is serially connected to another parallel circuit. Meanwhile, the plurality of terminal pins 132,142 of the first electrical connector 130 and the second electrical connector 140 are arranged for two ends of the first power wire 110, the second power wire 120, the third power wire 180 and the fourth power wire 190, that is, the first electrical connector 130 and the second electrical connector 140 respectively includes four terminal pins 132, 142.


As shown in FIG. 17 and FIG. 18, in the third embodiment, the first power wire 110, the second power wire 120 and the third power wire 180 are single metal wires or stranded conductors combined together by a one-piece insulating layer. Through a wire stripping procedure, the single metal wire or the stranded conductor is partially exposed, so as to allow soldering of the electrodes 152 of the LED 150 onto the power wires. In FIG. 17, the electrodes 152 are disposed on two opposite edges of a substrate 154 of the LED 150, so as to spread two power wires (to spread the first power wire 110 and the second power wire 120, or to spread the second power wire 120 and the third power wire 180, in a direction transverse to a lengthwise, longitudinal axis of the wire) to clamp the LED 150 by the two power wires. In FIG. 18, the electrodes 152 are disposed on the bottom of substrate 154, and the substrate 154 of LEDs 150 is directly soldered onto two power wires (soldered on the first power wire 110 and the second power wire 120, or soldered on the second power wire 120 and the third power wire 180).


As shown in FIG. 19 and FIG. 20, in the third embodiment, the first power wire 110 and the second power wire 120 are not only wrapped by the insulation layer 112, 122, but also spaced by an extending insulation portion 114, so as to separate the single metal wires or the stranded conductors.


As shown in FIG. 21 and FIG. 22, the LED 150 can be a laterally light emitting device. The substrate 154 is directly soldered on the first power wire 110 and the second power wire 120, and the LED chip 154 is located on a lateral side of the substrate 154 to emit light laterally, or along an axis of the wires.


As shown in FIG. 23 and FIG. 24, the LEDs 150 can be arranged in pairs, and soldered onto the first power wire 110 and the power wire 120. In each pair, the LED chips 156 are arranged to face opposite directions, so as to emit light in different, opposite directions. As shown in FIG. 19, since the first power wire 110 and the second power wire 120 are separated, the light from the two chips 156 emitted downward will not be blocked by the first power wire 110 and the second power wire 120, that is, by using the arrangement as shown in FIG. 23 and FIG. 24, 360 degree light emitting can be achieved by using two LEDs 150 aimed oppositely and emitting light laterally. As shown in FIG. 22, FIG. 23 and FIG. 24, the LED 150 can be a two faced emitting device.


The substrate 154 is directly soldered on the first power wire 110 and the second power wire 120, two faces of the LED 150 emit light. As shown in FIG. 22, since the first power wire 110 and the second power wire 120 are separated, any light from the two chips 156 emitted downward will not be blocked by the first power wire 110 and the second power wire 120, that is, by using the arrangement as shown in FIG. 22FIG. 23 and FIG. 24, 360 degree light emitting can be achieved by using one LEDs 150 of a two faced emitting device.


As shown in FIG. 25 and FIG. 26, the serially-connectable light string 100 further includes a plurality of lamp caps 200, made of transparent material.


As shown in FIG. 25 and FIG. 26, each lamp cap 200 includes a body 210 and two guiding portions 220. The upper portion of the body 210 is configured as a condenser lens. A bottom of the body 210 is equipped with an accommodating dent or recess 212 for accommodating the LED 150. The bottom of the body 210 is further equipped with a flange 214 extending outward. The two guiding portions 220 extend outward from an edge of the flange 214, and the two guiding portions 220 extend toward opposite directions. Furthermore, the lamp cap 200 further includes a guiding groove 230, and the guiding groove 230 extends from the bottom of the body 210 to the guiding portions 220 via the flange 212. The guiding groove 230 is provided for accommodating the power wires connected to the LED 150.


According to embodiments of this disclosure, a plurality of serially-connectable light strings 100 can be easily connected in series, so as to elongate the length of a light string 100 as required, and a soldering process is not required.

Claims
  • 1. A serially-connectable light string, comprising: a first power wire and a second power wire arranged in parallel;a first electrical connector connected to one end of the first power wire and to one end of the second power wire;a second electrical connector connected to another end of the first power wire and another end of the second power wire; wherein, the first electrical connector and the second electrical connector respectively include a plurality of terminal pins corresponding to the first power wire and the second power wire;a removable shorting device insertable into the second electrical connector; the removable shorting device configured to directly electrically connect the first power wire to the second power wire within the second electrical connector, thereby causing a direct electrical short between the first power wire and the second power wire;and a plurality of light emitting diodes; connected to the first power wire;wherein the first power wire is adjacent to the second power wire outside of the first electrical connector and the second electrical connector.
  • 2. The serially-connectable light string as claimed in claim 1, wherein the first electrical connector and the second electrical connector are a cable plug and a cable socket, or the first electrical connector and the second electrical connector are a headphone plug and a headphone socket.
  • 3. The serially-connectable light string as claimed in claim 1, further comprising a joining case, for covering the first electrical connector and a second electrical connector of another serially-connectable light string.
  • 4. The serially-connectable light string as claimed in claim 3, wherein the first electrical connector and the second electrical connector respectively include a plurality of through holes, and the first power wire and the second power wire extend through the through holes and are reverse folded to form the plurality of terminal pins; andthe joining case further includes a circuit board, and the circuit board includes printed conductors contacting the plurality terminal pins of the first electrical connector and the second electrical connector.
  • 5. The-serially connectable light string as claimed in claim 1, wherein the plurality of light emitting diodes are connected into a series circuit, and two ends of the series circuit are respectively connected to the first power wire and the second power wire.
  • 6. The serially-connectable light string as claimed in claim 1, wherein the light emitting diodes are connected in parallel between the first power wire and the second power wire.
  • 7. The serially-connectable light string as claimed in claim 1, wherein the plurality of light emitting diodes are arranged into a plurality of parallel circuits and the parallel circuits are connected in series.
  • 8. The serially-connectable light string as claimed in claim 1, further comprising a plurality of transparent lamp caps; wherein each of the lamp caps includes a body, two guiding portions and a guiding groove, a bottom of the body is equipped with an accommodating dent and a flange extending outward, the two guiding portions extend outward from an edge of the flange, and the guiding groove extends from the bottom of the body to the guiding portion via the flange.
  • 9. The serially-connectable light string as claimed in claim 1, wherein the first power wire and the second power wire are wrapped by an insulation layer and spaced from each other by an extending insulation portion of the insulation layer.
  • 10. The serially-connectable light string as claimed in claim 1, wherein the removable shorting device is a removable shorting plug configured to be removed by a user.
  • 11. A serially-connectable light string, comprising: a first power wire and a second power wire arranged in parallel;a first electrical connector connected to one end of the first power wire and to one end of the second power wire;a second electrical connector connected to another end of the first power wire and another end of the second power wire; wherein, the first electrical connector and the second electrical connector respectively include a first terminal pin and a second terminal pin corresponding to the first power wire and the second power wire, respectively; anda plurality of light emitting diodes, connected to the first power wire;wherein the first electrical connector and the second electrical connector respectively include a plurality of through holes, and the first power wire and the second power wire extend continuously through the through holes and are reverse folded to form the first and second terminal pins, the first terminal pin being continuous and to a conductor of the first power wire, and the second terminal being continuous with a conductor of the second power wire.
  • 12. The serially-connectable light string as claimed in claim 11, further comprising a terminal shorting pin, inserted into the second electrical connector for short-circuiting the first power wire and the second power wire in the second electrical connector.
  • 13. The serially-connectable light string as claimed in claim 11, further comprising a shorting device removably insertable into the second electrical connector, the shorting device configured to directly electrically connect the first power wire to the second power wire within the second electrical connector, thereby causing a direct electrical short between the first power wire and the second power wire.
  • 14. The serially-connectable light string as claimed in claim 11, further comprising a joining case, for covering the first electrical connector and a second electrical connector of another serially-connectable light string.
  • 15. The serially-connectable light string as claimed in claim 14, wherein the joining case further includes a circuit board, and the circuit board includes printed conductors contacting the plurality terminal pins of the first electrical connector and the second electrical connector.
  • 16. The-serially connectable light string as claimed in claim 11, wherein the plurality of light emitting diodes are connected into a series circuit, and two ends of the series circuit are respectively connected to the first power wire and the second power wire.
  • 17. The serially-connectable light string as claimed in claim 11, wherein the light emitting diodes are connected in parallel between the first power wire and the second power wire.
  • 18. The serially-connectable light string as claimed in claim 11, wherein the plurality of light emitting diodes are arranged into a plurality of parallel circuits and the parallel circuits are connected in series.
  • 19. The serially-connectable light string as claimed in claim 11, further comprising a plurality of transparent lamp caps; wherein each of the lamp caps includes a body, two guiding portions and a guiding groove, a bottom of the body is equipped with an accommodating dent and a flange extending outward, the two guiding portions extend outward from an edge of the flange, and the guiding groove extends from the bottom of the body to the guiding portion via the flange.
  • 20. The serially-connectable light string as claimed in claim 11, wherein the first power wire and the second power wire are wrapped by an insulation layer and spaced from each other by an extending insulation portion of the insulation layer.
Priority Claims (2)
Number Date Country Kind
201910533343.7 Jun 2019 CN national
201910773566.0 Aug 2019 CN national
US Referenced Citations (202)
Number Name Date Kind
4379609 Hardesty Apr 1983 A
4438998 Myers Mar 1984 A
4460234 Bogese Jul 1984 A
4593966 Meyer Jun 1986 A
4761720 Solow Aug 1988 A
4812956 Chen Mar 1989 A
4895532 Bogese, II Jan 1990 A
4908743 Miller Mar 1990 A
5106306 Ditzig Apr 1992 A
5109324 Ahroni Apr 1992 A
5150964 Tsui Sep 1992 A
5245519 Openiano Sep 1993 A
5454737 Saba Oct 1995 A
5645342 Chang Jul 1997 A
5697815 Drewnicki Dec 1997 A
5747940 Openiano May 1998 A
5834901 Shen Nov 1998 A
5943751 Kamei Aug 1999 A
5975717 Rahman Nov 1999 A
6042418 Cummings Mar 2000 A
6066807 Gudgeon May 2000 A
6086221 Wu Jul 2000 A
6086222 Juba Jul 2000 A
6091204 Chen Jul 2000 A
6113432 Liao Sep 2000 A
6146207 Mulot Nov 2000 A
6518707 Gershen Feb 2003 B2
6582094 Liu Jun 2003 B2
6609814 Ahroni Aug 2003 B2
6777891 Lys et al. Aug 2004 B2
6914194 Fan Jul 2005 B2
7048550 Hyland et al. May 2006 B2
7062442 Sugar Jun 2006 B2
7088904 Ryan, Jr. Aug 2006 B2
7160140 Mrakovich et al. Jan 2007 B1
7235815 Wang Jun 2007 B2
7250730 Allen Jul 2007 B1
7253566 Lys et al. Aug 2007 B2
7338327 Sticker et al. Mar 2008 B2
7481555 Huang et al. Jan 2009 B2
7494244 Van Diep Feb 2009 B1
7554266 Chen Jun 2009 B1
7569996 Holmes Aug 2009 B2
7784961 Rawlings Aug 2010 B1
7905753 Siev et al. Mar 2011 B2
7926978 Tsai Apr 2011 B2
7976191 Gibboney Jul 2011 B2
8070347 Lin Dec 2011 B1
8203275 Ruxton Jun 2012 B2
8397381 Tsai Mar 2013 B2
8454186 Chen Jun 2013 B2
8454187 Chen Jun 2013 B2
8469734 Chen Jun 2013 B2
8469750 Chen Jun 2013 B2
8480278 Wasem Jul 2013 B2
8562175 Chen Oct 2013 B2
8568015 Chen Oct 2013 B2
8569960 Chen Oct 2013 B2
8592845 Chen Nov 2013 B2
8598805 Tremblay Dec 2013 B2
8608342 Chen Dec 2013 B2
8622576 Zhan Jan 2014 B2
8641229 Li Feb 2014 B2
8672510 Budelman Mar 2014 B1
8680773 Hering et al. Mar 2014 B2
8876321 Chen Nov 2014 B2
8974072 Chen Mar 2015 B2
9044056 Chen Jun 2015 B2
9055777 Chen Jun 2015 B2
9066617 Chen Jun 2015 B2
9157587 Chen Oct 2015 B2
9166323 Lampert et al. Oct 2015 B2
9179793 Chen Nov 2015 B2
9220361 Chen Dec 2015 B1
9222656 Chen Dec 2015 B2
9279551 Vissenberg et al. Mar 2016 B2
9291318 Benson Mar 2016 B1
9318840 Siev et al. Apr 2016 B2
9386652 Lee Jul 2016 B1
9439528 Chen Sep 2016 B2
9441800 Chen Sep 2016 B1
9441823 Chen Sep 2016 B1
9468062 Rybicki Oct 2016 B2
9526286 Chen Dec 2016 B2
9572446 Chen Feb 2017 B2
9593831 Chen Mar 2017 B2
9763298 Yu Mar 2017 B2
9648919 Chen May 2017 B2
9655211 Altamura May 2017 B2
9671074 Chen Jun 2017 B2
9677748 Chen Jun 2017 B1
9677749 Chen Jun 2017 B2
9788384 Harris Oct 2017 B1
9845925 Chen Dec 2017 B2
9883566 Chen Jan 2018 B1
9899765 Wagner Feb 2018 B2
10006596 Yu et al. Jun 2018 B2
10103493 Siev et al. Oct 2018 B2
10136497 Harris Nov 2018 B2
10178887 Chen Jan 2019 B1
10184654 Chen Jan 2019 B1
10205073 Altamura Feb 2019 B2
10288235 Chen May 2019 B1
10288236 Chen May 2019 B1
10578260 Chen Mar 2020 B1
10578289 Chen Mar 2020 B2
10624166 Shao Apr 2020 B1
10697598 Chen et al. Jun 2020 B1
10950988 Thiel Mar 2021 B1
11060674 Liu Jul 2021 B1
20020027778 Ko Mar 2002 A1
20030063463 Sloan et al. Apr 2003 A1
20040012950 Pan Jan 2004 A1
20040080281 Pan Apr 2004 A1
20040090770 Primeau May 2004 A1
20040096596 Palmer, III et al. May 2004 A1
20040165384 Allen Aug 2004 A1
20040246718 Fan Dec 2004 A1
20050174065 Janning Aug 2005 A1
20060158878 Howell Jul 2006 A1
20060221609 Ryan, Jr. Oct 2006 A1
20070015396 Mrakovich et al. Jan 2007 A1
20070177402 Wu Aug 2007 A1
20070230174 Hicks Oct 2007 A1
20070262725 Koren Nov 2007 A1
20070279920 Lin Dec 2007 A1
20080049424 Wang Feb 2008 A1
20080084695 Hsu Apr 2008 A1
20080084702 Cheung Apr 2008 A1
20080094828 Shao Apr 2008 A1
20080218092 Chang et al. Sep 2008 A1
20090154156 Lo et al. Jun 2009 A1
20090278463 Tang Nov 2009 A1
20090302771 Peng Dec 2009 A1
20100001664 Shih Jan 2010 A1
20100141161 Hering et al. Jun 2010 A1
20100157598 Tsai Jun 2010 A1
20100277084 Lee Nov 2010 A1
20110062875 Altamura Mar 2011 A1
20110074300 Hsu Mar 2011 A1
20110104922 Byrne May 2011 A1
20110148311 Neuman Jun 2011 A1
20110210677 Hering et al. Sep 2011 A1
20110228535 Shao Sep 2011 A1
20110305022 Chen Dec 2011 A1
20110316442 Sako et al. Dec 2011 A1
20120007510 Horng Jan 2012 A1
20120039070 Shen et al. Feb 2012 A1
20120040546 Droesbeke Feb 2012 A1
20120075863 Chen Mar 2012 A1
20120275157 Hsu Nov 2012 A1
20130078847 Chen Mar 2013 A1
20130181232 Jeromerajan Jul 2013 A1
20130249394 Fay Sep 2013 A1
20130249417 Verlinden Sep 2013 A1
20130301246 Chen Nov 2013 A1
20140055439 Lee Feb 2014 A1
20140057484 Byrne Feb 2014 A1
20140179132 Byrne Jun 2014 A1
20140268689 Chen Sep 2014 A1
20140268818 Huang et al. Sep 2014 A1
20140292214 Huang Oct 2014 A1
20140355277 Lin Dec 2014 A1
20150008835 Sugiura et al. Jan 2015 A1
20150029703 Chen Jan 2015 A1
20150070878 Yu Mar 2015 A1
20150117001 Fan Apr 2015 A1
20160047516 Taylor Feb 2016 A1
20160123566 Leung May 2016 A1
20160149358 Ariani May 2016 A1
20160183338 Loomis Jun 2016 A1
20160186940 Del Castillo et al. Jun 2016 A1
20160286615 Weeks, Jr Sep 2016 A1
20160338171 Bhagat Nov 2016 A1
20160341408 Altamura Nov 2016 A1
20160356454 Camarota Dec 2016 A1
20170023223 Tsai Jan 2017 A1
20170038055 Daniels Feb 2017 A1
20170055319 Rogers Feb 2017 A1
20170108185 He Apr 2017 A1
20170295622 Harris Oct 2017 A1
20170321850 Chien Nov 2017 A1
20170328527 Yang et al. Nov 2017 A1
20170343170 Yu et al. Nov 2017 A1
20180020519 Harris Jan 2018 A1
20180020520 Harris Jan 2018 A1
20180058648 Fang Mar 2018 A1
20180073708 Avery et al. Mar 2018 A1
20180110101 Kottritsch Apr 2018 A1
20180172225 Zhao Jun 2018 A1
20180172226 Zhao Jun 2018 A1
20180231226 Koo Aug 2018 A1
20180299084 Chien Oct 2018 A1
20190053348 Harris Feb 2019 A1
20190081436 Onodi et al. Mar 2019 A1
20190234597 Zhu Aug 2019 A1
20190277458 Shao Sep 2019 A1
20190335559 Shao Oct 2019 A1
20200236746 Shao Jul 2020 A1
20210255223 Barezzani Aug 2021 A1
20210265786 Mishra Aug 2021 A1
20210301987 Xiong Sep 2021 A1
Foreign Referenced Citations (11)
Number Date Country
2 655 486 Sep 2009 CA
200982547 Nov 2007 CN
201121811 Sep 2008 CN
201897194 Jul 2011 CN
201898147 Jul 2011 CN
201966240 Sep 2011 CN
202613183 Dec 2012 CN
203703878 Jul 2014 CN
3240446 Jul 1983 DE
1 172 602 Jan 2002 EP
2 454 546 May 2009 GB
Non-Patent Literature Citations (4)
Entry
U.S. Appl. No. 16/846,784, filed Apr. 13, 2020, Inventor Shu-Fa Shao (49 pages).
U.S. Appl. No. 16/573,890, filed Sep. 17, 2019, Inventor Shu Fa Shao (44 pages).
U.S. Appl. No. 16/298,935, filed Mar. 11, 2019, Inventor Shu Fa Shao (81 pages).
U.S. Appl. No. 16/219,657, filed Dec. 13, 2018, Inventor Johnny Chen (155 pages).
Related Publications (1)
Number Date Country
20200400278 A1 Dec 2020 US