Serum/plasma MicroRNAs and uses thereof

Information

  • Patent Grant
  • 10011880
  • Patent Number
    10,011,880
  • Date Filed
    Thursday, June 2, 2016
    8 years ago
  • Date Issued
    Tuesday, July 3, 2018
    5 years ago
Abstract
MicroRNAs are provided for evaluating the physiological and/or pathological condition of a subject; and a kit thereof is provided for evaluating the physiological and/or pathological condition of a subject, wherein the kit contains the tools for determining all detectable microRNAs that stably existing in the serum/plasma of a subject; and a biochip for evaluating the physiological and/or pathological condition of a subject, wherein the biochip contains the components for determining all detectable microRNAs stably existing in the serum/plasma of a subject. The aforementioned combination, method, kit and biochip can be used for diagnosis as well as differentially diagnosis of diseases including various tumors.
Description
SUBMISSION OF SEQUENCE LISTING

The Sequence Listing associated with this application is filed in electronic format via EFS-Web and hereby incorporated by reference into the specification in its entirety. The name of the text file containing the Sequence Listing is P2016-0246_ST25.txt. The size of the text file is 84 KB, and the text file was created on May 30, 2016.


TECHNICAL FIELD

The present invention relates to microRNAs and uses thereof, more specifically, to serum/plasma microRNAs and the uses of serum/plasma microRNAs for diagnosis and differential diagnosis of diseases, prediction of complication occurrence and malignant disease relapse, evaluation of therapeutic effects, screening of pharmaceutical active ingredients, assessment of drug efficacy, forensic authentication and prohibited drug inspection and the like.


BACKGROUND ART

To locate and precisely detect disease markers has already been the important precondition for the diagnosis and treatment of various clinical diseases including various tumors; various acute/chronic infectious diseases, e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS, bacterial diseases such as tuberculosis, bacterial pneumonia, and other acute/chronic infectious diseases caused by various pathogenic microorganisms; other acute/chronic diseases such as diseases of respiratory system, diseases of immune system, diseases of blood and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular diseases, metabolic diseases of endocrine system, diseases of digestive system, diseases of nervous system, diseases of urinary system, diseases of reproductive system and diseases of locomotor system. Although more and more disease markers have been found and utilized in general survey and diagnosis of clinical diseases as well as monitoring and controlling of therapeutic effects, their clinical application effects are obviously insufficient. For instance, tumor marker, e.g. alphafetoprotein, lactic dehydrogenase and carcinoembryonic antigen have been widely used in clinic. But these disease markers are far from meeting the needs of early diagnosis for cancer for the following two main reasons: (1) the sensitivity and specificity for the above-mentioned disease markers are relatively low, thus their detection results cannot be used as a diagnostic indicator of disease; (2) the early diagnosis rate of disease shall be positively correlative with the therapeutic effects. However, it is difficult for any of the aforesaid disease markers to meet such requirements for early diagnosis. Take cancer for example, the specificity of tumor differentiation is too high, the integrated sensitivity of tumor is relatively low, the samples sent to be detected are difficult to be repeatedly taken and the conditions to meet the preservation requirements for samples are too exacting, meanwhile, the cost is very high, thus under existing technology the spreading and use of the tumor markers available are hard to realize. The inherent defects of some traditional medical means such as biopsy, for example, incorrect material-extraction position, the inadequacy of sample materials for histocytes and human inexperience, etc., will all lead to misdiagnosis. Although other techniques such as imaging technique have been widely used for examination and diagnosis of diseases, there exists considerable limitation on the determination for disease degree. Consequently, it is very necessary to find out a maker for disease detection which is novel, sensitive and convenient to use and can also overcome the defects of existing markers as mentioned above.


MicroRNAs are defined as a kind of non-coding single-stranded small RNA moleculars of approximately from 19 to 23 nucleotides in length. They are highly conservative in evolution; and are closely related to many normal physiological activities of animals such as development process, tissue differentiation, cell apoptosis and energy metabolism; in addition, bear close relation with the occurrence and development of many diseases. Recent studies show that the expression levels of several microRNAs in chronic lymphocytic leukemia and Burkitt lymphoma are on average down-regulated to various extents; and that by analyzing and comparing the expressions of microRNAs in tissues of human lung cancer and human breast cancer, the expression levels of several tissue specific microRNAs have changed relative to normal tissues. Some studies demonstrate that microRNAs affect the occurrence and development of cardio-cerebrovascular diseases such as myocardial hypertrophy, heart failure, atherosclerosis, and are closely relative to metabolic diseases such as Diabetes II. These experimental results indicate that there exists inevitable connection between the expression and specificity changes of microRNAs and the occurrence and development of diseases.


For the unimaginable important role microRNAs played in the regulation of expression after gene transcription, microRNAs have some associations with diseases. First of all, the changes of microRNAs may be the cause of diseases. This is because both the inhibitor and the promoter of diseases may be target sites for microRNAs. If the expression of microRNA itself is disturbed, e.g., the expression level of microRNA which is originally to inhibit disease promoters decreases or the expression level of microRNA which is to inhibit disease inhibitor increases, its end results will both lead to changes in the expression of downstream genes and the overall disorder of some pathways, further inducing the occurrence of diseases. Secondly, the changes of microRNAs may also result from diseases. This is because, when a kind of disease such as cancer occurs, it will lead to the loss of chromosome segments, gene mutation or rapid amplification of chromosome segments; moreover, if the microRNAs happen to locate in the changing segment, then their expression level will extremely significantly change. Therefore, in theory, microRNAs can be completely regarded as a kind of new disease markers, the specificity changes of which inevitably correlate with the occurrence and development of diseases. Meanwhile, microRNA can also be used as a potential drug target, and it may greatly alleviate the occurrence and development of diseases by inhibiting the up-regulated microRNAs and overexpressedly down-regulated microRNAs in the course of a disease.


The inventor has carried out the research in the relevant fields of using microRNAs as disease markers, for instance, choosing colonic carcinoma which ranks forth in the incidence of malignant tumor as the research object. The research suggests that, during the process of colon benign polyps developing into malignant tumor, some microRNAs exhibit specificity changes, thereby a more sensitive and accurate method for the early diagnosis of colonic carcinoma having been set up through detecting the specific changes in microRNAs. However, since the sampling for tissue specimen is not easy, the wide application of this method in clinics is limited.


DETAILED DESCRIPTION OF THE INVENTION

The inventor focuses the research on the blood which is relatively easy to obtain and even can be collected via routine physical examination. Blood will circulate to all tissues in body and convey nutrients to cells whilst scavenging waste materials; therefore, blood is able to reflect the physiological pathology of the whole organism and its detection results is an indicator of human health. It is known that in serum/plasma there are many kinds of proteins such as total protein, albumin and globulin, many kinds of lipids such as HDL cholesterol and triglycerides, many kinds of carbohydrates, pigments, electrolytes, inorganic salts, and many kinds of enzymes such as amylase, alkaline phosphatase, acid phosphatase, cholinesterase and aldolase; moreover, there also exist many kinds of signaling molecules such as cytokines and hormone from tissues and organs in whole body. Currently, disease diagnosis is only limited to the above-mentioned biochemical indexes in serum/plasma, and no report is available regarding microRNAs in serum/plasma. It traditionally believed that there is no microRNA in serum/plasma, and that, if any, it will be rapidly degraded by RNase into small molecule segments and hence cannot be detected. However, microRNAs, consisting of from 19 to 23 nucleotides, possess specificity and relative stability in structure and hence are very likely present in serum/plasma. Meanwhile, since microRNAs are a new type of disease markers, it is anticipated that by studying whether or not microRNAs are present in serum/plasma, whether or not they can be detected and the connection between microRNAs and diseases, a new technology is established for the early disease diagnosis, disease identification as well as monitoring and controlling of course of diseases, prediction of malignant disease relapse and prognosis and complication occurrence, assessment of drug efficacy, guide of medication, individualized treatment, screening of active ingredients of Chinese Traditional Medicines, population taxonomy, etc., by use of the microRNAs stably existing in serum/plasma as well as their specificity changes.


The present invention provides a combination of microRNAs for evaluating physiological and/or pathological condition in a subject, wherein the combination comprises all detectable microRNAs stably existing in the serum/plasma of the subject.


The present invention further provides a method for evaluating physiological and/or pathological condition in a subject, wherein the method comprises determining all detectable microRNAs stably existing in the serum/plasma of the subject.


In the above-mentioned combination or method, all detectable microRNAs stably existing in serum/plasma of a subject may be all mature microRNAs in human serum/plasma, specifically include let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-1, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-106b, miR-107, miR-10a, miR-10b, miR-122a, miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-142-5p, miR-143, miR-144, miR-145, miR-146a, miR-146b, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151, miR-152, miR-153, miR-154, miR-154*, miR-155, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-181a, miR-181b, miR-181c, miR-181d, miR-182, miR-182*, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-18a, miR-18a*, miR-18b, miR-190, miR-191, miR-191*, miR-192, miR-193a, miR-193b, miR-194, miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a, miR-199a*, miR-199b, miR-19a, miR-19b, miR-200a, miR-200a*, miR-200b, miR-200c, miR-202, miR-202*, miR-203, miR-204, miR-205, miR-206, miR-208, miR-20a, miR-20b, miR-21, miR-210, miR-211, miR-212, miR-213, miR-214, miR-215, miR-216, miR-217, miR-218, miR-219, miR-22, miR-220, miR-221, miR-222, miR-223, miR-224, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-27b, miR-28, miR-296, miR-299-3p, miR-299-5p, miR-29a, miR-29b, miR-29c, miR-301, miR-302a, miR-302a*, miR-302b, miR-302b*, miR-302c, miR-302c*, miR-302d, miR-30a-3p, miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-30e-3p, miR-30e-5p, miR-31, miR-32, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-329, miR-33, miR-330, miR-331, miR-335, miR-337, miR-338, miR-339, miR-33b, miR-340, miR-342, miR-345, miR-346, miR-34a, miR-34b, miR-34c, miR-361, miR-362, miR-363, miR-363*, miR-365, miR-367, miR-368, miR-369-3p, miR-369-5p, miR-370, miR-371, miR-372, miR-373, miR-373*, miR-374, miR-375, miR-376a, miR-376a*, miR-376b, miR-377, miR-378, miR-379, miR-380-3p, miR-380-5p, miR-381, miR-382, miR-383, miR-384, miR-409-3p, miR-409-5p, miR-410, miR-411, miR-412, miR-421, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-425-5p, miR-429, miR-431, miR-432, miR-432*, miR-433, miR-448, miR-449, miR-450, miR-451, miR-452, miR-452*, miR-453, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p, miR-486, miR-487a, miR-487b, miR-488, miR-489, miR-490, miR-491, miR-492, miR-493, miR-493-3p, miR-494, miR-495, miR-496, miR-497, miR-498, miR-499, miR-500, miR-501, miR-502, miR-503, miR-504, miR-505, miR-506, miR-507, miR-508, miR-509, miR-510, miR-511, miR-512-3p, miR-512-5p, miR-513, miR-514, miR-515-3p, miR-515-5p, miR-516-3p, miR-516-5p, miR-517*, miR-517a, miR-517b, miR-517c, miR-518a, miR-518a-2*, miR-518b, miR-518c, miR-518c*, miR-518d, miR-518e, miR-518f, miR-518f*, miR-519a, miR-519b, miR-519c, miR-519d, miR-519e, miR-519e*, miR-520a, miR-520a*, miR-520b, miR-520c, miR-520d, miR-520d*, miR-520e, miR-520f, miR-520g, miR-520h, miR-521, miR-522, miR-523, miR-524, miR-524*, miR-525, miR-525*, miR-526a, miR-526b, miR-526b*, miR-526c, miR-527, miR-532, miR-542-3p, miR-542-5p, miR-544, miR-545, miR-548a, miR-548b, miR-548c, miR-548th miR-549, miR-550, miR-551a, miR-552, miR-553, miR-554, miR-555, miR-556, miR-557, miR-558, miR-559, miR-560, miR-561, miR-562, miR-563, miR-564, miR-565, miR-566, miR-567, miR-568, miR-569, miR-570, miR-571, miR-572, miR-573, miR-574, miR-575, miR-576, miR-577, miR-578, miR-579, miR-580, miR-581, miR-582, miR-583, miR-584, miR-585, miR-586, miR-587, miR-588, miR-589, miR-590, miR-591, miR-592, miR-593, miR-594, miR-595, miR-596, miR-597, miR-598, miR-599, miR-600, miR-601, miR-602, miR-603, miR-604, miR-605, miR-606, miR-607, miR-608, miR-609, miR-610, miR-611, miR-612, miR-613, miR-614, miR-615, miR-616, miR-617, miR-618, miR-619, miR-620, miR-621, miR-622, miR-623, miR-624, miR-625, miR-626, miR-627, miR-628, miR-629, miR-630, miR-631, miR-632, miR-633, miR-634, miR-635, miR-636, miR-637, miR-638, miR-639, miR-640, miR-641, miR-642, miR-643, miR-644, miR-645, miR-646, miR-647, miR-648, miR-649, miR-650, miR-651, miR-652, miR-653, miR-654, miR-655, miR-656, miR-657, miR-658, miR-659, miR-660, miR-661, miR-662, miR-663, miR-7, miR-9, miR-9*, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99 and miR-99b.


The aforesaid method for determining all detectable microRNAs stably existing in serum/plasma of a subject is one or more selected from the group consisting of RT-PCR method, Real-time PCR method, Northern blotting method, RNase protection assay, Solexa sequencing technology and biochip method.


The aforesaid RT-PCR method includes the following steps:


(1) extracting the total RNA from the serum/plasma of a subject and obtaining cDNA samples by RNA reverse transcription reaction; or collecting serum/plasma samples from the subject and conducting reverse transcription reaction with serum/plasma being a buffer so as to prepare cDNA samples;


(2) designing a primer by use of microRNAs and conducting PCR reaction;


(3) conducting agarose gel electrophoresis of PCR products;


(4) observing agarose gel under ultraviolet lamp after EB staining.


The aforesaid real-time PCR method includes the following steps:


(1) extracting the total RNA from the serum/plasma of a subject and obtaining cDNA samples by RNA reverse transcription reaction; or collecting serum/plasma samples from the subject and conducting reverse transcription reaction with serum/plasma being a buffer so as to prepare cDNA samples;


(2) designing a primer by use of microRNAs;


(3) adding a fluorescent probe to conduct PCR reaction;


(4) detecting and comparing the variation in levels of microRNAs in the serum/plasma relative to those of microRNAs in normal serum/plasma.


The present invention further provides a kit for evaluating physiological and/or pathological condition of a subject, wherein the kit comprises the tools for determining all detectable microRNAs stably existing in the serum/plasma of the subject. The kit may comprises the primers of all mature microRNAs in human serum/plasma, specifically comprises the primers of let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-1, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-106b, miR-107, miR-10a, miR-10b, miR-122a, miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-142-5p, miR-143, miR-144, miR-145, miR-146a, miR-146b, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151, miR-152, miR-153, miR-154, miR-154*, miR-155, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-181a, miR-181b, miR-181c, miR-181d, miR-182, miR-182*, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-18a, miR-18a*, miR-18b, miR-190, miR-191, miR-191*, miR-192, miR-193a, miR-193b, miR-194, miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a, miR-199a*, miR-199b, miR-19a, miR-19b, miR-200a, miR-200a*, miR-200b, miR-200c, miR-202, miR-202*, miR-203, miR-204, miR-205, miR-206, miR-208, miR-20a, miR-20b, miR-21, miR-210, miR-211, miR-212, miR-213, miR-214, miR-215, miR-216, miR-217, miR-218, miR-219, miR-22, miR-220, miR-221, miR-222, miR-223, miR-224, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-27b, miR-28, miR-296, miR-299-3p, miR-299-5p, miR-29a, miR-29b, miR-29c, miR-301, miR-302a, miR-302a*, miR-302b, miR-302b*, miR-302c, miR-302c*, miR-302d, miR-30a-3p, miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-30e-3p, miR-30e-5p, miR-31, miR-32, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-329, miR-33, miR-330, miR-331, miR-335, miR-337, miR-338, miR-339, miR-33b, miR-340, miR-342, miR-345, miR-346, miR-34a, miR-34b, miR-34c, miR-361, miR-362, miR-363, miR-363*, miR-365, miR-367, miR-368, miR-369-3p, miR-369-5p, miR-370, miR-371, miR-372, miR-373, miR-373*, miR-374, miR-375, miR-376a, miR-376a*, miR-376b, miR-377, miR-378, miR-379, miR-380-3p, miR-380-5p, miR-381, miR-382, miR-383, miR-384, miR-409-3p, miR-409-5p, miR-410, miR-411, miR-412, miR-421, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-425-5p, miR-429, miR-431, miR-432, miR-432*, miR-433, miR-448, miR-449, miR-450, miR-451, miR-452, miR-452*, miR-453, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p, miR-486, miR-487a, miR-487b, miR-488, miR-489, miR-490, miR-491, miR-492, miR-493, miR-493-3p, miR-494, miR-495, miR-496, miR-497, miR-498, miR-499, miR-500, miR-501, miR-502, miR-503, miR-504, miR-505, miR-506, miR-507, miR-508, miR-509, miR-510, miR-511, miR-512-3p, miR-512-5p, miR-513, miR-514, miR-515-3p, miR-515-5p, miR-516-3p, miR-516-5p, miR-517*, miR-517a, miR-517b, miR-517c, miR-518a, miR-518a-2*, miR-518b, miR-518c, miR-518c*, miR-518d, miR-518e, miR-518f, miR-518f*, miR-519a, miR-519b, miR-519c, miR-519d, miR-519e, miR-519e*, miR-520a, miR-520a*, miR-520b, miR-520c, miR-520d, miR-520d*, miR-520e, miR-520f, miR-520g, miR-520h, miR-521, miR-522, miR-523, miR-524, miR-524*, miR-525, miR-525*, miR-526a, miR-526b, miR-526b*, miR-526c, miR-527, miR-532, miR-542-3p, miR-542-5p, miR-544, miR-545, miR-548a, miR-548b, miR-548c, miR-548th miR-549, miR-550, miR-551a, miR-552, miR-553, miR-554, miR-555, miR-556, miR-557, miR-558, miR-559, miR-560, miR-561, miR-562, miR-563, miR-564, miR-565, miR-566, miR-567, miR-568, miR-569, miR-570, miR-571, miR-572, miR-573, miR-574, miR-575, miR-576, miR-577, miR-578, miR-579, miR-580, miR-581, miR-582, miR-583, miR-584, miR-585, miR-586, miR-587, miR-588, miR-589, miR-590, miR-591, miR-592, miR-593, miR-594, miR-595, miR-596, miR-597, miR-598, miR-599, miR-600, miR-601, miR-602, miR-603, miR-604, miR-605, miR-606, miR-607, miR-608, miR-609, miR-610, miR-611, miR-612, miR-613, miR-614, miR-615, miR-616, miR-617, miR-618, miR-619, miR-620, miR-621, miR-622, miR-623, miR-624, miR-625, miR-626, miR-627, miR-628, miR-629, miR-630, miR-631, miR-632, miR-633, miR-634, miR-635, miR-636, miR-637, miR-638, miR-639, miR-640, miR-641, miR-642, miR-643, miR-644, miR-645, miR-646, miR-647, miR-648, miR-649, miR-650, miR-651, miR-652, miR-653, miR-654, miR-655, miR-656, miR-657, miR-658, miR-659, miR-660, miR-661, miR-662, miR-663, miR-7, miR-9, miR-9*, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99a and miR-99b.


The present invention also provides a biochip for evaluating physiological and/or pathological condition of a subject, wherein the biochip contains the components for determining all detectable microRNAs stably existing in the serum/plasma of the subject. The biochip may also contain the probes for all mature microRNAs in human serum/plasma. The probes specifically include the probes as shown in Table 1.









TABLE 1







Probes of all mature microRNAs in human serum/plasma










SEQ

Corresponding



ID NO
Probes
microRNAs
Sequences of probes





SEQ
probe-let-7a
let-7a
AACTATACAACCTACTACCTCA


ID NO:





001








SEQ
probe-let-7b
let-7b
AACCACACAACCTACTACCTCA


ID NO:





002








SEQ
probe-let-7c
let-7c
AACCATACAACCTACTACCTCA


ID NO:





003








SEQ
probe-let-7d
let-7d
ACTATGCAACCTACTACCTCT


ID NO:





004








SEQ
probe-let-7e
let-7e
ACTATACAACCTCCTACCTCA


ID NO:





005








SEQ
probe-let-7f
let-7f
AACTATACAATCTACTACCTCA


ID NO:





006








SEQ
probe-let-7g
let-7g
ACTGTACAAACTACTACCTCA


ID NO:





007








SEQ
probe-let-7i
let-7i
ACAGCACAAACTACTACCTCA


ID NO:





008








SEQ
probe-miR-1
miR-1
TACATACTTCTTTACATTCCA


ID NO:





009








SEQ
probe-miR-100
miR-100
CACAAGTTCGGATCTACGGGTT


ID NO:





010








SEQ
probe-miR-101
miR-101
CTTCAGTTATCACAGTACTGTA


ID NO:





011








SEQ
probe-miR-103
miR-103
TCATAGCCCTGTACAATGCTGCT


ID NO:





012








SEQ
probe-miR-105
miR-105
ACAGGAGTCTGAGCATTTGA


ID NO:





013








SEQ
probe-miR-106a
miR-106a
GCTACCTGCACTGTAAGCACTTTT


ID NO:





014








SEQ
probe-miR-106b
miR-106b
ATCTGCACTGTCAGCACTTTA


ID NO:





015








SEQ
probe-miR-107
miR-107
TGATAGCCCTGTACAATGCTGCT


ID NO:





016








SEQ
probe-miR-10a
miR-10a
CACAAATTCGGATCTACAGGGTA


ID NO:





017








SEQ
probe-miR-10b
miR-10b
ACAAATTCGGTTCTACAGGGTA


ID NO:





018








SEQ
probe-miR-122a
miR-122a
ACAAACACCATTGTCACACTCCA


ID NO:





019








SEQ
probe-miR-124a
miR-124a
TGGCATTCACCGCGTGCCTTAA


ID NO:





020








SEQ
probe-miR-125a
miR-125a
CACAGGTTAAAGGGTCTCAGGGA


ID NO:





021








SEQ
probe-miR-125b
miR-125b
TCACAAGTTAGGGTCTCAGGGA


ID NO:





022








SEQ
probe-miR-126
miR-126
GCATTATTACTCACGGTACGA


ID NO:





023








SEQ
probe-miR-126*
miR-126*
CGCGTACCAAAAGTAATAATG


ID NO:





024








SEQ
probe-miR-127
miR-127
AGCCAAGCTCAGACGGATCCGA


ID NO:





025








SEQ
probe-miR-128
amiR-128a
AAAAGAGACCGGTTCACTGTGA


ID NO:





026








SEQ
probe-miR-128b
miR-128b
GAAAGAGACCGGTTCACTGTGA


ID NO:





027








SEQ
probe-miR-129
miR-129
GCAAGCCCAGACCGCAAAAAG


ID NO:





028








SEQ
probe-miR-130
amiR-130a
ATGCCCTTTTAACATTGCACTG


ID NO:





029








SEQ
probe-miR-130b
miR-130b
ATGCCCTTTCATCATTGCACTG


ID NO:





030








SEQ
probe-miR-132
miR-132
CGACCATGGCTGTAGACTGTTA


ID NO:





031








SEQ
probe-miR-133a
miR-133a
ACAGCTGGTTGAAGGGGACCAA


ID NO:





032








SEQ
probe-miR-133b
miR-133b
TAGCTGGTTGAAGGGGACCAA


ID NO:





033








SEQ
probe-miR-134
miR-134
CCCTCTGGTCAACCAGTCACA


ID NO:





034








SEQ
probe-miR-135a
miR-135a
TCACATAGGAATAAAAAGCCATA


ID NO:





035








SEQ
probe-miR-135b
miR-135b
CACATAGGAATGAAAAGCCATA


ID NO:





036








SEQ
probe-miR-136
miR-136
TCCATCATCAAAACAAATGGAGT


ID NO:





037








SEQ
probe-miR-137
miR-137
CTACGCGTATTCTTAAGCAATA


ID NO:





038








SEQ
probe-miR-138
miR-138
GATTCACAACACCAGCT


ID NO:





039








SEQ
probe-miR-139
miR-139
AGACACGTGCACTGTAGA


ID NO:





040








SEQ
probe-miR-140
miR-140
CTACCATAGGGTAAAACCACT


ID NO:





041








SEQ
probe-miR-141
miR-141
CCATCTTTACCAGACAGTGTTA


ID NO:





042








SEQ
probe-miR-142-3p
miR-142-3p
TCCATAAAGTAGGAAACACTACA


ID NO:





043








SEQ
probe-miR-142-5p
miR-142-5p
GTAGTGCTTTCTACTTTATG


ID NO:





044








SEQ
probe-miR-143
miR-143
TGAGCTACAGTGCTTCATCTCA


ID NO:





045








SEQ
probe-miR-144
miR-144
CTAGTACATCATCTATACTGTA


ID NO:





046








SEQ
probe-miR-145
miR-145
AAGGGATTCCTGGGAAAACTGGAC


ID NO:





047








SEQ
probe-miR-146a
miR-146a
AACCCATGGAATTCAGTTCTCA


ID NO:





048








SEQ
probe-miR-146b
miR-146b
AGCCTATGGAATTCAGTTCTCA


ID NO:





049








SEQ
probe-miR-147
miR-147
GCAGAAGCATTTCCACACAC


ID NO:





050








SEQ
probe-miR-148a
miR-148a
ACAAAGTTCTGTAGTGCACTGA


ID NO:





051








SEQ
probe-miR-148b
miR-148b
ACAAAGTTCTGTGATGCACTGA


ID NO:





052








SEQ
probe-miR-149
miR-149
GGAGTGAAGACACGGAGCCAGA


ID NO:





053








SEQ
probe-miR-150
miR-150
CACTGGTACAAGGGTTGGGAGA


ID NO:





054








SEQ
probe-miR-151
miR-151
CCTCAAGGAGCTTCAGTCTAGT


ID NO:





055








SEQ
probe-miR-152
miR-152
CCCAAGTTCTGTCATGCACTGA


ID NO:





056








SEQ
probe-miR-153
miR-153
TCACTTTTGTGACTATGCAA


ID NO:





057








SEQ
probe-miR-154
miR-154
CGAAGGCAACACGGATAACCTA


ID NO:





058








SEQ
probe-miR-154*
miR-154*
AATAGGTCAACCGTGTATGATT


ID NO:





059








SEQ
probe-miR-155
miR-155
CCCCTATCACGATTAGCATTAA


ID NO:





060








SEQ
probe-miR-15a
miR-15a
CACAAACCATTATGTGCTGCTA


ID NO:





061








SEQ
probe-miR-15b
miR-15b
TGTAAACCATGATGTGCTGCTA


ID NO:





062








SEQ
probe-miR-16
miR-16
CGCCAATATTTACGTGCTGCTA


ID NO:





063








SEQ
probe-miR-17-3p
miR-17-3p
ACAAGTGCCTTCACTGCAGT


ID NO:





064








SEQ
probe-miR-17-5p
miR-17-5p
ACTACCTGCACTGTAAGCACTTTG


ID NO:





065








SEQ
probe-miR-181a
miR-181a
ACTCACCGACAGCGTTGAATGTT


ID NO:





066








SEQ
probe-miR-181b
miR-181b
CCCACCGACAGCAATGAATGTT


ID NO:





067








SEQ
probe-miR-181c
miR-181c
ACTCACCGACAGGTTGAATGTT


ID NO:





068








SEQ
probe-miR-181d
miR-181d
AACCCACCGACAACAATGAATGTT


ID NO:





069








SEQ
probe-miR-182
miR-182
TGTGAGTTCTACCATTGCCAAA


ID NO:





070








SEQ
probe-miR-182*
miR-182*
TAGTTGGCAAGTCTAGAACCA


ID NO:





071








SEQ
probe-miR-183
miR-183
CAGTGAATTCTACCAGTGCCATA


ID NO:





072








SEQ
probe-miR-184
miR-184
ACCCTTATCAGTTCTCCGTCCA


ID NO:





073








SEQ
probe-miR-185
miR-185
GAACTGCCTTTCTCTCCA


ID NO:





074








SEQ
probe-miR-186
miR-186
AAGCCCAAAAGGAGAATTCTTTG


ID NO:





075








SEQ
probe-miR-187
miR-187
CGGCTGCAACACAAGACACGA


ID NO:





076








SEQ
probe-miR-188
miR-188
ACCCTCCACCATGCAAGGGATG


ID NO:





077








SEQ
probe-miR-189
miR-189
ACTGATATCAGCTCAGTAGGCAC


ID NO:





078








SEQ
probe-miR-18a
miR-18a
TATCTGCACTAGATGCACCTTA


ID NO:





079








SEQ
probe-miR-18a*
miR-18a*
AGAAGGAGCACTTAGGGCAGT


ID NO:





080








SEQ
probe-miR-18b
miR-18b
TAACTGCACTAGATGCACCTTA


ID NO:





081








SEQ
probe-miR-190
miR-190
ACCTAATATATCAAACATATCA


ID NO:





082








SEQ
probe-miR-191
miR-191
AGCTGCTTTTGGGATTCCGTTG


ID NO:





083








SEQ
probe-miR-191*
miR-191*
GGGGACGAAATCCAAGCGCAGC


ID NO:





084








SEQ
probe-miR-192
miR-192
GGCTGTCAATTCATAGGTCAG


ID NO:





085








SEQ
probe-miR-193a
miR-193a
CTGGGACTTTGTAGGCCAGTT


ID NO:





086








SEQ
probe-miR-193b
miR-193b
AAAGCGGGACTTTGAGGGCCAGTT


ID NO:





087








SEQ
probe-miR-194
miR-194
TCCACATGGAGTTGCTGTTACA


ID NO:





088








SEQ
probe-miR-195
miR-195
GCCAATATTTCTGTGCTGCTA


ID NO:





089








SEQ
probe-miR-196a
miR-196a
CCAACAACATGAAACTACCTA


ID NO:





090








SEQ
probe-miR-196b
miR-196b
CCAACAACAGGAAACTACCTA


ID NO:





091








SEQ
probe-miR-197
miR-197
GCTGGGTGGAGAAGGTGGTGAA


ID NO:





092








SEQ
probe-miR-198
miR-198
CCTATCTCCCCTCTGGACC


ID NO:





093








SEQ
probe-miR-199a
miR-199a
GAACAGGTAGTCTGAACACTGGG


ID NO:





094








SEQ
probe-miR-199a*
miR-199a*
AACCAATGTGCAGACTACTGTA


ID NO:





095








SEQ
probe-miR-199b
miR-199b
GAACAGATAGTCTAAACACTGGG


ID NO:





096








SEQ
probe-miR-19a
miR-19a
TCAGTTTTGCATAGATTTGCACA


ID NO:





097








SEQ
probe-miR-19b
miR-19b
TCAGTTTTGCATGGATTTGCACA


ID NO:





098








SEQ
probe-miR-200a
miR-200a
ACATCGTTACCAGACAGTGTTA


ID NO:





099








SEQ
probe-miR-200a*
miR-200a*
TCCAGCACTGTCCGGTAAGATG


ID NO:





100








SEQ
probe-miR-200b
miR-200b
GTCATCATTACCAGGCAGTATTA


ID NO:





101








SEQ
probe-miR-200c
miR-200c
CCATCATTACCCGGCAGTATTA


ID NO:





102








SEQ
probe-miR-202
miR-202
TTTTCCCATGCCCTATACCTCT


ID NO:





103








SEQ
probe-miR-202*
miR-202*
AAAGAAGTATATGCATAGGAAA


ID NO:





104








SEQ
probe-miR-203
miR-203
CTAGTGGTCCTAAACATTTCAC


ID NO:





105








SEQ
probe-miR-204
miR-204
AGGCATAGGATGACAAAGGGAA


ID NO:





106








SEQ
probe-miR-205
miR-205
CAGACTCCGGTGGAATGAAGGA


ID NO:





107








SEQ
probe-miR-206
miR-206
CCACACACTTCCTTACATTCCA


ID NO:





108








SEQ
probe-miR-208
miR-208
ACAAGCTTTTTGCTCGTCTTAT


ID NO:





109








SEQ
probe-miR-20a
miR-20a
CTACCTGCACTATAAGCACTTTA


ID NO:





110








SEQ
probe-miR-20b
miR-20b
CTACCTGCACTATGAGCACTTTG


ID NO:





111








SEQ
probe-miR-21
miR-21
TCAACATCAGTCTGATAAGCTA


ID NO:





112








SEQ
probe-miR-210
miR-210
TCAGCCGCTGTCACACGCACAG


ID NO:





113








SEQ
probe-miR-211
miR-211
AGGCGAAGGATGACAAAGGGAA


ID NO:





114








SEQ
probe-miR-212
miR-212
GGCCGTGACTGGAGACTGTTA


ID NO:





115








SEQ
probe-miR-213
miR-213
GGTACAATCAACGGTCGATGGT


ID NO:





116








SEQ
probe-miR-214
miR-214
CTGCCTGTCTGTGCCTGCTGT


ID NO:





117








SEQ
probe-miR-215
miR-215
GTCTGTCAATTCATAGGTCAT


ID NO:





118








SEQ
probe-miR-216
miR-216
CACAGTTGCCAGCTGAGATTA


ID NO:





119








SEQ
probe-miR-217
miR-217
ATCCAATCAGTTCCTGATGCAGTA


ID NO:





120








SEQ
probe-miR-218
miR-218
ACATGGTTAGATCAAGCACAA


ID NO:





121








SEQ
probe-miR-219
miR-219
AGAATTGCGTTTGGACAATCA


ID NO:





122








SEQ
probe-miR-22
miR-22
ACAGTTCTTCAACTGGCAGCTT


ID NO:





123








SEQ
probe-miR-220
miR-220
AAAGTGTCAGATACGGTGTGG


ID NO:





124








SEQ
probe-miR-221
miR-221
GAAACCCAGCAGACAATGTAGCT


ID NO:





125








SEQ
probe-miR-222
miR-222
GAGACCCAGTAGCCAGATGTAGCT


ID NO:





126








SEQ
probe-miR-223
miR-223
GGGGTATTTGACAAACTGACA


ID NO:





127








SEQ
probe-miR-224
miR-224
TAAACGGAACCACTAGTGACTTG


ID NO:





128








SEQ
probe-miR-23a
miR-23a
GGAAATCCCTGGCAATGTGAT


ID NO:





129








SEQ
probe-miR-23b
miR-23b
GGTAATCCCTGGCAATGTGAT


ID NO:





130








SEQ
probe-miR-24
miR-24
CTGTTCCTGCTGAACTGAGCCA


ID NO:





131








SEQ
probe-miR-25
miR-25
TCAGACCGAGACAAGTGCAATG


ID NO:





132








SEQ
probe-miR-26a
miR-26a
GCCTATCCTGGATTACTTGAA


ID NO:





133








SEQ
probe-miR-26b
miR-26b
AACCTATCCTGAATTACTTGAA


ID NO:





134








SEQ
probe-miR-27a
miR-27a
GCGGAACTTAGCCACTGTGAA


ID NO:





135








SEQ
probe-miR-27b
miR-27b
GCAGAACTTAGCCACTGTGAA


ID NO:





136








SEQ
probe-miR-28
miR-28
CTCAATAGACTGTGAGCTCCTT


ID NO:





137








SEQ
probe-miR-296
miR-296
ACAGGATTGAGGGGGGGCCCT


ID NO:





138








SEQ
probe-miR-299-3p
miR-299-3p
AAGCGGTTTACCATCCCACATA


ID NO:





139








SEQ
probe-miR-299-5p
miR-299-5p
ATGTATGTGGGACGGTAAACCA


ID NO:





140








SEQ
probe-miR-29a
miR-29a
AACCGATTTCAGATGGTGCTA


ID NO:





141








SEQ
probe-miR-29b
miR-29b
AACACTGATTTCAAATGGTGCTA


ID NO:





142








SEQ
probe-miR-29c
miR-29c
ACCGATTTCAAATGGTGCTA


ID NO:





143








SEQ
probe-miR-301
miR-301
GCTTTGACAATACTATTGCACTG


ID NO:





144








SEQ
probe-miR-302a
miR-302a
TCACCAAAACATGGAAGCACTTA


ID NO:





145








SEQ
probe-miR-302a*
miR-302a*
AAAGCAAGTACATCCACGTTTA


ID NO:





146








SEQ
probe-miR-302b
miR-302b
CTACTAAAACATGGAAGCACTTA


ID NO:





147








SEQ
probe-miR-302b*
miR-302b*
AGAAAGCACTTCCATGTTAAAGT


ID NO:





148








SEQ
probe-miR-302c
miR-302c
CCACTGAAACATGGAAGCACTTA


ID NO:





149








SEQ
probe-miR-302c*
miR-302c*
CAGCAGGTACCCCCATGTTAAA


ID NO:





150








SEQ
probe-miR-302d
miR-302d
ACACTCAAACATGGAAGCACTTA


ID NO:





151








SEQ
probe-miR-30a-3p
miR-30a-3p
GCTGCAAACATCCGACTGAAAG


ID NO:





152








SEQ
probe-miR-30a-5p
miR-30a-5p
CTTCCAGTCGAGGATGTTTACA


ID NO:





153








SEQ
probe-miR-30b
miR-30b
AGCTGAGTGTAGGATGTTTACA


ID NO:





154








SEQ
probe-miR-30c
miR-30c
GCTGAGAGTGTAGGATGTTTACA


ID NO:





155








SEQ
probe-miR-30d
miR-30d
CTTCCAGTCGGGGATGTTTACA


ID NO:





156








SEQ
probe-miR-30e-3p
miR-30e-3p
GCTGTAAACATCCGACTGAAAG


ID NO:





157








SEQ
probe-miR-30e-5p
miR-30e-5p
TCCAGTCAAGGATGTTTACA


ID NO:





158








SEQ
probe-miR-31
miR-31
CAGCTATGCCAGCATCTTGCC


ID NO:





159








SEQ
probe-miR-32
miR-32
GCAACTTAGTAATGTGCAATA


ID NO:





160








SEQ
probe-miR-320
miR-320
TTCGCCCTCTCAACCCAGCTTTT


ID NO:





161








SEQ
probe-miR-323
miR-323
AGAGGTCGACCGTGTAATGTGC


ID NO:





162








SEQ
probe-miR-324-3p
miR-324-3p
CCAGCAGCACCTGGGGCAGTGG


ID NO:





163








SEQ
probe-miR-324-5p
miR-324-5p
ACACCAATGCCCTAGGGGATGCG


ID NO:





164








SEQ
probe-miR-325
miR-325
ACACTTACTGGACACCTACTAGG


ID NO:





165








SEQ
probe-miR-326
miR-326
CTGGAGGAAGGGCCCAGAGG


ID NO:





166








SEQ
probe-miR-328
miR-328
ACGGAAGGGCAGAGAGGGCCAG


ID NO:





167








SEQ
probe-miR-329
miR-329
AAAGAGGTTAACCAGGTGTGTT


ID NO:





168








SEQ
probe-miR-33
miR-33
CAATGCAACTACAATGCAC


ID NO:





169








SEQ
probe-miR-330
miR-330
TCTCTGCAGGCCGTGTGCTTTGC


ID NO:





170








SEQ
probe-miR-331
miR-331
TTCTAGGATAGGCCCAGGGGC


ID NO:





171








SEQ
probe-miR-335
miR-335
ACATTTTTCGTTATTGCTCTTGA


ID NO:





172








SEQ
probe-miR-337
miR-337
AAAGGCATCATATAGGAGCTGGA


ID NO:





173








SEQ
probe-miR-338
miR-338
TCAACAAAATCACTGATGCTGGA


ID NO:





174








SEQ
probe-miR-339
miR-339
TGAGCTCCTGGAGGACAGGGA


ID NO:





175








SEQ
probe-miR-33b
miR-33b
TGCAATGCAACAGCAATGCAC


ID NO:





176








SEQ
probe-miR-340
miR-340
GGCTATAAAGTAACTGAGACGGA


ID NO:





177








SEQ
probe-miR-342
miR-342
GACGGGTGCGATTTCTGTGTGAGA


ID NO:





178








SEQ
probe-miR-345
miR-345
GCCCTGGACTAGGAGTCAGCA


ID NO:





179








SEQ
probe-miR-346
miR-346
AGAGGCAGGCATGCGGGCAGACA


ID NO:





180








SEQ
probe-miR-34a
miR-34a
AACAACCAGCTAAGACACTGCCA


ID NO:





181








SEQ
probe-miR-34b
miR-34b
CAATCAGCTAATGACACTGCCTA


ID NO:





182








SEQ
probe-miR-34c
miR-34c
GCAATCAGCTAACTACACTGCCT


ID NO:





183








SEQ
probe-miR-361
miR-361
GTACCCCTGGAGATTCTGATAA


ID NO:





184








SEQ
probe-miR-362
miR-362
CTCACACCTAGGTTCCAAGGATT


ID NO:





185








SEQ
probe-miR-363
miR-363
TTACAGATGGATACCGTGCAAT


ID NO:





186








SEQ
probe-miR-363*
miR-363*
AAATTGCATCGTGATCCACCCG


ID NO:





187








SEQ
probe-miR-365
miR-365
ATAAGGATTTTTAGGGGCATTA


ID NO:





188








SEQ
probe-miR-367
miR-367
TCACCATTGCTAAAGTGCAATT


ID NO:





189








SEQ
probe-miR-368
miR-368
AAACGTGGAATTTCCTCTATGT


ID NO:





190








SEQ
probe-miR-369-3p
miR-369-3p
AAAGATCAACCATGTATTATT


ID NO:





191








SEQ
probe-miR-369-5p
miR-369-5p
GCGAATATAACACGGTCGATCT


ID NO:





192








SEQ
probe-miR-370
miR-370
CCAGGTTCCACCCCAGCAGGC


ID NO:





193








SEQ
probe-miR-371
miR-371
ACACTCAAAAGATGGCGGCAC


ID NO:





194








SEQ
probe-miR-372
miR-372
ACGCTCAAATGTCGCAGCACTTT


ID NO:





195








SEQ
probe-miR-373
miR-373
ACACCCCAAAATCGAAGCACTTC


ID NO:





196








SEQ
probe-miR-373*
miR-373*
GGAAAGCGCCCCCATTTTGAGT


ID NO:





197








SEQ
probe-miR-374
miR-374
CACTTATCAGGTTGTATTATAA


ID NO:





198








SEQ
probe-miR-375
miR-375
TCACGCGAGCCGAACGAACAAA


ID NO:





199








SEQ
probe-miR-376a
miR-376a
ACGTGGATTTTCCTCTATGAT


ID NO:





200








SEQ
probe-miR-376a*
miR-376a*
CTCATAGAAGGAGAATCTACC


ID NO:





201








SEQ
probe-miR-376b
miR-376b
AACATGGATTTTCCTCTATGAT


ID NO:





202








SEQ
probe-miR-377
miR-377
ACAAAAGTTGCCTTTGTGTGAT


ID NO:





203








SEQ
probe-miR-378
miR-378
ACACAGGACCTGGAGTCAGGAG


ID NO:





204








SEQ
probe-miR-379
miR-379
TACGTTCCATAGTCTACCA


ID NO:





205








SEQ
probe-miR-380-3p
miR-380-3p
AAGATGTGGACCATATTACATA


ID NO:





206








SEQ
probe-miR-380-5p
miR-380-5p
GCGCATGTTCTATGGTCAACCA


ID NO:





207








SEQ
probe-miR-381
miR-381
ACAGAGAGCTTGCCCTTGTATA


ID NO:





208








SEQ
probe-miR-382
miR-382
CGAATCCACCACGAACAACTTC


ID NO:





209








SEQ
probe-miR-383
miR-383
AGCCACAATCACCTTCTGATCT


ID NO:





210








SEQ
probe-miR-384
miR-384
TATGAACAATTTCTAGGAAT


ID NO:





211








SEQ
probe-miR-409-3p
miR-409-3p
AGGGGTTCACCGAGCAACATTCG


ID NO:





212








SEQ
probe-miR-409-5p
miR-409-5p
TGCAAAGTTGCTCGGGTAACCT


ID NO:





213








SEQ
probe-miR-410
miR-410
AACAGGCCATCTGTGTTATATT


ID NO:





214








SEQ
probe-miR-411
miR-411
CGTACGCTATACGGTCTACTA


ID NO:





215








SEQ
probe-miR-412
miR-412
ACGGCTAGTGGACCAGGTGAAGT


ID NO:





216








SEQ
probe-miR-421
miR-421
GCGCCCAATTAATGTCTGTTGAT


ID NO:





217








SEQ
probe-miR-422a
miR-422a
GGCCTTCTGACCCTAAGTCCAG


ID NO:





218








SEQ
probe-miR-422b
miR-422b
GGCCTTCTGACTCCAAGTCCAG


ID NO:





219








SEQ
probe-miR-423
miR-423
CTGAGGGGCCTCAGACCGAGCT


ID NO:





220








SEQ
probe-miR-424
miR-424
TTCAAAACATGAATTGCTGCTG


ID NO:





221








SEQ
probe-miR-425
miR-425
GGCGGACACGACATTCCCGAT


ID NO:





222








SEQ
probe-miR-425-5p
miR-425-5p
TCAACGGGAGTGATCGTGTCATT


ID NO:





223








SEQ
probe-miR-429
miR-429
ACGGTTTTACCAGACAGTATTA


ID NO:





224








SEQ
probe-miR-431
miR-431
TGCATGACGGCCTGCAAGACA


ID NO:





225








SEQ
probe-miR-432
miR-432
CCACCCAATGACCTACTCCAAGA


ID NO:





226








SEQ
probe-miR-432*
miR-432*
AGACATGGAGGAGCCATCCAG


ID NO:





227








SEQ
probe-miR-433
miR-433
ACACCGAGGAGCCCATCATGAT


ID NO:





228








SEQ
probe-miR-448
miR-448
ATGGGACATCCTACATATGCAA


ID NO:





229








SEQ
probe-miR-449
miR-449
ACCAGCTAACAATACACTGCCA


ID NO:





230








SEQ
probe-miR-450
miR-450
TATTAGGAACACATCGCAAAAA


ID NO:





231








SEQ
probe-miR-451
miR-451
AAACTCAGTAATGGTAACGGTTT


ID NO:





232








SEQ
probe-miR-452
miR-452
GTCTCAGTTTCCTCTGCAAACA


ID NO:





233








SEQ
probe-miR-452*
miR-452*
CTTCTTTGCAGATGAGACTGA


ID NO:





234








SEQ
probe-miR-453
miR-453
CGAACTCACCACGGACAACCTC


ID NO:





235








SEQ
probe-miR-455
miR-455
CGATGTAGTCCAAAGGCACATA


ID NO:





236








SEQ
probe-miR-483
miR-483
AGAAGACGGGAGGAGAGGAGTGA


ID NO:





237








SEQ
probe-miR-484
miR-484
ATCGGGAGGGGACTGAGCCTGA


ID NO:





238








SEQ
probe-miR-485-3p
miR-485-3p
AGAGGAGAGCCGTGTATGAC


ID NO:





239








SEQ
probe-miR-485-5p
miR-485-5p
GAATTCATCACGGCCAGCCTCT


ID NO:





240








SEQ
probe-miR-486
miR-486
CTCGGGGCAGCTCAGTACAGGA


ID NO:





241








SEQ
probe-miR-487a
miR-487a
AACTGGATGTCCCTGTATGATT


ID NO:





242








SEQ
probe-miR-487b
miR-487b
AAGTGGATGACCCTGTACGATT


ID NO:





243








SEQ
probe-miR-488
miR-488
TTGAGAGTGCCATTATCTGGG


ID NO:





244








SEQ
probe-miR-489
miR-489
GCTGCCGTATATGTGATGTCACT


ID NO:





245








SEQ
probe-miR-490
miR-490
CAGCATGGAGTCCTCCAGGTTG


ID NO:





246








SEQ
probe-miR-491
miR-491
TCCTCATGGAAGGGTTCCCCACT


ID NO:





247








SEQ
probe-miR-492
miR-492
AAGAATCTTGTCCCGCAGGTCCT


ID NO:





248








SEQ
probe-miR-493
miR-493
AATGAAAGCCTACCATGTACAA


ID NO:





249








SEQ
probe-miR-493-3p
miR-493-3p
CTGGCACACAGTAGACCTTCA


ID NO:





250








SEQ
probe-miR-494
miR-494
AAGAGGTTTCCCGTGTATGTTTCA


ID NO:





251








SEQ
probe-miR-495
miR-495
AAAGAAGTGCACCATGTTTGTTT


ID NO:





252








SEQ
probe-miR-496
miR-496
GAGATTGGCCATGTAAT


ID NO:





253








SEQ
probe-miR-497
miR-497
ACAAACCACAGTGTGCTGCTG


ID NO:





254








SEQ
probe-miR-498
miR-498
GAAAAACGCCCCCTGGCTTGAAA


ID NO:





255








SEQ
probe-miR-499
miR-499
TTAAACATCACTGCAAGTCTTAA


ID NO:





256








SEQ
probe-miR-500
miR-500
CAGAATCCTTGCCCAGGTGCAT


ID NO:





257








SEQ
probe-miR-501
miR-501
TCTCACCCAGGGACAAAGGATT


ID NO:





258








SEQ
probe-miR-502
miR-502
TAGCACCCAGATAGCAAGGAT


ID NO:





259








SEQ
probe-miR-503
miR-503
CTGCAGAACTGTTCCCGCTGCTA


ID NO:





260








SEQ
probe-miR-504
miR-504
ATAGAGTGCAGACCAGGGTCT


ID NO:





261








SEQ
probe-miR-505
miR-505
GAGGAAACCAGCAAGTGTTGAC


ID NO:





262








SEQ
probe-miR-506
miR-506
TCTACTCAGAAGGGTGCCTTA


ID NO:





263








SEQ
probe-miR-507
miR-507
TTCACTCCAAAAGGTGCAAAA


ID NO:





264








SEQ
probe-miR-508
miR-508
TCTACTCCAAAAGGCTACAATCA


ID NO:





265








SEQ
probe-miR-509
miR-509
TCTACCCACAGACGTACCAATCA


ID NO:





266








SEQ
probe-miR-510
miR-510
TGTGATTGCCACTCTCCTGAGTA


ID NO:





267








SEQ
probe-miR-511
miR-511
TGACTGCAGAGCAAAAGACAC


ID NO:





268








SEQ
probe-miR-512-3p
miR-512-3p
GACCTCAGCTATGACAGCACTT


ID NO:





269








SEQ
probe-miR-512-5p
miR-512-5p
GAAAGTGCCCTCAAGGCTGAGTG


ID NO:





270








SEQ
probe-miR-513
miR-513
ATAAATGACACCTCCCTGTGAA


ID NO:





271








SEQ
probe-miR-514
miR-514
CTACTCACAGAAGTGTCAAT


ID NO:





272








SEQ
probe-miR-515-3p
miR-515-3p
ACGCTCCAAAAGAAGGCACTC


ID NO:





273








SEQ
probe-miR-515-5p
miR-515-5p
CAGAAAGTGCTTTCTTTTGGAGAA


ID NO:





274








SEQ
probe-miR-516-3p
miR-516-3p
ACCCTCTGAAAGGAAGCA


ID NO:





275








SEQ
probe-miR-516-5p
miR-516-5p
AAAGTGCTTCTTACCTCCAGAT


ID NO:





276








SEQ
probe-miR-517*
miR-517*
AGACAGTGCTTCCATCTAGAGG


ID NO:





277








SEQ
probe-miR-517a
miR-517a
AACACTCTAAAGGGATGCACGAT


ID NO:





278








SEQ
probe-miR-517b
miR-517b
AACACTCTAAAGGGATGCACGA


ID NO:





279








SEQ
probe-miR-517c
miR-517c
ACACTCTAAAAGGATGCACGAT


ID NO:





280








SEQ
probe-miR-518a
miR-518a
TCCAGCAAAGGGAAGCGCTTT


ID NO:





281








SEQ
probe-miR-518a-2*
miR-518a-2*
AAAGGGCTTCCCTTTGCAGA


ID NO:





282








SEQ
probe-miR-518b
miR-518b
ACCTCTAAAGGGGAGCGCTTTG


ID NO:





283








SEQ
probe-miR-518c
miR-518c
CACTCTAAAGAGAAGCGCTTTG


ID NO:





284








SEQ
probe-miR-518c*
miR-518c*
CAGAAAGTGCTTCCCTCCAGAGA


ID NO:





285








SEQ
probe-miR-518d
miR-518d
GCTCCAAAGGGAAGCGCTTTG


ID NO:





286








SEQ
probe-miR-518e
miR-518e
ACACTCTGAAGGGAAGCGCTTT


ID NO:





287








SEQ
probe-miR-518f
miR-518f
TCCTCTAAAGAGAAGCGCTTT


ID NO:





288








SEQ
probe-miR-518f*
miR-518f*
AGAGAAAGTGCTTCCCTCTAGAG


ID NO:





289








SEQ
probe-miR-519a
miR-519a
GTAACACTCTAAAAGGATGCACTTT


ID NO:





290








SEQ
probe-miR-519b
miR-519b
AAACCTCTAAAAGGATGCACTTT


ID NO:





291








SEQ
probe-miR-519c
miR-519c
ATCCTCTAAAAAGATGCACTTT


ID NO:





292








SEQ
probe-miR-519d
miR-519d
ACACTCTAAAGGGAGGCACTTTG


ID NO:





293








SEQ
probe-miR-519e
miR-519e
ACACTCTAAAAGGAGGCACTTT


ID NO:





294








SEQ
probe-miR-519e*
miR-519e*
GAAAGTGCTCCCTTTTGGAGAA


ID NO:





295








SEQ
probe-miR-520a
miR-520a
ACAGTCCAAAGGGAAGCACTTT


ID NO:





296








SEQ
probe-miR-520a*
miR-520a*
AGAAAGTACTTCCCTCTGGAG


ID NO:





297








SEQ
probe-miR-520b
miR-520b
CCCTCTAAAAGGAAGCACTTT


ID NO:





298








SEQ
probe-miR-520c
miR-520c
AACCCTCTAAAAGGAAGCACTTT


ID NO:





299








SEQ
probe-miR-520d
miR-520d
AACCCACCAAAGAGAAGCACTTT


ID NO:





300








SEQ
probe-miR-520d*
miR-520d*
CAGAAAGGGCTTCCCTTTGTAGA


ID NO:





301








SEQ
probe-miR-520e
miR-520e
CCCTCAAAAAGGAAGCACTTT


ID NO:





302








SEQ
probe-miR-520f
miR-520f
AACCCTCTAAAAGGAAGCACTT


ID NO:





303








SEQ
probe-miR-520g
miR-520g
ACACTCTAAAGGGAAGCACTTTGT


ID NO:





304








SEQ
probe-miR-520h
miR-520h
ACTCTAAAGGGAAGCACTTTGT


ID NO:





305








SEQ
probe-miR-521
miR-521
ACACTCTAAAGGGAAGTGCGTT


ID NO:





306








SEQ
probe-miR-522
miR-522
AACACTCTAAAGGGAACCATTTT


ID NO:





307








SEQ
probe-miR-523
miR-523
CCCTCTATAGGGAAGCGCGTT


ID NO:





308








SEQ
probe-miR-524
miR-524
ACTCCAAAGGGAAGCGCCTTC


ID NO:





309








SEQ
probe-miR-524*
miR-524*
GAGAAAGTGCTTCCCTTTGTAG


ID NO:





310








SEQ
probe-miR-525
miR-525
AGAAAGTGCATCCCTCTGGAG


ID NO:





311








SEQ
probe-miR-525*
miR-525*
GCTCTAAAGGGAAGCGCCTTC


ID NO:





312








SEQ
probe-miR-526a
miR-526a
AGAAAGTGCTTCCCTCTAGAG


ID NO:





313








SEQ
probe-miR-526b
miR-526b
AACAGAAAGTGCTTCCCTCAAGAG


ID NO:





314








SEQ
probe-miR-526b*
miR-526b*
GCCTCTAAAAGGAAGCACTTT


ID NO:





315








SEQ
probe-miR-526c
miR-526c
AACAGAAAGCGCTTCCCTCTAGAG


ID NO:





316








SEQ
probe-miR-527
miR-527
AGAAAGGGCTTCCCTTTGCAG


ID NO:





317








SEQ
probe-miR-532
miR-532
ACGGTCCTACACTCAAGGCATG


ID NO:





318








SEQ
probe-miR-542-3p
miR-542-3p
TTTCAGTTATCAATCTGTCACA


ID NO:





319








SEQ
probe-miR-542-5p
miR-542-5p
CTCGTGACATGATGATCCCCGA


ID NO:





320








SEQ
probe-miR-544
miR-544
ACTTGCTAAAAATGCAGAAT


ID NO:





321








SEQ
probe-miR-545
miR-545
CACACAATAAATGTTTGCTGAT


ID NO:





322








SEQ
probe-miR-548a
miR-548a
GCAAAAGTAATTGCCAGTTTTG


ID NO:





323








SEQ
probe-miR-548b
miR-548b
ACAAAAGCAACTGAGGTTCTTG


ID NO:





324








SEQ
probe-miR-548c
miR-548c
GCAAAAGTAATTGAGATTTTTG


ID NO:





325








SEQ
probe-miR-548d
miR-548d
GCAAAAGAAACTGTGGTTTTTG


ID NO:





326








SEQ
probe-miR-549
miR-549
AGAGCTCATCCATAGTTGTCA


ID NO:





327








SEQ
probe-miR-550
miR-550
ATGTGCCTGAGGGAGTAAGACA


ID NO:





328








SEQ
probe-miR-551a
miR-551a
TGGAAACCAAGAGTGGGTCGC


ID NO:





329








SEQ
probe-miR-552
miR-552
TTGTCTAACCAGTCACCTGTT


ID NO:





330








SEQ
probe-miR-553
miR-553
AAAACAAAATCTCACCGTTTT


ID NO:





331








SEQ
probe-miR-554
miR-554
ACTGGCTGAGTCAGGACTAGC


ID NO:





332








SEQ
probe-miR-555
miR-555
ATCAGAGGTTCAGCTTACCCT


ID NO:





333








SEQ
probe-miR-556
miR-556
CATATTACAATGAGCTCATC


ID NO:





334








SEQ
probe-miR-557
miR-557
AGACAAGGCCCACCCGTGCAAAC


ID NO:





335








SEQ
probe-miR-558
miR-558
ATTTTGGTACAGCAGCTCA


ID NO:





336








SEQ
probe-miR-559
miR-559
TTTTGGTGCATATTTACTTTA


ID NO:





337








SEQ
probe-miR-560
miR-560
GGCGGCCGGCCGGCGCACGC


ID NO:





338








SEQ
probe-miR-561
miR-561
ACTTCAAGGATCTTAAACTTTG


ID NO:





339








SEQ
probe-miR-562
miR-562
GCAAATGGTACAGCTACTTT


ID NO:





340








SEQ
probe-miR-563
miR-563
GGGAAACGTATGTCAACCT


ID NO:





341








SEQ
probe-miR-564
miR-564
GCCTGCTGACACCGTGCCT


ID NO:





342








SEQ
probe-miR-565
miR-565
AAACAGACATCGCGAGCCAGCC


ID NO:





343








SEQ
probe-miR-566
miR-566
GTTGGGATCACAGGCGCCC


ID NO:





344








SEQ
probe-miR-567
miR-567
GTTCTGTCCTGGAAGAACATACT


ID NO:





345








SEQ
probe-miR-568
miR-568
GTGTGTATACATTTATACAT


ID NO:





346








SEQ
probe-miR-569
miR-569
ACTTTCCAGGATTCATTAACT


ID NO:





347








SEQ
probe-miR-570
miR-570
TGCAAAGGTAATTGCTGTTTTC


ID NO:





348








SEQ
probe-miR-571
miR-571
CTCACTCAGATGGCCAACTCA


ID NO:





349








SEQ
probe-miR-572
miR-572
TGGGCCACCGCCGAGCGGAC


ID NO:





350








SEQ
probe-miR-573
miR-573
CTGATCAGTTACACATCACTTCAG


ID NO:





351








SEQ
probe-miR-574
miR-574
GTGGGTGTGTGCATGAGCGTG


ID NO:





352








SEQ
probe-miR-575
miR-575
GCTCCTGTCCAACTGGCTC


ID NO:





353








SEQ
probe-miR-576
miR-576
CAAAGACGTGGAGAAATTAGAAT


ID NO:





354








SEQ
probe-miR-577
miR-577
CAGGTACCAATATTTTATCTA


ID NO:





355








SEQ
probe-miR-578
miR-578
ACAATCCTAGAGCACAAGAAG


ID NO:





356








SEQ
probe-miR-579
miR-579
ATCGCGGTTTATACCAAATGAAT


ID NO:





357








SEQ
probe-miR-580
miR-580
CCTAATGATTCATCATTCTCAA


ID NO:





358








SEQ
probe-miR-581
miR-581
ACTGATCTAGAGAACACAAGA


ID NO:





359








SEQ
probe-miR-582
miR-582
AGTAACTGGTTGAACAACTGTAA


ID NO:





360








SEQ
probe-miR-583
miR-583
GTAATGGGACCTTCCTCTTTG


ID NO:





361








SEQ
probe-miR-584
miR-584
CTCAGTCCCAGGCAAACCATAA


ID NO:





362








SEQ
probe-miR-585
miR-585
TAGCATACAGATACGCCCA


ID NO:





363








SEQ
probe-miR-586
miR-586
GGACCTAAAAATACAATGCATA


ID NO:





364








SEQ
probe-miR-587
miR-587
GTGACTCATCACCTATGGAAA


ID NO:





365








SEQ
probe-miR-588
miR-588
GTTCTAACCCATTGTGGCCAA


ID NO:





366








SEQ
probe-miR-589
miR-589
TCTGGGAACCGGCATTTGTTCTGA


ID NO:





367








SEQ
probe-miR-590
miR-590
CTGCACTTTTATGAATAAGCTC


ID NO:





368








SEQ
probe-miR-591
miR-591
ACAATGAGAACCCATGGTCT


ID NO:





369








SEQ
probe-miR-592
miR-592
ACATCATCGCATATTGACACAA


ID NO:





370








SEQ
probe-miR-593
miR-593
GCTGAGCAATGCCTGGCTGGTGCCT


ID NO:





371








SEQ
probe-miR-594
miR-594
AAAGTCACAGGCCACCCCAGATGGG


ID NO:





372








SEQ
probe-miR-595
miR-595
AGACACACCACGGCACACTTC


ID NO:





373








SEQ
probe-miR-596
miR-596
CCCGAGGAGCCGGGCAGGCTT


ID NO:





374








SEQ
probe-miR-597
miR-597
ACAGTGGTCATCGAGTGACACA


ID NO:





375








SEQ
probe-miR-598
miR-598
TGACGATGACAACGATGACGTA


ID NO:





376








SEQ
probe-miR-599
miR-599
GTTTGATAAACTGACACAAC


ID NO:





377








SEQ
probe-miR-600
miR-600
GAGCAAGGCTCTTGTCTGTAAGT


ID NO:





378








SEQ
probe-miR-601
miR-601
CTCCTCCAACAATCCTAGACCA


ID NO:





379








SEQ
probe-miR-602
miR-602
GGGCCGCAGCTGTCGCCCGTGTC


ID NO:





380








SEQ
probe-miR-603
miR-603
GCAAAAGTAATTGCAGTGTGTG


ID NO:





381








SEQ
probe-miR-604
miR-604
GTCCTGAATTCCGCAGCCT


ID NO:





382








SEQ
probe-miR-605
miR-605
AGGAGAAGGCACCATGGGATTTA


ID NO:





383








SEQ
probe-miR-606
miR-606
ATCTTTGATTTTCAGTAGTTT


ID NO:





384








SEQ
probe-miR-607
miR-607
GTTATAGATCTGGATTTGAAC


ID NO:





385








SEQ
probe-miR-608
miR-608
ACGGAGCTGTCCCAACACCACCCCT


ID NO:





386








SEQ
probe-miR-609
miR-609
AGAGATGAGAGAAACACCCT


ID NO:





387








SEQ
probe-miR-610
miR-610
TCCCAGCACACATTTAGCTCA


ID NO:





388








SEQ
probe-miR-611
miR-611
GTCAGACCCCGAGGGGTCCTCGC


ID NO:





389








SEQ
probe-miR-612
miR-612
AAGGAGCTCAGAAGCCCTGCCCAGC


ID NO:





390








SEQ
probe-miR-613
miR-613
GGCAAAGAAGGAACATTCCT


ID NO:





391








SEQ
probe-miR-614
miR-614
CCACCTGGCAAGAACAGGCGTTC


ID NO:





392








SEQ
probe-miR-615
miR-615
AGAGGGAGACCCAGGCTCGGA


ID NO:





393








SEQ
probe-miR-616
miR-616
AAGTCACTGAAGGGTTTTGAGT


ID NO:





394








SEQ
probe-miR-617
miR-617
GCCACCTTCAAATGGGAAGTCT


ID NO:





395








SEQ
probe-miR-618
miR-618
ACTCAGAAGGACAAGTAGAGTTT


ID NO:





396








SEQ
probe-miR-619
miR-619
ACTGGGCACAAACATGTCCAGGTC


ID NO:





397








SEQ
probe-miR-620
miR-620
ATTTCTATATCTATCTCCAT


ID NO:





398








SEQ
probe-miR-621
miR-621
AGGTAAGCGCTGTTGCTAGCC


ID NO:





399








SEQ
probe-miR-622
miR-622
GCTCCAACCTCAGCAGACTGT


ID NO:





400








SEQ
probe-miR-623
miR-623
ACCCAACAGCCCCTGCAAGGGAT


ID NO:





401








SEQ
probe-miR-624
miR-624
TGAACACAAGGTACTGGTACTA


ID NO:





402








SEQ
probe-miR-625
miR-625
AGGACTATAGAACTTTCCCCCT


ID NO:





403








SEQ
probe-miR-626
miR-626
AAGACATTTTCAGACAGCT


ID NO:





404








SEQ
probe-miR-627
miR-627
TCCTCTTTTCTTAGAGACTCAC


ID NO:





405








SEQ
probe-miR-628
miR-628
CGACTGCCACTCTTACTAGA


ID NO:





406








SEQ
probe-miR-629
miR-629
GCTGGGCTTACGTTGGGAGAAC


ID NO:





407








SEQ
probe-miR-630
miR-630
ACCTTCCCTGGTACAGAATACT


ID NO:





408








SEQ
probe-miR-631
miR-631
GCTGAGGTCTGGGCCAGGTCT


ID NO:





409








SEQ
probe-miR-632
miR-632
TCCCACAGGAAGCAGACAC


ID NO:





410








SEQ
probe-miR-633
miR-633
TTTATTGTGGTAGATACTATTAG


ID NO:





411








SEQ
probe-miR-634
miR-634
GTCCAAAGTTGGGGTGCTGGTT


ID NO:





412








SEQ
probe-miR-635
miR-635
GGACATTGTTTCAGTGCCCAAGT


ID NO:





413








SEQ
probe-miR-636
miR-636
CTGCGGGCGGGACGAGCAAGCACA


ID NO:





414








SEQ
probe-miR-637
miR-637
ACGCAGAGCCCGAAAGCCCCCAGT


ID NO:





415








SEQ
probe-miR-638
miR-638
AGGCCGCCACCCGCCCGCGATCCCT


ID NO:





416








SEQ
probe-miR-639
miR-639
ACAGCGCTCGCAACCGCAGCGAT


ID NO:





417








SEQ
probe-miR-640
miR-640
AGAGGCAGGTTCCTGGATCAT


ID NO:





418








SEQ
probe-miR-641
miR-641
GAGGTGACTCTATCCTATGTCTTT


ID NO:





419








SEQ
probe-miR-642
miR-642
CAAGACACATTTGGAGAGGGAC


ID NO:





420








SEQ
probe-miR-643
miR-643
CTACCTGAGCTAGCATACAAGT


ID NO:





421








SEQ
probe-miR-644
miR-644
GCTCTAAGAAAGCCACACT


ID NO:





422








SEQ
probe-miR-645
miR-645
TCAGCAGTACCAGCCTAGA


ID NO:





423








SEQ
probe-miR-646
miR-646
GCCTCAGAGGCAGCTGCTT


ID NO:





424








SEQ
probe-miR-647
miR-647
GAAGGAAGTGAGTGCAGCCAC


ID NO:





425








SEQ
probe-miR-648
miR-648
ACCAGTGCCCTGCACACTT


ID NO:





426








SEQ
probe-miR-649
miR-649
GACTCTTGAACAACACAGGTTT


ID NO:





427








SEQ
probe-miR-650
miR-650
GTCCTGAGAGCGCTGCCTCCT


ID NO:





428








SEQ
probe-miR-651
miR-651
CAAAAGTCAAGCTTATCCTAAA


ID NO:





429








SEQ
probe-miR-652
miR-652
TGCACAACCCTAGTGGCGCCATT


ID NO:





430








SEQ
probe-miR-653
miR-653
GTTCAGTAGAGATTGTTTCAA


ID NO:





431








SEQ
probe-miR-654
miR-654
GCACATGTTCTGCGGCCCACCA


ID NO:





432








SEQ
probe-miR-655
miR-655
AAAGAGGTTAACCATGTATTAT


ID NO:





433








SEQ
probe-miR-656
miR-656
AGAGGTTGACTGTATAATATT


ID NO:





434








SEQ
probe-miR-657
miR-657
CCTAGAGAGGGTGAGAACCTGCC


ID NO:





435








SEQ
probe-miR-658
miR-658
ACCAACGGACCTACTTCCCTCCGCC


ID NO:





436








SEQ
probe-miR-659
miR-659
TGGGGACCCTCCCTGAACCAAG


ID NO:





437








SEQ
probe-miR-660
miR-660
CAACTCCGATATGCAATGGGTA


ID NO:





438








SEQ
probe-miR-661
miR-661
ACGCGCAGGCCAGAGACCCAGGCA


ID NO:





439








SEQ
probe-miR-662
miR-662
CTGCTGGGCCACAACGTGGGA


ID NO:





440








SEQ
probe-miR-663
miR-663
GCGGTCCCGCGGCGCCCCGCCT


ID NO:





441








SEQ
probe-miR-7
miR-7
CAACAAAATCACTAGTCTTCCA


ID NO:





442








SEQ
probe-miR-9
miR-9
TCATACAGCTAGATAACCAAAGA


ID NO:





443








SEQ
probe-miR-9*
miR-9*
ACTTTCGGTTATCTAGCTTTA


ID NO:





444








SEQ
probe-miR-92
miR-92
CAGGCCGGGACAAGTGCAATA


ID NO:





445








SEQ
probe-miR-93
miR-93
CTACCTGCACGAACAGCACTTT


ID NO:





446








SEQ
probe-miR-95
miR-95
TGCTCAATAAATACCCGTTGAA


ID NO:





447








SEQ
probe-miR-96
miR-96
GCAAAAATGTGCTAGTGCCAAA


ID NO:





448








SEQ
probe-miR-98
miR-98
AACAATACAACTTACTACCTCA


ID NO:





449








SEQ
probe-miR-99a
miR-99a
CACAAGATCGGATCTACGGGTT


ID NO:





450








SEQ
probe-miR-99b
miR-99b
CGCAAGGTCGGTTCTACGGGTG


ID NO:





451









Specifically, among the above-mentioned combinations, methods, kits or biochips, the said evaluation of the physiological and/or pathological condition of a subject is to determine the physiological and/or pathological condition of the subject after being administrated a test sample, which is specifically useful for screening the test sample for the activities on the prevention and/or treatment of diseases; the said evaluation of the physiological and/or pathological condition of a subject is to diagnose and/or differentially diagnose the diseases of the subject; the said evaluation of the physiological and/or pathological condition of a subject is to evaluate the effectiveness of the treatment on the diseases of the subject; the said evaluation of the physiological and/or pathological condition of a subject is to predict the disease occurrence of the subject, which is specifically the occurrence of complications and/or the relapse of malignant diseases; the above-mentioned combinations, methods, kits or biochips can also be useful for detecting the subject for prohibited drugs-taking.


The above-mentioned diseases include a variety of tumors; various acute/chronic infectious diseases, e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS, bacterial diseases such as tuberculosis, bacterial pneumonia, and other acute/chronic infectious diseases caused by various pathogenic microorganisms; other acute/chronic diseases such as diseases of respiratory system, diseases of immune system, diseases of blood and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular diseases, metabolic diseases of endocrine system, diseases of digestive system, diseases of nervous system, diseases of urinary, diseases of reproductive system and diseases of locomotor system.


The above-mentioned serum/plasma derives from the living bodies, tissues, organs and/or corpuses of the subject.


The problems to be solved by the present invention include: (1) analyzing and identifying the microRNA molecules and their stability in serum/plasma of a variety of animals such as human, mice and rats; (2) studying the specificity changes of microRNAs in serum/plasma during the course of various clinical diseases including a variety of tumors; various acute/chronic infectious diseases, e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS, bacterial diseases such as tuberculosis, bacterial pneumonia, and other acute/chronic infectious diseases caused by various pathogenic microorganisms; other acute/chronic diseases such as diseases of respiratory system, diseases of immune system, diseases of blood and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular diseases, metabolic diseases of endocrine system, diseases of digestive system, diseases of nervous system, diseases of urinary system, diseases of reproductive system and diseases of locomotor system; (3) detecting the respective changes of microRNAs in serum/plasma for different diseases through biochip and sequencing technology for microRNAs in serum/plasma; (4) screening a kind of microRNA molecules in serum/plasma which have relatively greater differential expression during the course of diseases and normal physiological conditions to develop detection technologies for serum/plasma microRNAs, and then preparing biochips and diagnostic kits useful for disease diagnosis etc.


Specifically, the present invention analyzes and identifies the existence of microRNA molecules in serum/plasma of various animals such as human, mice and rats through the methods of RT-PCR, Real-time PCR, Northern blotting, RNase protection assay, Solexa sequencing technology and biochip. The stability of microRNAs in serum/plasma is studied by comparing the changes of microRNAs by the effect of DNase and RNase. The existence of serum/plasma microRNAs molecules and the correctness of their sequences are further verified through sequencing and comparing the PCR products of serum/plasma microRNAs.


The detailed preparation and analysis for serum/plasma microRNAs are as follows:


RT-PCR method: collecting serum/plasma samples; conducting reverse transcription reaction on serum/plasma samples to prepare cDNA samples, or extracting total RNA of serum/plasma with Trizol reagent and then conducting reverse transcription reaction so as to prepare cDNA samples; designing a primer through mature microRNAs so as to conduct PCR reaction; carrying out agarose gel electrophoresis with the products of PCR; and observing and taking photographs for the results under ultraviolet lamp after EB staining.


Real-time PCR method: collecting serum/plasma samples; conducting reverse transcription reaction on serum/plasma samples to prepare cDNA samples, or extracting total RNA of serum/plasma with Trizol reagent and then conducting reverse transcription reaction so as to prepare cDNA samples; designing a primer of PCR through mature microRNAs and adding a fluorescent probe EVA GREEN so as to carry out PCR reaction; analyzing and processing the data and then comparing the results.


Northern blotting method: collecting serum/plasma samples; extracting total RNA of serum/plasma with Trizol reagent; conducting denaturing PAGE-electrophoresis and membrane transferring experiment; preparing isotope-labeled microRNA probes; conducting membrane hybridization reaction; detecting the isotope signal for results such as using phosphor-screen scanning technology.


RNase protection assay: firstly synthesizing an antisense RNA probe, labelling it with isotopes and purifying it; collecting serum/plasma samples and extracting RNA; dissolving the extracted DNA in a hybrid buffer and then adding an antisense RNA probe so as to conduct hybridization reaction; adding a RNase digestion solution to irritate reaction; subjecting the resultant material to electrophoresis and radioautography; and analyzing the results.


Solexa sequencing technology: collecting serum/plasma samples; extracting total RNA of serum/plasma with Trizol reagent; conducting PAGE-electrophoresis to recover RNA molecules of 17˜27 nt; enzyme-linking adaptor prime to the 3′ and 5′ end of small RNA molecules respectively; conducting RT-PCR reaction prior to sequencing; and analyzing and processing the data.


Biochip method: arraying a library of all over 500 mature microRNAs to prepare biochips; collecting serum/plasma samples; extracting total RNA of serum/plasma; separating microRNAs by column separation; fluorescently-labelling microRNAs by use of T4 RNA ligase; conducting hybridization reaction with a biochip; and detecting and analyzing the data.


The change trend and change volume of serum/plasma microRNAs during various diseases and their relevancy with various diseases are analyzed through the above-mentioned technologies of RT-PCR, Real-time PCR, Northern blotting, RNase protection assay, Solexa sequencing technology, Biochip, etc. Among others, what to do firstly is to detect and analyze the changes of let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-1, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-106b, miR-107, miR-10a, miR-10b, miR-122a, miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-142-5p, miR-143, miR-144, miR-145, miR-146a, miR-146b, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151, miR-152, miR-153, miR-154, miR-154*, miR-155, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-181a, miR-181b, miR-181c, miR-181d, miR-182, miR-182*, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-18a, miR-18a*, miR-18b, miR-190, miR-191, miR-191*, miR-192, miR-193a, miR-193b, miR-194, miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a, miR-199a*, miR-199b, miR-19a, miR-19b, miR-200a, miR-200a*, miR-200b, miR-200c, miR-202, miR-202*, miR-203, miR-204, miR-205, miR-206, miR-208, miR-20a, miR-20b, miR-21, miR-210, miR-211, miR-212, miR-213, miR-214, miR-215, miR-216, miR-217, miR-218, miR-219, miR-22, miR-220, miR-221, miR-222, miR-223, miR-224, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-27b, miR-28, miR-296, miR-299-3p, miR-299-5p, miR-29a, miR-29b, miR-29c, miR-301, miR-302a, miR-302a*, miR-302b, miR-302b*, miR-302c, miR-302c*, miR-302d, miR-30a-3p, miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-30e-3p, miR-30e-5p, miR-31, miR-32, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-329, miR-33, miR-330, miR-331, miR-335, miR-337, miR-338, miR-339, miR-33b, miR-340, miR-342, miR-345, miR-346, miR-34a, miR-34b, miR-34c, miR-361, miR-362, miR-363, miR-363*, miR-365, miR-367, miR-368, miR-369-3p, miR-369-5p, miR-370, miR-371, miR-372, miR-373, miR-373*, miR-374, miR-375, miR-376a, miR-376a*, miR-376b, miR-377, miR-378, miR-379, miR-380-3p, miR-380-5p, miR-381, miR-382, miR-383, miR-384, miR-409-3p, miR-409-5p, miR-410, miR-411, miR-412, miR-421, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-425-5p, miR-429, miR-431, miR-432, miR-432*, miR-433, miR-448, miR-449, miR-450, miR-451, miR-452, miR-452*, miR-453, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p, miR-486, miR-487a, miR-487b, miR-488, miR-489, miR-490, miR-491, miR-492, miR-493, miR-493-3p, miR-494, miR-495, miR-496, miR-497, miR-498, miR-499, miR-500, miR-501, miR-502, miR-503, miR-504, miR-505, miR-506, miR-507, miR-508, miR-509, miR-510, miR-511, miR-512-3p, miR-512-5p, miR-513, miR-514, miR-515-3p, miR-515-5p, miR-516-3p, miR-516-5p, miR-517*, miR-517a, miR-517b, miR-517c, miR-518a, miR-518a-2*, miR-518b, miR-518c, miR-518c*, miR-518d, miR-518e, miR-518f, miR-518f*, miR-519a, miR-519b, miR-519c, miR-519d, miR-519e, miR-519e*, miR-520a, miR-520a*, miR-520b, miR-520c, miR-520d, miR-520d*, miR-520e, miR-520f, miR-520g, miR-520h, miR-521, miR-522, miR-523, miR-524, miR-524*, miR-525, miR-525*, miR-526a, miR-526b, miR-526b*, miR-526c, miR-527, miR-532, miR-542-3p, miR-542-5p, miR-544, miR-545, miR-548a, miR-548b, miR-548c, miR-548d, miR-549, miR-550, miR-551a, miR-552, miR-553, miR-554, miR-555, miR-556, miR-557, miR-558, miR-559, miR-560, miR-561, miR-562, miR-563, miR-564, miR-565, miR-566, miR-567, miR-568, miR-569, miR-570, miR-571, miR-572, miR-573, miR-574, miR-575, miR-576, miR-577, miR-578, miR-579, miR-580, miR-581, miR-582, miR-583, miR-584, miR-585, miR-586, miR-587, miR-588, miR-589, miR-590, miR-591, miR-592, miR-593, miR-594, miR-595, miR-596, miR-597, miR-598, miR-599, miR-600, miR-601, miR-602, miR-603, miR-604, miR-605, miR-606, miR-607, miR-608, miR-609, miR-610, miR-611, miR-612, miR-613, miR-614, miR-615, miR-616, miR-617, miR-618, miR-619, miR-620, miR-621, miR-622, miR-623, miR-624, miR-625, miR-626, miR-627, miR-628, miR-629, miR-630, miR-631, miR-632, miR-633, miR-634, miR-635, miR-636, miR-637, miR-638, miR-639, miR-640, miR-641, miR-642, miR-643, miR-644, miR-645, miR-646, miR-647, miR-648, miR-649, miR-650, miR-651, miR-652, miR-653, miR-654, miR-655, miR-656, miR-657, miR-658, miR-659, miR-660, miR-661, miR-662, miR-663, miR-7, miR-9, miR-9*, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99a and miR-99b in various clinical diseases (including a variety of tumors; various acute/chronic infectious diseases, e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS, bacterial diseases such as tuberculosis, bacterial pneumonia, and other acute/chronic infectious diseases caused by various pathogenic microorganisms; other acute/chronic diseases such as diseases of respiratory system, diseases of immune system, diseases of blood and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular diseases, metabolic diseases of endocrine system, diseases of digestive system, diseases of nervous system, diseases of urinary system, diseases of reproductive system and diseases of locomotor system); Biochips of serum/plasma microRNAs are prepared to determine the changes of serum/plasma microRNAs in different diseases, and meanwhile, Solexa sequencing and analysis on microRNAs in serum/plasma in different diseases are conducted.


The research and development of a technology for detecting disease-related serum/plasma microRNAs. Specifically, the microRNAs with disease-related specificity changes are screened out, their primers are collected into a PCR kit (RT-PCR or Real-time PCR) to prepare a disease-diagnostic kit, or their reverse complementary sequences are dripped on chips as probes so as to prepare the biochips for detecting serum/plasma microRNAs specific for a certain disease.


Presently, the technologies of traditional biochemistry and molecular biology for the clinical diagnosis of diseases are relatively complicated and insensitive. Novel techniques developed in recent years possibly useful for disease diagnosis are gene chip technique, protein (antibody) chip technique, etc. The changes at mRNA level measured through gene chips cannot completely reflect the actual changes at protein level, since the bioactivity of protein is closely related to post-transcriptional modification such as glycosylation and phosphorylation. In addition, for detection of many diseases, marker molecules in body fluids and blood cannot be detected through gene chip technology. Meanwhile, protein (antibody) chip technique and proteomic techniques also bear their limitations. In human body, especially in serum/plasma, there are tens of thousands of protein and polypeptide segments with extensively distributed concentrations, and the number of proteins definitely reported is very small, let alone those quantified. It is an extremely arduous task to find out those proteins having close relation with specific diseases from the large quantity of proteins and understand their roles in histopathologic changes. Moreover, lacking of complete antibody resources is the bottleneck restraining the development of antibody biochip technology. The detection technology for serum/plasma microRNAs based on biochips of serum/plasma microRNAs and diagnostic kits skillfully combines the peculiar properties of serum/plasma microRNAs with conventional molecular biology detection technique together, which can rapidly analyze the respective constitution of serum/plasma microRNAs in respect of various diseases with high throughput and hence be of extremely clinical practicality. Since the changes of physiological conditions in organs and tissues will cause the constitutional changes of serum/plasma microRNAs, serum/plasma microRNAs can be used as “fingerprints for diseases” to realize early diagnosis of diseases.


The advantages of the technology of detecting serum/plasma microRNAs are as follows:


(1) As novel disease markers, serum/plasma microRNAs possess certain advantages such as extensive spectrum for detection, high sensitivity, low cost for detection, convenient sampling, easy preservation for samples (preserving serum/plasma at −20° C. will do), etc. This method can be widely used in general survey of diseases and other relevant tasks and has become an efficient means for early diagnosis of diseases.


(2) As novel disease markers, serum/plasma microRNAs will improve the low-specificity and low-sensitivity caused by individual differences which single markers are difficult to overcome, and notably increase the clinical detection rate of diseases so as to realize early diagnosis of diseases.


(3) The advantages of the technology of detecting serum/plasma microRNAs lie in that what to be detected is series of disease related markers, thus it can address the differences (i.e., age, sex, race, diet, circumstance, etc.) between individual patients, which are exactly a primary problem difficult to overcome by single disease markers.


In summary, utilizing the technology of detecting serum/plasma microRNAs can confirm diagnosis of histopathologic changes in early stage. These novel serum/plasma markers not only provide material foundation for people to comprehensively understand the mechanism of histopathologic changes in molecule level, but also accelerate the progress in diagnostics and therapeutics of clinical diseases. Of course, a majority of molecular diagnostic techniques used for disease detection in early period are at initial experimental stage and their validity needs to be further verified and improved. Moreover, since every disease has the characteristics of its own, this requires a peculiar method for the detection of said disease. In this manner, it is impossible for all diseases to be detected out only through one or only a few of detection methods. Nevertheless, based on the superiority of serum/plasma microRNAs, it is believed that, in the near future, the diagnostic technique of serum/plasma microRNAs for severe diseases such as cancer will become part of routine physical examination. In addition, microRNA related gene therapy will be widely utilized. Consequently, the overcoming of these diseases will come true, not just a dream.





BRIEF DESCRIPTION OF THE DRAWINGS

The following are the detailed description of the embodiments of this invention with reference to the drawings, wherein:



FIG. 1 shows the RT-PCR result of partial microRNAs directly detected in the serum of a normal person.



FIG. 2 shows the RT-PCR results of the microRNAs in the RNA extracted from the serum of a normal person.





In FIG. 1 and FIG. 2, U6 is a snRNA with a molecular weight of 100 bp, serving as an internal reference molecule in microRNAs experiments. The rest of 12 microRNAs are each miR-181a(181a), miR-181b(181b), miR-223(223), miR-142-3p(142-3p), miR-142-5p(142-5p), miR-150(150) with blood cell specificity; miR-1(1), miR-133a(133a), miR-206(206) from cardiac muscles and skeletal muscles; miR-9(9), miR-124a(124a) from brain tissues; and miR-122a (122a) from liver.



FIG. 3 shows the RT-PCR results of partial micro-RNAs directly detected in the serum of mouse, rat, fetal bovine, calf and horse respectively.



FIG. 4 shows the variable quantity of the partial microRNAs in the serum of a patient suffering from the shown diseases compared with microRNAs in the serum of a normal person.



FIG. 5 shows the ratio between the quantities of macroRNAs and microRNAs in blood cells and serum.



FIG. 6 shows the enzyme digested results of macroRNAs and microRNAs.


THE BEST MODE FOR CARRYING OUT THE INVENTION
EXAMPLE 1
The RT-PCR Experiments of microRNAs in Serum/Plasma

By using RT-PCR technique, it is found and proved that there stably exist various microRNAs in serum/plasma of both human beings and animals, and that their expression levels are considerably high. The specific RT-PCR steps are as follows:


(1) collecting serum/plasma of mice, rats, normal persons and some patients;


(2) preparing samples of cDNA. This operation has two options: one is to directly conduct reverse transcription reaction using 10 μl of serum/plasma; the other is to firstly extract the total RNA from serum/plasma (usually, about 10 μg of RNA can be enriched from 10 ml of serum/plasma) with Trizol reagent (Invitrogen Co.), subsequently obtain cDNA through RNA reverse transcription reaction. The reaction system of reverse transcription includes 4 μl 5×AMV buffer, 2 μl 10 mM each dNTP mixture (Takara Co.), 0.5 μl RNase Inhibitor (Takara Co.), 2 μl AMV (Takara Co.) and 1.5 μl gene specific reverse primers mixtures. The reaction steps successively include 15 minutes of incubation at 16, 1 hour of reaction at 42 and 5 minutes of incubation at 85;


(3) PCR and Electrophoresis observation. The cDNA is diluted by 1/50. To 1 μl diluted cDNA are added 0.3 μl Taq polymerase (Takara Co.), 0.2 μl 10 μM forward primer, 0.2 μl 10 μM universal reverse primer, 1.2 μl 25 mM MgCl2, 1.6 μl 2.5 mM each dNTP mixture (Takara Co.), 20 μl 10×PCR buffer, 13.5 μl H2O, and PCR reaction is conducted in the 20 μl system. The PCR reaction is done under the following conditions: one cycle at 95 for 5 mins followed by 40 cycles at 95 for 15 seconds and 60 for 1 minute. 10 μl PCR product is subjected to 3% Agarose Gel Electrophoresis, which is observed under ultraviolet lamp after EB staining.


The detailed experimental results are shown in FIG. 1. FIG. 1 shows the experimental results of RT-PCR directly conducted on the serum of normal persons. The all over 500 mature microRNAs in human being are selected for conducting RT-PCR reaction, of which 12 microRNAs are shown in FIG. 1 and each miR-181a, miR-181b, miR-223, miR-142-3p, miR-142-5p, miR-150 with blood cell specificity; miR-1, miR-133a, miR-206 from cardiac muscles and skeletal muscles; miR-9 and miR-124a from brain tissues; and miR-122a from liver. It can be seen from the results that all microRNAs from the above-mentioned four tissues are detectable in blood, and that not all over 500 mature microRNAs have high expression level in the serum/plasma, with some microRNAs being in fairly trace amount and even being normally nondetectable.


To further verify that there stably exist the microRNAs in serum/plasma, RNA is firstly extracted from the serum of normal persons, then all over 500 mature microRNAs of human are selected for PCR experiment. As shown in FIG. 2, the results of FIG. 2 is quite consistent with that of FIG. 1, the singleness of the PCR products indicating that both two assays can detect the expression and level of the microRNAs in people's serum/plasma, and proving that there stably exist microRNAs of various tissues sources in people's serum/plasma. In addition, the same method is used to detect the expression and level of over 500 microRNAs in the serum/plasma of mouse, rat, fetal bovine, calf and horse, it is also found that there is stable expression of microRNAs of various tissues sources in serum/plasma of mouse, rat, fetal bovine, calf and horse (see FIG. 3).


EXAMPLE 2
The Real-Time PCR Experiments of microRNAs in Serum/Plasma

Quantitative PCR experiments of microRNAs in serum/plasma are conducted to study the specific variation of microRNAs quantity in serum/plasma during the course of various diseases, including various tumors, various acute and chronic infectious diseases, e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS, bacterial diseases such as tuberculosis, bacterial pneumonia, and other acute and chronic infectious diseases caused by various pathogenic microorganisms; other acute and chronic diseases such as diseases of respiratory system, diseases of immune system, diseases of blood and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular disease, metabolic diseases of endocrine system, diseases of digestive system, diseases of nervous system, diseases of urinary system, diseases of reproductive system and diseases of locomotor system. The experimental principles and experimental steps of quantitative PCR are basically the same as those of RT-PCR, with the only difference between them being the addition of a fluorescent dye EVA GREEN in the process of PCR. An ABI Prism 7300 fluorescent quantitative PCR instrument is used to conduct PCR reaction under the following conditions: one cycle at 95° C. for 5 mins followed by 40 cycles at 95° C. for 15 seconds and 60° C. for 1 minute. The data processing method used is ΔΔCT method, wherein CT is the number of cycles when the reaction reaches the threshold. The expression level of each microRNAs relative to that of internal standard reference can be expressed by the equation of 2−ΔCT, wherein ΔCT=CTsample−CTinternal reference. Reverse transcription reactions are directly conducted on serum/plasma samples of a patient and those of a normal person, and the quantities of microRNAs contained in each sample of serum/plasma are compared through quantitative PCR reactions.


Serum samples of patients who suffer from aplastic anemia, breast cancer, osteosarcoma, CNS (Central Nervous System) lymphoma, diabetes are selected, and at the same time, all over 500 mature microRNAs of human beings are used to conduct PCR reaction experiments. FIG. 4 shows the quantitative PCR experimental results of microRNAs within serum of patients and normal persons which include the above-mentioned miR-181a, miR-181b, miR-223, miR-142-3p, miR-142-5p, miR-150 with blood cell specificity; miR-1, miR-133a, miR-206 from cardiac muscles and skeletal muscles; miR-9, miR-124a from brain tissues; and miR-122a from liver. The ratio of the microRNAs quantity in serum between normal persons and patients suffering from aplastic anemia, breast cancer, osteosarcoma, CNS (Central Nervous System) lymphoma, diabetes are respectively up-regulated or down-regulated, and the variation extent of the microRNAs quantity from the same tissue source differs in patients with different diseases, indicating that there is specificity variation of microRNAs quantity in the serum/plasma of patients with different diseases. They can be taken as a type of novel markers for disease diagnosis.


EXAMPLE 3
The Superiority of Serum/Plasma microRNAs as Disease Markers

Through detecting the quantities of microRNAs and macroRNAs in serum and blood cells, it is found that there is an abundant content of microRNAs in serum. See FIG. 5. As represented by U6 molecules with a molecular weight of 100 bp and ribosomal RNA molecules with molecular weights being 18S and 28S respectively, the quantity of macroRNAs in blood cells is at least tens times that in serum; while the quantity of microRNAs in serum remains the same as that in blood cells except the microRNAs with blood cell specificity. Therefore, serum/plasma will specifically enrich small molecule RNAs, especially microRNAs.


It is also found that microRNAs are to some extent able to resist the action of endonuclease, which is possibly one of the reasons why microRNAs can stably exist in serum/plasma. Total RNAs extracted from cultured cell line are processed with endonuclease RNase A and the remaining quantity of macroRNAs and microRNAs are then detected. As shown in FIG. 6, it is found that microRNAs can to some extent resist the degradation of endonuclease while the macroRNAs are substantially completely cut off. Therefore microRNAs can stably exist in serum/plasma.


Based on the two characteristics of abundance in content and stable existence of microRNAs in serum/plasma, microRNAs could be well applied in clinical test.


EXAMPLE 4
Preparation of the Biochip of Serum/Plasma microRNAs Useful for Disease Diagnosis

A biochip of serum/plasma microRNAs is fabricated to verify the reliability of a kind of serum/plasma microRNAs probes relating to diseases which are selected through quantitative PCR method. The biochip contains all microRNAs probes that can be normally detected in people's serum/plasma, constituting a probe library. See Table 1.


When the probes are specifically applied in certain disease diagnosis or efficacy screening, some probes of the probe library are put together to construct a probe collection which makes it possible to quantitatively detect the variation of microRNAs in the specific conditions. For example, when diagnosing colon cancer, the collection of probes that have interaction with microRNAs of numbers 17-5p, 21, 103, 106a, 107, 126*, 143, 145, 150, 155 and 210 is used. For another example, when diagnosing myocardial hypertrophy and chronic heart failure, the collection of probes that have interaction with microRNAs of numbers 21, 23a, 23b, 24, 27a, 27b, 125b, 195, 199a, 214, 217, 133a is used. In addition, the chip can also do high-throughput screening of the probes of microRNAs varying stably in serum/plasma, and diseases can be predicted and diagnosed based on the overall variation of microRNAs in serum/plasma.


Sequencing method or quantitative PCR method is firstly used to determine that there is more than one copy of microRNAs in serum/plasma, and then reverse complementary probes of these microRNAs are synthesized, after which these probes are spotted on a chemically-modified slide in a size of 75×25 mm using a biochip microarrayer SmartArray™. The samples spotted on the chip also include U6 and tRNA as internal standard, artificially-prepared external standard in length of 30 bases, Hex as positive control etc. The entire lattice is divided into 4 sub-lattices and each sub-lattice has 23 rows and 21 columns, wherein the spot distance is 185 μm and the spot diameter is about 130 μm and each probe was repeatedly spotted for 3 times.


The operational procedure of the biochip is: (1) extracting the total RNA from serum/plasma and detecting its quality through formaldehyde denaturing gel electrophoresis; (2) separation of microRNAs: 50-100 μg total RNA is taken to separate microRNAs from total RNA with Ambion's miRNA Isolation Kit (Cat #. 1560); (3) fluorescently-labeling of microRNAs samples: microRNAs samples are fluorescently-labeling with T4 RNA ligase, then precipitated with absolute ethanol, and then blown to dryness for chip hybridization; (4) hybridization and cleaning: RNA is dissolved into 16μL hybridizing solution (15% formamide, 0.2% SDS, 3×SSC and 50×Denhardt's solution), and hybridized at 42 overnight. After completion of the hybridization, it is washed in a solution containing 0.2% SDS and 2×SSC at about 42 for 4 minutes, and then washed in a solution containing 0.2×SSC at room temperature for 4 minutes. Thereafter, the slides can be used for scanning immediately after being dried; (5) chip scanning: the chip is scanned with two-channel laser scanner LuxScan 10K/A; (6) data extracting and analysis: the chip image is analyzed with an image analyzing software LuxScan 3.0, the image signal is transformed into digital signal, and finally differentially-expressed genes are analyzed and selected with SAM method.


A biochip is prepared as above by using a kind of serum/plasma microRNAs probes which express greatly differently under disease condition and normal physiological condition double-verified by quantitative PCR technique and biochip technique. As compared with the traditional chip, there is no significant improvement in the manufacturing process and operational procedure of this biochip, but this chip simplifies the probe library, thereby greatly reducing the manufacturing cost and production time of the chip, and hence is easy to prepare. Meanwhile it increases the pertinence and practicability of chip. The application of the chip in practice can detect diseases in an early phase with only need of the serum/plasma of a patient and no need of other tissues, which helps guide the diagnosis and treatment.


EXAMPLE 5
Preparation of Kits of microRNAs Useful for Disease Diagnosis and Prediction

The manufacturing processed and operational procedures of microRNAs kits useful for diagnosis, prediction of complication occurrence and malignant disease relapse, evaluation of therapeutic effects, screening of pharmaceutical active ingredients, assessment of drug efficacy, forensic authentication and prohibited drug inspection, etc. of all diseases are based on quantitative PCR technique and semi-quantitative PCR technique and biochip technique. The above-mentioned diseases include various tumors; various acute/chronic infectious diseases, e.g. viral diseases such as viral influenza, viral hepatitis, AIDS, SARS, bacterial diseases such as tuberculosis, bacterial pneumonia, and other acute/chronic infectious diseases caused by various pathogenic microorganisms; other acute/chronic diseases such as diseases of respiratory system, diseases of immune system, diseases of blood and hematopoietic system, diseases of circulatory system such as cardio-cerebrovascular diseases, metabolic diseases of endocrine system, diseases of digestive system, diseases of nervous system, diseases of urinary system, diseases of reproductive system and diseases of locomotor system.


Sequencing method or quantitative PCR method is firstly used to determine that there is more than one copy of microRNAs in serum/plasma. Then, a kind of serum/plasma mircoRNAs that have a big difference between the expression levels in disease condition and in normal physiological condition are screened out through the techniques of quantitative PCR and biochip, which are taken as an indicator for predicting whether canceration or other disease occurs and diagnosing the pathological degree. Finally the number of screened corresponding serum/plasma microRNAs of each disease would be controlled to over ten to tens, which is the optimized condensement of the chip-probe library. The kit contains a batch of serum/plasma mircoRNAs primers, Taq polymerase, dNTP, etc. The value of the kit lies in making it possible to detect the changing trend of microRNAs through the most simplified probe library and with only need of serum/plasma and no need of any other tissue samples, and further predict the probability of occurrence of diseases or diagnose the pathological phase of diseases based on this changing trend detected. Thus, the application of this kit in practice can increase the possibility of discovering diseases in an early phase, which helps guide the diagnosis and treatment of diseases.

Claims
  • 1. A kit for detecting pancreatic carcinoma via detection of cDNA comprising: a container containing a probe for binding to and detecting a cDNA sequence corresponding to miR-25;reagents that extract or enrich microRNAs in a serum or plasma sample;reagents for reverse-transcribing the microRNAs into cDNA;primers for amplifying cDNA derived from miR-25 to produce a PCR product containing cDNA sequence corresponding to miR-25; anda specification describing detecting pancreatic carcinoma via detection of cDNA;wherein the probe binds to said cDNA sequence corresponding to miR-25 and is labeled with a detectable label that is fluorescent,wherein the kit detects a level of miR-25 in a serum or plasma sample from a subject.
  • 2. The kit of claim 1, wherein the detectable label that is fluorescent is EVA GREEN dye.
  • 3. The kit of claim 1, wherein the probe is probe-miR-25 having a sequence TCAGACCGAGACAAGTGCAATG (SEQ ID NO.: 132).
  • 4. A method for detecting pancreatic carcinoma from a serum or plasma sample of a subject comprising: (a) providing a serum or plasma sample of the subject;(b) extracting microRNAs from the serum or plasma sample;(c) reverse-transcribing the microRNAs into cDNA;(d) amplifying cDNA derived from miR-25 by PCR to produce a PCR product containing cDNA sequence corresponding to miR-25;(e) detecting a presence and an amount of the cDNA sequence corresponding to miR-25 in the PCR product by using primers and a probe to obtain a measurement value V1, wherein the probe is labeled with a detectable label that is fluorescent; and(f) comparing the measure value V1 with the standard valve V0, wherein a ratio of V1 to V0 being at least 2 indicates that the subject is more susceptible to or suffers from pancreatic carcinoma.
  • 5. The method of claim 4, wherein the detectable label that is fluorescent is EVA GREEN dye.
  • 6. The method of claim 4 wherein the probe is probe-miR-25 having a sequence TCAGACCGAGACAAGTGCAATG (SEQ ID NO.: 132).
  • 7. The method of claim 4, wherein the subject is human.
  • 8. The method of claim 4, wherein the sample is a serum sample.
Priority Claims (1)
Number Date Country Kind
2007 1 0134620 Nov 2007 CN national
REFERENCE OF RELATED APPLICATIONS

The present application is a divisional application of U.S. application Ser. No. 14/144,127, titled SERUM/PLASMA MICRORNAS AND USES THEREOF and filed on Nov. 24, 2008, which was a divisional application of U.S. application Ser. No. 12/302,196 titled SERUM/PLASMA MICRORNAS AND USES THEREOF and filed on Nov. 24, 2008 as a US national phase application based on PCT/CN2007/003463 which was filed on Dec. 6, 2007, and the entire contents of which are incorporated by reference herein.

US Referenced Citations (10)
Number Name Date Kind
20080045417 Weiler Feb 2008 A1
20090004668 Chen et al. Jan 2009 A1
20090010908 Gow Jan 2009 A1
20090239818 Cheng Sep 2009 A1
20100298151 Taylor et al. Nov 2010 A1
20110053139 Larson Mar 2011 A1
20120214700 Croce Aug 2012 A1
20120288476 Hartmann et al. Nov 2012 A1
20120321647 Breaker Dec 2012 A1
20120322109 Shuman et al. Dec 2012 A1
Foreign Referenced Citations (1)
Number Date Country
100999765 Jul 2007 CN
Non-Patent Literature Citations (20)
Entry
Kruhoffer et al, J. Molecular Diagnostics, vol. 9, No. 4, pp. 452-458 (2007).
Galin et al., Cancer Res., vol. 66, No. 15, pp. 7390-7394 (2006).
Opalinska et al., Nature Rev., vol. 1, pp. 503-514 (2002).
Doench et al., Genes and Development, vol. 18, No. 5, pp. 504-511 (2004).
Alberts et al., “Molecular Biology of the Cell,” 4th ed. (2002).
Bartel, D. P., “MicroRNAs: Genomics, Biogenesis, Mechanism, and Function,” Cell, 2004, vol. 116, pp. 281-297.
Berg, J.M., et al., “8.3.2. The Active Sites of Enzymes Have Some Commons Features,” Biochemistry, 5th ed., W. H. Freeman and Company (2002).
Furukawa, N., et al., “Optimization of a microRNA expression vector for function analysis of microRNA,” J. of Controlled Release, 2011, vol. 150, pp. 94-101.
He, L., et al., “MicroRNAs: Small RNAs with a Big Role in Gene Regulation,” Nature, 2004, vol. 5, pp. 522-532.
Houseley, J., et al., “The Many Pathways of RNA Degradation,” Cell, 2009, vol. 136, pp. 763-776.
Kottel, R. H., et al., “Serum Ribonuclease Activity in Cancer Patients,” Br. J. Cancer, 1978, vol. 38, pp. 280-286.
Nilsen, T. W., “Mechanisms of microRNA-mediated gene regulation in animal cells,” TRENDS in Genetics, 2007, vol. 23, No. 5, pp. 243-249.
Pillai, R. S., “MicroRNA function: Multiple mechanisms for a tiny RNA?”, RNA, 2005, vol. 11, pp. 1753-1761.
Reddi, K. K., et al., “Elevated serum ribonuclease in patients with pancreatic cancer,” Pro. Natl. Acad. Sci. USA, 1976, vol. 73, No. 7, pp. 2308-2310.
Stansfield, W. D., “Molecular Genetics,” Theory and Problems of Genetics, 3rd ed., Schaum's Outline Series, McGraw-Hill, p. 356 (Oct. 1, 1991).
Steeg et al., “2. Secondary Structure of RNA: Its Importance and Methods of Determination,” Artificial Intelligence and Molecular Biology, p. 123 (1993).
Turksen, “Methods in Molecular Biology,” Embryonic Stem Cells, Methods and Protocols, vol. 185, Humana Press, pp. 137-138, (2002).
International Search report for application No. PCT/CN2007/003463, dated Aug. 21, 2008 (6 pages, including English translation).
M. Luo et al., “Construction and Application of a Microarray for Profiling MicroRNA Expression,” Progress in Biochemistry and Biophysics, Mar. 2007, vol. 34(1), p. 31-41, including English abstract.
Z. Zhang, “The analysis of the expression of some miRNAs in different tumor cells,” CNKi, Oct. 2005, No. 6, 65 pages, including English abstract.
Related Publications (1)
Number Date Country
20160273054 A1 Sep 2016 US
Divisions (2)
Number Date Country
Parent 14144127 Dec 2013 US
Child 15171737 US
Parent 12302196 US
Child 14144127 US