1. Technical Field
The disclosure generally relates to cabinets and, particularly, to a server cabinet that occupies a relatively smaller space and is effective in heat dissipation.
2. Description of Related Art
Servers are usually mounted on shelves in a cabinet, which is not conducive to heat dissipation and takes up a lot of space.
Therefore, there is room for improvement within the art.
Many aspects of the exemplary server cabinet can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the server cabinet. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views, in which:
The disclosure is illustrated by way of example and not by way of limitation in the accompanying drawings. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references can include the meaning of “at least one” embodiment where the context permits.
The frame 10 includes two bottom plates 11, four side pates 13, and a number of reinforcement plates 15. The two bottom plates 11 are parallel to each other. The side plates 13 are substantially parallel to each other and are substantially perpendicularly secured to the bottom plates 11. Opposite ends of each plate 15 are secured to adjacent side plates 13 to improve strength and stability of the frame 10. A number of latching holes 131 are spaced apart defined in each side plate 13.
Referring to
Each sliding module 50 includes a first sliding element 51 and a second sliding element 53. The second sliding element 53 is slidably attached to the first sliding element 51. Each first sliding element 51 is slidably received in the corresponding receiving slot 37. A receiving groove 511 is defined in the first sliding element 51. A width of the receiving groove 511 is substantially equal to a width of the second sliding element 53 so that the second sliding element 53 can slide in the receiving groove 511. A post 531 projects from one end of the second sliding element 53.
The server 70 includes a housing 71, two wheels 73, and two latching elements 75. The two wheels 73 are attached to opposite sides of the housing 71 at one end, and the two latching elements 75 are attached to opposite sides of the housing 71 at the other end. The wheels 73 are for attaching the server 70 to the guiding rails 30 and allowing the server to roll in and out of the cabinet 100. The latching elements 75 are for locking the server 70 to the frame 10. A receiving hole 711 is defined in opposite sides of the housing 71. Each receiving hole 711 is adjacent to a corresponding latching element 75. A loop groove 731 is defined in each wheel 73 to receive opposite sidewalls of the guiding slot 35. Each latching element 75 includes a base portion 751 and two elastic arms 753, and the two elastic arms 753 project from the base portion 751 in a V-shape.
During assembly, the side plates 13 are secured to the bottom plates 11. Opposite ends of each plate 15 are secured to adjacent side plates 13. The guiding rails 30 are secured to the side plates 13. The inclined portion 33 of each guiding rail 30 is higher than the corresponding connection portion 31. Opposite sidewalls of the guiding slot 35 are received in the loop groove 731 of each wheel 73. Each post 531 is received in corresponding receiving hole 711, and the sliding modules 50 are slidably attached to corresponding guiding rail 30, thus, the cabinet 100 of the first exemplary embodiment is assembled, as shown in
Referring to
In the above exemplary embodiment, one end of the server 70 is positioned higher than the other end. When the server 70 is in use, density of air heated by the server 70 adjacent to the other end becomes smaller and moves towards the higher end to form an airflow so that heat generated by the server 70 can be taken away. Additionally, the server 70 being inclined, allow for a distance between the adjacent side plates 13 to be shorter than the length of the server 70, thus the cabinet 100 takes up less room.
Referring to
When the server 70 is locked to the frame 10 in the second exemplary embodiment, each wheel 73 is received in the corresponding positioning hole 451 so that a load of each latching element 75 is decreased.
It is understood that the server 70 can be locked to the frame 10 by means of fasteners, such as bolts or pins. Additionally, the sliding modules 50 can be omitted, and the server 70 attached to the guiding rails 30 or 40, and locked to the frame 10 by fasteners.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
99144293 A | Dec 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
3328646 | Caillat | Jun 1967 | A |
6269959 | Haworth | Aug 2001 | B1 |
20030106863 | Lauchner et al. | Jun 2003 | A1 |
20030107308 | Kueng et al. | Jun 2003 | A1 |
20030205539 | Lauchner et al. | Nov 2003 | A1 |
20040016709 | Felcman et al. | Jan 2004 | A1 |
20040120123 | Mayer | Jun 2004 | A1 |
20050078461 | Dobbs et al. | Apr 2005 | A1 |
20100187960 | Liang | Jul 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120155034 A1 | Jun 2012 | US |