1. Field of the Invention
The subject matter disclosed generally relates to the field of robotics.
2. Background Information
Robots have been used in a variety of applications ranging from remote control of hazardous material to assisting in the performance of surgery. For example, U.S. Pat. No. 5,762,458 issued to Wang et al. discloses a system that allows a surgeon to perform minimally invasive medical procedures through the use of robotically controlled instruments. One of the robotic arms in the Wang system moves an endoscope that has a camera. The camera allows a surgeon to view a surgical area of a patient.
There has been marketed a tele-presence mobile robot introduced by InTouch Technologies, Inc., the assignee of this application, under the trademark RP-7. The InTouch robot is controlled by a user at a remote station. The remote station may be a personal computer with a joystick that allows the user to remotely control the movement of the robot. Both the robot and remote station have cameras, monitors, speakers and microphones to allow for two-way video/audio communication. The robot camera provides video images to a screen at the remote station so that the user can view the robot's surroundings and move the robot accordingly.
The InTouch robot system can be used to access any number of robots from different remote locations. For example, a hospital facility may have a number of tele-presence robots that are accessible from different remote computer stations. A physician can become connected to a robot by merely logging on through a laptop or personal computer. As the number of in-field InTouch tele-presence robots grows, it is desirable to set and edit the connectivity between various remote control stations and different robots. It is also desirable to provide a means to control the parameters of the connectivity. For example, it may be desirable to control connectivity so that multiple remote control stations can receive the audio/video provided by the robot. It may be desirable to restrict the audio and/or video provided to one or more remote control stations. It may also be desirable to establish a time window of connectivity between control stations and robots.
A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The system may include a manager control station that can access said server to establish and edit said privileges.
Disclosed is a robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, join in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station.
The server may contain a database that defines groups of remote control stations that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station and a robot within a user programmable time window. The system may also allow for connectivity between arbitrary endpoints, including control station to control station connections and robot to robot connections.
Referring to the drawings more particularly by reference numbers,
Each remote control station 16 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30. The computer 22 may also contain an input device 32 such as a joystick or a mouse. Each control station 16 is typically located in a place that is remote from the robot 12. Although only one robot 12 is shown, it is to be understood that the system 10 may have a plurality of robots 12. In general any number of robots 12 may be controlled by any number of remote stations. For example, one remote station 16 may be coupled to a plurality of robots 12, or one robot 12 may be coupled to a plurality of remote stations 16.
The robot 12 includes a movement platform 34 that is attached to a robot housing 36. Also attached to the robot housing 36 are a camera 38, a monitor 40, a microphone(s) 42 and a speaker 44. The microphone 42 and speaker 30 may create a stereophonic sound. The robot 12 may also have an antenna 46 that is wirelessly coupled to an antenna 48 of the base station 14. The system 10 allows a user at the remote control station 16 to move the robot 12 through the input device 32. The robot camera 38 is coupled to the remote monitor 24 so that a user at the remote station 16 can view a patient. Likewise, the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user. The microphones 28 and 42, and speakers 30 and 44, allow for audible communication between the patient and the user.
Each remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX. The remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver. The video images may be transmitted and received with compression software such as MPEG CODEC. The control station may have general user interfaces that allow for operation of a robot and for multi-casting with other remote stations.
The system 10 includes a server 50 that controls connectivity between the remote control stations 16 and the robots 12. The server 50 includes a database 52. By way of example, the database 52 may be a relational database. The database 52 can allow for groups of remote stations to connect groups of robots. Groups may contain individual robots and control stations. Groups may also contain customers, which represent all robots and control stations belonging to a particular customer. Groups may also contain OEM configurations, which represent all robots and control stations that are sold by a particular 3rd-party OEM distributor. Groups may also contain other groups in a recursive fashion. By way of example, one healthcare entity may have three robots designated ROBOT-1, ROBOT-2 and ROBOT-3 and 5 remote stations designated CS-1, CS-2, CS-3, CS-4 and CS-5. The 3 robots are defined as group R and the remote stations are defined as group S. Rules can be established that allow connectivity between any remote station in group S with any robot in group R.
The interface 60 may include an “Existing Groups” area 76 that allows the user to view existing groups and group members through fields 78 which filter based on the category of group name, OEM, customer or client. Interface area 80 lists each group along with the group members, the person who created the group (with time log), and an indication of whether the group is active. An existing group can be edited by selecting an “Edit” button 82. A history of edits can be viewed by selecting the “History” button 84.
The group data may be stored in the database with the following group connectivity information:
The rules include “From” 98 and “To” 100 fields that define the connectivity path between control stations and robots. The “Priority” field 102 defines how conflicting rules will be resolved. When rules are in conflict, the priority value resolves the ambiguity. If two conflicting rules have the same priority, the rule that was modified most recently wins. The “Privilege Level” field 104 establishes what privileges are allowed in this particular connectivity. By way of example, the system may allow the following privileges:
The “Type” field 106 allows the user to specify whether the rule is additive or subtractive. Additive rules can be used to add connectivity. Subtractive rules can be used to selectively remove connectivity in a targeted manner. In this fashion, if one defines the connectivity to or from a group, and then subtracts connectivity privileges of a sub-group, and further adds connectivity privileges of a sub-sub-group, the system thereby allows one to define a hierarchy of connectivity rules The “Bidirectional” field 108 allows for connectivity between the From and To members to be unidirectional (“False”) or bidirectional (“True”) which is selectable by the user. The user can set the rule as read-only in the “Read-Only” field 110. Read-only rules always appear at the top of the list when rules are displayed. They require special double confirmation to be edited or deleted.
The user can select a time window for connectivity by entering a start date and time in a “Start Time” field 112 and an end date and time in an “End Time” field 114. The rule can be added by selecting the “Add This Rule” button 116. This allows a user to schedule connectivity in advance, to be enabled at a later date and time.
The From, To, Priority, Privilege and Active data for existing rules can be displayed in an interface area 118. A user can edit an existing rule by selecting an “Edit” button 120 and review edit history by selecting a “History” button 122.
The rules can be stored in the relational database with the following connectivity rule information:
The ability to change/add groups and rules can be limited to a select field of users, requiring a password/code for access to the interfaces 60 and 90. The server 50 may provide interfaces that can be accessed by the remote control stations 16 to review connectivity. The pages can provide information on which robots can be accessed by a particular remote control station or which remote control stations can access a specific robot.
The server may provide a tester page that allows a user to test the connectivity between two endpoints.
A manager control station is defined as any computer which has access to one or more of the interfaces depicted in
The speaker 44 is coupled to the bus 156 by a digital to analog converter 164. The microphone 42 is coupled to the bus 156 by an analog to digital converter 166. The high level controller 150 may also contain random access memory (RAM) device 168, a non-volatile RAM device 170 and a mass storage device 172 that are all coupled to the bus 162. The mass storage device 172 may contain medical files of the patient that can be accessed by the user at the remote control station 16. For example, the mass storage device 172 may contain a picture of the patient. The user, particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38. The robot antennae 46 may be coupled to a wireless transceiver 174. By way of example, the transceiver 174 may transmit and receive information in accordance with IEEE 802.11b.
The controller 154 may operate with a LINUX OS operating system. The controller 154 may also operate MS WINDOWS along with video, camera and audio drivers for communication with the remote control station 16. Video information may be transceived using MPEG CODEC compression techniques. The software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet. In general the high level controller 150 operates to control the communication between the robot 12 and the remote control station 16. The controller and the high level controller 150 may be linked to the low level controller 152 by serial ports 176.
The low level controller 152 runs software routines that mechanically actuate the robot 12. For example, the low level controller 152 provides instructions to actuate the movement platform to move the robot 12. The low level controller 152 may receive movement instructions from the high level controller 150. The movement instructions may be received as movement commands from the remote control station. Although two controllers are shown, it is to be understood that the robot 12 may have one controller controlling the high and low level functions.
The robot 12 may have a head 154 that supports the camera 38 and the monitor 40. The head 154 may have two degrees of freedom so that the camera 26 and monitor 24 can be swiveled and pivoted as indicated by the arrows.
The system may be the same or similar to a robotic system provided by the assignee InTouch-Health, Inc. of Santa Barbara, Calif. under the trademark RP-7. The system may also be the same or similar to the system disclosed in U.S. Pat. No. 6,925,357 issued Aug. 2, 2005, which is hereby incorporated by reference.
In operation, the robot 12 may be placed in a home, public or commercial property, or a facility where one or more patients are to be monitored and/or assisted. The facility may be a hospital or a residential care facility. By way of example, the robot 12 may be placed in a home where a health care provider may monitor and/or assist the patient. Likewise, a friend or family member may communicate with the patient. The cameras and monitors at both the robot and remote control stations allow for teleconferencing between the patient and the person at the remote station(s).
The robot 12 can be maneuvered through the home, property or facility by manipulating the input device 32 at a remote station 16.
The robot 10 may be controlled by a number of different users. To accommodate for this the robot may have an arbitration system. The arbitration system may be integrated into the operating system of the robot 12. For example, the arbitration technique may be embedded into the operating system of the high-level controller 150.
By way of example, the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider. The robot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall. A local user is a person who is physically present with the robot. The robot could have an input device that allows local operation. For example, the robot may incorporate a voice recognition system that receives and interprets audible commands.
A caregiver is someone who remotely monitors the patient. A doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory. The family and service users remotely access the robot. The service user may service the system such as by upgrading software, or setting operational parameters.
Message packets may be transmitted between a robot 12 and a remote station 16. The packets provide commands and feedback. Each packet may have multiple fields. By way of example, a packet may include an ID field a forward speed field, an angular speed field, a stop field, a bumper field, a sensor range field, a configuration field, a text field and a debug field.
The identification of remote users can be set in an ID field of the information that is transmitted from the remote control station 16 to the robot 12. For example, a user may enter a user ID into a setup table in the application software run by the remote control station 16. The user ID is then sent with each message transmitted to the robot.
The robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode. In the exclusive mode only one user has access control of the robot. The exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user. In the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous tele-conference with the patient.
The arbitration scheme may have one of four mechanisms; notification, timeouts, queue and call back. The notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot. The timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot. The queue mechanism is an orderly waiting list for access to the robot. The call back mechanism informs a user that the robot can be accessed. By way of example, a family user may receive an e-mail message that the robot is free for usage. Tables 1 and 2, show how the mechanisms resolve access request from the various users.
The information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10. A selected robot is then given an electronic key by the station 16. The robot 12 validates the key and returns another key to the station 16. The keys are used to encrypt information transmitted in the session.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
This application is a divisional application claiming priority to U.S. patent application Ser. No. 12/349,288, filed Jan. 6, 2009, pending, which is a continuation-in-part of U.S. patent application Ser. No. 12/277,922, filed Nov. 25, 2008, pending.
Number | Name | Date | Kind |
---|---|---|---|
4107689 | Jellinek | Aug 1978 | A |
4213182 | Eichelberger et al. | Jul 1980 | A |
4553309 | Hess et al. | Nov 1985 | A |
4679152 | Perdue | Jul 1987 | A |
4697278 | Fleischer | Sep 1987 | A |
4878501 | Shue | Nov 1989 | A |
5220263 | Onishi et al. | Jun 1993 | A |
5230023 | Nakano | Jul 1993 | A |
5262944 | Weisner et al. | Nov 1993 | A |
5305427 | Nagata | Apr 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5347457 | Tanaka et al. | Sep 1994 | A |
5375195 | Johnston | Dec 1994 | A |
5400068 | Ishida et al. | Mar 1995 | A |
5413693 | Redepenning | May 1995 | A |
5486853 | Baxter et al. | Jan 1996 | A |
5510832 | Garcia | Apr 1996 | A |
5511147 | Abdel-Malek | Apr 1996 | A |
5563998 | Yaksich et al. | Oct 1996 | A |
5617539 | Ludwig et al. | Apr 1997 | A |
5619341 | Auyeung et al. | Apr 1997 | A |
5623679 | Rivette et al. | Apr 1997 | A |
5673082 | Wells et al. | Sep 1997 | A |
5675229 | Thorne | Oct 1997 | A |
5734805 | Isensee et al. | Mar 1998 | A |
5748629 | Caldara et al. | May 1998 | A |
5754631 | Cave | May 1998 | A |
5758079 | Ludwig et al. | May 1998 | A |
5793365 | Tang et al. | Aug 1998 | A |
5801755 | Echerer | Sep 1998 | A |
5844599 | Hildin | Dec 1998 | A |
5867494 | Krishnaswamy et al. | Feb 1999 | A |
5871451 | Unger et al. | Feb 1999 | A |
5872922 | Hogan et al. | Feb 1999 | A |
5961446 | Beller et al. | Oct 1999 | A |
5983263 | Rothrock et al. | Nov 1999 | A |
5995119 | Cosatto et al. | Nov 1999 | A |
6031845 | Walding | Feb 2000 | A |
6047259 | Campbell et al. | Apr 2000 | A |
6091219 | Maruo et al. | Jul 2000 | A |
6113343 | Goldenberg et al. | Sep 2000 | A |
6189034 | Riddle | Feb 2001 | B1 |
6233735 | Ebihara | May 2001 | B1 |
6250928 | Poggio et al. | Jun 2001 | B1 |
6266162 | Okamura et al. | Jul 2001 | B1 |
6292714 | Okabayashi | Sep 2001 | B1 |
6314631 | Pryor | Nov 2001 | B1 |
6317652 | Osada | Nov 2001 | B1 |
6317953 | Pryor | Nov 2001 | B1 |
6324184 | Hou et al. | Nov 2001 | B1 |
6324443 | Kurakake et al. | Nov 2001 | B1 |
6373855 | Downing et al. | Apr 2002 | B1 |
6389329 | Colens | May 2002 | B1 |
6400378 | Snook | Jun 2002 | B1 |
6408230 | Wada | Jun 2002 | B2 |
6411055 | Fujita et al. | Jun 2002 | B1 |
6445964 | White et al. | Sep 2002 | B1 |
6470235 | Kasuga et al. | Oct 2002 | B2 |
6480762 | Uchikubo et al. | Nov 2002 | B1 |
6529620 | Thompson | Mar 2003 | B2 |
6567038 | Granot et al. | May 2003 | B1 |
6581798 | Liff et al. | Jun 2003 | B2 |
6590604 | Tucker et al. | Jul 2003 | B1 |
6597392 | Jenkins et al. | Jul 2003 | B1 |
6643496 | Shimoyama et al. | Nov 2003 | B1 |
6666374 | Green et al. | Dec 2003 | B1 |
6667592 | Jacobs et al. | Dec 2003 | B2 |
6674259 | Norman et al. | Jan 2004 | B1 |
6693585 | MacLeod | Feb 2004 | B1 |
6724823 | Rovati et al. | Apr 2004 | B2 |
6769771 | Trumbull | Aug 2004 | B2 |
6816192 | Nishikawa | Nov 2004 | B1 |
6816754 | Mukai et al. | Nov 2004 | B2 |
6893267 | Yueh | May 2005 | B1 |
6957712 | Song et al. | Oct 2005 | B2 |
6990112 | Brent et al. | Jan 2006 | B1 |
7007235 | Hussein et al. | Feb 2006 | B1 |
7011538 | Chang | Mar 2006 | B2 |
7015934 | Toyama et al. | Mar 2006 | B2 |
RE39080 | Johnston | Apr 2006 | E |
7053578 | Diehl et al. | May 2006 | B2 |
7055210 | Keppler et al. | Jun 2006 | B2 |
7158861 | Wang et al. | Jan 2007 | B2 |
7164970 | Wang et al. | Jan 2007 | B2 |
7167448 | Wookey et al. | Jan 2007 | B2 |
7181455 | Wookey et al. | Feb 2007 | B2 |
7219364 | Bolle et al. | May 2007 | B2 |
7222000 | Wang et al. | May 2007 | B2 |
7283153 | Provost et al. | Oct 2007 | B2 |
7292257 | Kang et al. | Nov 2007 | B2 |
7305114 | Wolff et al. | Dec 2007 | B2 |
7317685 | Flott et al. | Jan 2008 | B1 |
7332890 | Cohen et al. | Feb 2008 | B2 |
7333642 | Green | Feb 2008 | B2 |
7352153 | Yan | Apr 2008 | B2 |
7363121 | Chen et al. | Apr 2008 | B1 |
7391432 | Terada | Jun 2008 | B2 |
7400578 | Guthrie et al. | Jul 2008 | B2 |
7404140 | O'Rourke | Jul 2008 | B2 |
7421470 | Ludwig et al. | Sep 2008 | B2 |
7430209 | Porter | Sep 2008 | B2 |
7433921 | Ludwig et al. | Oct 2008 | B2 |
7467211 | Herman et al. | Dec 2008 | B1 |
7483867 | Ansari et al. | Jan 2009 | B2 |
7492731 | Hagendorf | Feb 2009 | B2 |
7510428 | Obata et al. | Mar 2009 | B2 |
7523069 | Friedl et al. | Apr 2009 | B1 |
7557758 | Rofougaran | Jul 2009 | B2 |
7587260 | Bruemmer et al. | Sep 2009 | B2 |
7587512 | Ta et al. | Sep 2009 | B2 |
7590060 | Miceli | Sep 2009 | B2 |
7599290 | Dos Remedios et al. | Oct 2009 | B2 |
7630314 | Dos Remedios et al. | Dec 2009 | B2 |
7631833 | Ghaleb et al. | Dec 2009 | B1 |
7643051 | Sandberg et al. | Jan 2010 | B2 |
7647320 | Mok et al. | Jan 2010 | B2 |
7657560 | DiRienzo | Feb 2010 | B1 |
7680038 | Gourlay | Mar 2010 | B1 |
7693757 | Zimmerman | Apr 2010 | B2 |
7698432 | Short et al. | Apr 2010 | B2 |
7703113 | Dawson | Apr 2010 | B2 |
7737993 | Kaasila et al. | Jun 2010 | B2 |
7739383 | Short et al. | Jun 2010 | B1 |
7756614 | Jouppi | Jul 2010 | B2 |
7769705 | Luechtefeld | Aug 2010 | B1 |
7774158 | Domingues et al. | Aug 2010 | B2 |
7860680 | Arms et al. | Dec 2010 | B2 |
7861366 | Hahm et al. | Jan 2011 | B2 |
7885822 | Akers et al. | Feb 2011 | B2 |
7890382 | Robb et al. | Feb 2011 | B2 |
7912583 | Gutmann et al. | Mar 2011 | B2 |
7949616 | Levy et al. | May 2011 | B2 |
7956894 | Akers et al. | Jun 2011 | B2 |
7957837 | Ziegler et al. | Jun 2011 | B2 |
7982769 | Jenkins et al. | Jul 2011 | B2 |
7987069 | Rodgers et al. | Jul 2011 | B2 |
8126960 | Obradovich et al. | Feb 2012 | B2 |
8180486 | Saito et al. | May 2012 | B2 |
8212533 | Ota | Jul 2012 | B2 |
8265793 | Cross et al. | Sep 2012 | B2 |
8287522 | Moses et al. | Oct 2012 | B2 |
8292807 | Perkins et al. | Oct 2012 | B2 |
8320534 | Kim et al. | Nov 2012 | B2 |
8340654 | Bratton et al. | Dec 2012 | B2 |
8340819 | Mangaser et al. | Dec 2012 | B2 |
8348675 | Dohrmann | Jan 2013 | B2 |
8374171 | Cho et al. | Feb 2013 | B2 |
8400491 | Panpaliya et al. | Mar 2013 | B1 |
8401275 | Wang et al. | Mar 2013 | B2 |
8423284 | O'Shea | Apr 2013 | B2 |
8451731 | Lee et al. | May 2013 | B1 |
8463435 | Herzog et al. | Jun 2013 | B2 |
8503340 | Xu | Aug 2013 | B1 |
8515577 | Wang et al. | Aug 2013 | B2 |
8527094 | Kumar et al. | Sep 2013 | B2 |
8532860 | Daly | Sep 2013 | B2 |
8610786 | Ortiz | Dec 2013 | B2 |
8612051 | Norman et al. | Dec 2013 | B2 |
8639797 | Pan et al. | Jan 2014 | B1 |
8670017 | Stuart et al. | Mar 2014 | B2 |
8726454 | Gilbert, Jr. et al. | May 2014 | B2 |
8836751 | Ballantyne et al. | Sep 2014 | B2 |
8849679 | Wang et al. | Sep 2014 | B2 |
8849680 | Wright et al. | Sep 2014 | B2 |
8861750 | Roe et al. | Oct 2014 | B2 |
8897920 | Wang et al. | Nov 2014 | B2 |
8902278 | Pinter et al. | Dec 2014 | B2 |
9195233 | Perrone | Nov 2015 | B2 |
20010020200 | Das et al. | Sep 2001 | A1 |
20010048464 | Barnett | Dec 2001 | A1 |
20010051881 | Filler | Dec 2001 | A1 |
20020027597 | Sachau | Mar 2002 | A1 |
20020027652 | Paromtchik et al. | Mar 2002 | A1 |
20020033880 | Sul et al. | Mar 2002 | A1 |
20020038168 | Kasuga et al. | Mar 2002 | A1 |
20020044201 | Alexander et al. | Apr 2002 | A1 |
20020049517 | Ruffner | Apr 2002 | A1 |
20020055917 | Muraca | May 2002 | A1 |
20020085030 | Ghani | Jul 2002 | A1 |
20020095239 | Wallach et al. | Jul 2002 | A1 |
20020106998 | Presley et al. | Aug 2002 | A1 |
20020109770 | Terada | Aug 2002 | A1 |
20020109775 | White et al. | Aug 2002 | A1 |
20020128985 | Greenwald | Sep 2002 | A1 |
20020133062 | Arling et al. | Sep 2002 | A1 |
20030021107 | Howell et al. | Jan 2003 | A1 |
20030050734 | Lapham | Mar 2003 | A1 |
20030080901 | Piotrowski | May 2003 | A1 |
20030112823 | Collins et al. | Jun 2003 | A1 |
20030120714 | Wolff et al. | Jun 2003 | A1 |
20030135097 | Wiederhold et al. | Jul 2003 | A1 |
20030152145 | Kawakita | Aug 2003 | A1 |
20030195662 | Wang et al. | Oct 2003 | A1 |
20030212472 | McKee | Nov 2003 | A1 |
20030216833 | Mukai et al. | Nov 2003 | A1 |
20030236590 | Park et al. | Dec 2003 | A1 |
20040001197 | Ko et al. | Jan 2004 | A1 |
20040001676 | Colgan et al. | Jan 2004 | A1 |
20040008138 | Hockley, Jr. et al. | Jan 2004 | A1 |
20040017475 | Akers et al. | Jan 2004 | A1 |
20040088078 | Jouppi et al. | May 2004 | A1 |
20040095516 | Rohlicek | May 2004 | A1 |
20040107254 | Ludwig et al. | Jun 2004 | A1 |
20040107255 | Ludwig et al. | Jun 2004 | A1 |
20040117067 | Jouppi | Jun 2004 | A1 |
20040123158 | Roskind | Jun 2004 | A1 |
20040135879 | Stacy et al. | Jul 2004 | A1 |
20040150725 | Taguchi | Aug 2004 | A1 |
20040168148 | Goncalves et al. | Aug 2004 | A1 |
20040172306 | Wohl et al. | Sep 2004 | A1 |
20040186623 | Dooley et al. | Sep 2004 | A1 |
20040205664 | Prendergast | Oct 2004 | A1 |
20040218099 | Washington | Nov 2004 | A1 |
20040222638 | Bednyak | Nov 2004 | A1 |
20040241981 | Doris et al. | Dec 2004 | A1 |
20040260790 | Balloni et al. | Dec 2004 | A1 |
20050004708 | Goldenberg et al. | Jan 2005 | A1 |
20050060211 | Xiao et al. | Mar 2005 | A1 |
20050065435 | Rauch et al. | Mar 2005 | A1 |
20050073575 | Thacher et al. | Apr 2005 | A1 |
20050078816 | Sekiguchi et al. | Apr 2005 | A1 |
20050125083 | Kiko | Jun 2005 | A1 |
20050125098 | Wang et al. | Jun 2005 | A1 |
20050149364 | Ombrellaro | Jul 2005 | A1 |
20050152447 | Jouppi et al. | Jul 2005 | A1 |
20050152565 | Jouppi et al. | Jul 2005 | A1 |
20050168568 | Jouppi | Aug 2005 | A1 |
20050225634 | Brunetti et al. | Oct 2005 | A1 |
20050231586 | Rodman et al. | Oct 2005 | A1 |
20050234592 | McGee et al. | Oct 2005 | A1 |
20050264649 | Chang et al. | Dec 2005 | A1 |
20050286759 | Zitnick et al. | Dec 2005 | A1 |
20060010028 | Sorensen | Jan 2006 | A1 |
20060014388 | Lur et al. | Jan 2006 | A1 |
20060020694 | Nag et al. | Jan 2006 | A1 |
20060056655 | Wen et al. | Mar 2006 | A1 |
20060056837 | Vapaakoski | Mar 2006 | A1 |
20060066609 | Iodice et al. | Mar 2006 | A1 |
20060071797 | Rosenfeld et al. | Apr 2006 | A1 |
20060074719 | Horner | Apr 2006 | A1 |
20060125356 | Meek et al. | Jun 2006 | A1 |
20060149418 | Anvari | Jul 2006 | A1 |
20060161136 | Anderson et al. | Jul 2006 | A1 |
20060171515 | Hintermeister et al. | Aug 2006 | A1 |
20060173708 | Vining et al. | Aug 2006 | A1 |
20060178559 | Kumar et al. | Aug 2006 | A1 |
20060178777 | Park et al. | Aug 2006 | A1 |
20060224781 | Tsao et al. | Oct 2006 | A1 |
20060247045 | Jeong et al. | Nov 2006 | A1 |
20060268704 | Ansari et al. | Nov 2006 | A1 |
20060271238 | Choi et al. | Nov 2006 | A1 |
20060271400 | Clements et al. | Nov 2006 | A1 |
20070025711 | Marcus | Feb 2007 | A1 |
20070093279 | Janik | Apr 2007 | A1 |
20070116152 | Thesling | May 2007 | A1 |
20070133407 | Choi et al. | Jun 2007 | A1 |
20070170886 | Plishner | Jul 2007 | A1 |
20070198130 | Wang et al. | Aug 2007 | A1 |
20070226949 | Hahm et al. | Oct 2007 | A1 |
20070255706 | Iketani et al. | Nov 2007 | A1 |
20070290040 | Wurman et al. | Dec 2007 | A1 |
20080009969 | Bruemmer et al. | Jan 2008 | A1 |
20080027591 | Lenser et al. | Jan 2008 | A1 |
20080033641 | Medalia | Feb 2008 | A1 |
20080045804 | Williams | Feb 2008 | A1 |
20080051985 | D'Andrea et al. | Feb 2008 | A1 |
20080086241 | Phillips et al. | Apr 2008 | A1 |
20080091340 | Milstein et al. | Apr 2008 | A1 |
20080126132 | Warner et al. | May 2008 | A1 |
20080161969 | Lee et al. | Jul 2008 | A1 |
20080174570 | Jobs et al. | Jul 2008 | A1 |
20080201016 | Finlay | Aug 2008 | A1 |
20080232763 | Brady | Sep 2008 | A1 |
20080263628 | Norman et al. | Oct 2008 | A1 |
20080267069 | Thielman et al. | Oct 2008 | A1 |
20080306375 | Sayler et al. | Dec 2008 | A1 |
20090044334 | Parsell et al. | Feb 2009 | A1 |
20090049640 | Lee et al. | Feb 2009 | A1 |
20090070135 | Parida et al. | Mar 2009 | A1 |
20090086013 | Thapa | Apr 2009 | A1 |
20090102919 | Zamierowski et al. | Apr 2009 | A1 |
20090106679 | Anzures et al. | Apr 2009 | A1 |
20090122699 | Alperovitch et al. | May 2009 | A1 |
20090144425 | Marr et al. | Jun 2009 | A1 |
20090164255 | Menschik et al. | Jun 2009 | A1 |
20090164657 | Li et al. | Jun 2009 | A1 |
20090171170 | Li et al. | Jul 2009 | A1 |
20090177323 | Ziegler et al. | Jul 2009 | A1 |
20090177641 | Raghavan | Jul 2009 | A1 |
20090248200 | Root | Oct 2009 | A1 |
20100017046 | Cheung et al. | Jan 2010 | A1 |
20100026239 | Li et al. | Feb 2010 | A1 |
20100030578 | Siddique et al. | Feb 2010 | A1 |
20100051596 | Diedrick et al. | Mar 2010 | A1 |
20100063848 | Kremer et al. | Mar 2010 | A1 |
20100066804 | Shoemake et al. | Mar 2010 | A1 |
20100085874 | Noy et al. | Apr 2010 | A1 |
20100088232 | Gale | Apr 2010 | A1 |
20100131102 | Herzog et al. | May 2010 | A1 |
20100145479 | Griffiths | Jun 2010 | A1 |
20100157825 | Anderlind et al. | Jun 2010 | A1 |
20100171826 | Hamilton et al. | Jul 2010 | A1 |
20100228249 | Mohr et al. | Sep 2010 | A1 |
20100278086 | Pochiraju et al. | Nov 2010 | A1 |
20100286905 | Goncalves et al. | Nov 2010 | A1 |
20100301679 | Murray et al. | Dec 2010 | A1 |
20110022705 | Yellamraju et al. | Jan 2011 | A1 |
20110071675 | Wells et al. | Mar 2011 | A1 |
20110072114 | Hoffert et al. | Mar 2011 | A1 |
20110153198 | Kokkas et al. | Jun 2011 | A1 |
20110193949 | Nambakam et al. | Aug 2011 | A1 |
20110195701 | Cook et al. | Aug 2011 | A1 |
20110213210 | Temby et al. | Sep 2011 | A1 |
20110280551 | Sammon | Nov 2011 | A1 |
20110306400 | Nguyen | Dec 2011 | A1 |
20120023506 | Maeckel et al. | Jan 2012 | A1 |
20120036484 | Zhang et al. | Feb 2012 | A1 |
20120059946 | Wang | Mar 2012 | A1 |
20120072023 | Ota | Mar 2012 | A1 |
20120072024 | Wang et al. | Mar 2012 | A1 |
20120092157 | Tran | Apr 2012 | A1 |
20120095352 | Tran | Apr 2012 | A1 |
20120113856 | Krishnaswamy | May 2012 | A1 |
20120191246 | Roe | Jul 2012 | A1 |
20120191464 | Stuart et al. | Jul 2012 | A1 |
20120203731 | Nelson et al. | Aug 2012 | A1 |
20120291809 | Kuhe et al. | Nov 2012 | A1 |
20130250938 | Anandakumar et al. | Sep 2013 | A1 |
20140047022 | Chan et al. | Feb 2014 | A1 |
20140085543 | Hartley et al. | Mar 2014 | A1 |
20140135990 | Stuart et al. | May 2014 | A1 |
20140139616 | Pinter et al. | May 2014 | A1 |
20140155755 | Pinter et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
2000012162 | Oct 1999 | AU |
1404695 | Mar 2003 | CN |
1561923 | Jan 2005 | CN |
1743144 | Mar 2006 | CN |
101049017 | Oct 2007 | CN |
101151614 | Mar 2008 | CN |
100407729 | Jul 2008 | CN |
20031304872 | Apr 2003 | EP |
20071763243 | Mar 2007 | EP |
1819108 | Aug 2007 | EP |
1232610 | Jan 2009 | EP |
20072431261 | Apr 2007 | GB |
07-194609 | Aug 1995 | JP |
11-220706 | Aug 1999 | JP |
11220706 | Aug 1999 | JP |
2002101333 | May 2002 | JP |
2002-305743 | Oct 2002 | JP |
2002-321180 | Nov 2002 | JP |
2004-181229 | Jul 2004 | JP |
2005-111083 | Apr 2005 | JP |
2006508806 | Mar 2006 | JP |
2006109094 | Apr 2006 | JP |
2007007040 | Jan 2007 | JP |
2007-232208 | Sep 2007 | JP |
2007-316966 | Dec 2007 | JP |
2009-125133 | Jun 2009 | JP |
20100019479 | Feb 2010 | KR |
9742761 | Nov 1997 | WO |
2000025516 | May 2000 | WO |
0131861 | May 2001 | WO |
03077745 | Sep 2003 | WO |
2004012018 | Feb 2004 | WO |
2006044847 | Apr 2006 | WO |
2007041295 | Apr 2007 | WO |
2011097132 | Dec 2011 | WO |
Entry |
---|
“Appeal from the U.S. District Court for the Central District of California in No. 11-CV-9185, Judge Percy Anderson”, May 9, 2014, pp. 1-48. |
“Google translation of: Innovations Report”, From research project to television star: Care-O-bot in ZDF series, available online at <http://www.innovations-report.de/specials/printa.php?id=5157>, Sep. 28, 2001. |
“MPEG File Format Summary”, downloaded from: <http://www.fileformat.info/format/mpeg/egff.htm>, Feb. 1, 2001, 8 pages. |
“MPEG-4: a Powerful Standard for Use in Web and Television Environments”, by Rob Koenen (KPN Research), downloaded from <http://www.w3.org/Architecture/1998/06/Workshop/paper26>, Jul. 1, 1998, 4 pages. |
CMU Course 16X62, “Robot user's manual”, (describing the Nomad Scout), Carnegie Mellon University, Feb. 1, 2001, 11 pages. |
Panusopone et al., “Performance comparison of MPEG-4 and H.263+ for streaming video applications”, Circuits Systems Signal Processing, vol. 20, No. 3, 2001, pp. 293-309. |
Schraft et al., “Care-O-botTM: The Concept of a System for Assisting Elderly or Disabled Persons in Home Environments”, IEEE Proceedings of the 24th Annual Conference of the Industrial Electronics Society, IECON '98, Aug. 31-Sep. 4, 1998, pp. 2476-2481. |
Apple, Inc., “iPhone”, iPhone Series, XP002696350, hftp://en.wikipedia.org/wiki/IPhone—5, n. d., retrieved Apr. 30, 2013, pp. 1-29. |
Blaer, et al., “TopBot: Automated Network Topology Detection With a Mobile Robot”, Proceedings of the 2003 IEEE International Conference on Robotics 7 Automation, Taipei, Taiwan, Sep. 14-19, 2003, pp. 1582-1587. |
Bradner, “The Internet Standards Process—Revision 3”, Network Working Group Request for Comments: 2026, www.rfc-e ditor.org!rfC/r1c2026. txt, Oct. 1996, pp. 1-36. |
Christensen et al., “BeeSoft User's Guide and Reference”, Robots for the Real World™, Real World Interface, Inc., www.praecogito.com/-brudy/zaza/BeeSoft-manual-1.2-2/ beeman˜1.htm, Sep. 26, 1997, pp. 1-203. |
Dario, “A Robot Workstation for Diagnosis and Physical Therapy”, IEEE Catalog No. 88TH0234-5, 1989, pp. 67-72. |
Gostai, “Robotic Telepresence: Gos ai Jazz”, Flyer, http://www.gostai.com, n. date, 4 pgs. |
Leifer, et al., “VIPRR: A Virtually In Person Rehabilitation Robot”, Proceedings of 1997 International Conference on Rehabilitation Robotics, http://www.stanford.edu/group/rrdlPeople/vdl/publicationsIICORR97/VIPRR.html, Apr. 14-15, 1997, 4 pgs. |
Minsky, “Telepresence”, OMNI, Jun. 1980, pp. 1-6. |
Motorola Technical Developments, et al., “Detection of Target Mobile Signal Strength”, PriorArt Database: Technical Disclosure, IP.com, Retrieved from http:www.ip.com/pubview/IPCOM000009024D, original publication date: Jan. 1, 1999 by Motorola, Inc., pp. 205-206, Aug. 1, 2002, pp. 1583-1587. |
Noritsugu, “Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot”, IEEE/ASME Transations on Mechatronics, vol. 2, No. 4, Dec. 1997, pp. 259-267. |
Osborn, “QoLT Research Overview”, Quality of Life Technology Center:A National Science Foundation Engineering Research Center, Carnegie Mellon University of Pittsburgh, www.qolt.org, n. date, 2 pgs. |
Reynolds et al., “Review of Robotic Telemedicine Utilization in Intensive Care Units (ICUs)”, 11th Annual ATA Symposium, Tampa, Florida, 2011, 1 pg. |
Saphira Software Manual, Saphira Version 5.3, ActiveMedia, Inc., 1997, 105 pgs. |
Tipsuwan, et al., “Gain Adaptation of Networked Mobile Robot to Compensate QoS Deterioration”, IEEE, 2000, pp. 3146-3151. |
Tsui, et al., “Exploring Use Cases for Telepresence Robots”, Human-Robot Interaction, Lausanne, Switzerland, http://robotics.cs.uml.edu/fileadmin/content/publications/2011/tsui-et-al-telepresence-HRI11.pdf, Robotics Lab UMass Lowell, 2011, 7 pgs. |
UMass Lowell Robotics Lab, “Robotics Lab © UMASS Lowell”, Brochure, http://robotics.cs.uml.edu/fileadmin/content/brochures/roboticslab—brochure—2011—WEB.pdf, 2011, 2 pgs. |
Video Middleware Group, “H.350 Directory Services for Multimedia”, http://www.vide.net/resources/h350vendor.pdf, n. date, 2 pgs. |
Appeal from the U.S. District Court for the Central District of California in case No.. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. I of IV, Jun. 24, 2013, pp. A1-A6357. |
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. II of IV, Jun. 24, 2013, pp. A6849-A10634. |
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. III of IV, Jun. 24, 2013, pp. A10654-A15517. |
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. IV of IV, Jun. 24, 2013, pp. A15677-A18127. |
Brief for Defendant-Appellee VGO Communications, Inc., Appeal from the U.S. District Court for the Central District of California, in Case No. 2:11-cv-9185, Judge Percy Anderson, May 28, 2013, 75 pages. |
Civil Minutes-General: Case No. CV 11-9185PA (AJWx), InTouch Tech., Inc. v. VGo Commons, Inc., Sep. 10, 2012, 7 pages. |
Office Action received for Chinese Patent Application No. 200680044698.0, Nov. 4, 2010, 9 pages of Official Copy and 15 pages of English Translation. |
Opening Brief for Plaintiff-Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Apr. 12, 2013, 187 pages. |
Reply Brief for Plaintiff-Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Jun. 14, 2013, 39 pages. |
Activmedia Robotics, “Pioneer 2/PeopleBot, Operations Manual, Version 9”, Oct. 2001, 78 pages. |
Weaver et al., “Monitoring and Control Using the Internet and Java”, vol. 3, Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society, 1999, pp. 1152-1158. |
Garner et al., “The Application of Telepresence in Medicine”, BT Technology Journal, vol. 15, No. 4, Oct. 1, 1997, pp. 181-187. |
“Mange Charge”, Smart Power for Electric Vehicles, General Motors Corporation, Serial No. 75189637, Registration No. 2114006, Filing Date: Oct. 29, 1996, Aug. 26, 1997, 2 pages. |
“Using your Infrared Cell Phone Camera”, Available on <http://www.catsdomain.com/xray/about.htm>, retrieved on Jan. 23, 2014, Courtesy of Internet Wayback Machine, Jan. 30, 2010, 4 pages. |
Weiss et al., “Telework and Video-Mediated Communication: Importance of Real-Time, Interactive Communication for Workers with Disabilities”, Available online at <http://www.telbotics.com/research—3.htm>, retrieved on Nov. 23, 2010, 1999, 3 pages. |
Jacobs et al., “Applying Telemedicine to Outpatient Physical Therapy”, AMIA, Annual Symposium Proceedings, 2002, 1 page. |
Kurlowicz et al., “The Mini Mental State Examination (MMSE)”, The Hartford Institute for Geriatric Nursing, Journal of Psychiatric Research, No. 3, Jan. 1999, 2 pages. |
Lemaire, Edward, “Using Communication Technology to Enhance Rehabilitation Services”, Terry Fox Mobile Clinic, The Rehabilitation Centre, Ottawa, Canada, Version 2.0, 1998-2001, 104 pages. |
Nakazato et al., “Group-Based Interface for Content-Based Image Retrieval”, Proceedings of the Working Conference on Advanced Visual Interfaces, 2002, pp. 187-194. |
Nakazato et al., “Group-Oriented User Interface for Digital Image Management”, Journal of Visual Languages and Computing, vol. 14, No. 4, Aug. 2003, pp. 45-46. |
North, Michael, “Telemedicine: Sample Script and Specifications for a Demonstration of Simple Medical Diagnosis and Treatment Using Live Two-Way Video on a Computer Network”, Greenstar Corporation, 1998, 5 pages. |
Piquepaille, Roland, “How New Technologies are Modifying Our Way of Life”, Roland Piquepaille's Technology Trends, This Blog and its RSS Feed Are Moving, Oct. 31, 2004, 2 pages. |
Radvision, “Making Sense of Bandwidth the NetSense Way”, Network Congestion in Unmanaged Networks Bandwidth Estimation and Adaptation Techniques, Radvision's Netsense Technology, 2010, 7 pages. |
Roy et al., “Towards Personal Service Robots for the Elderly”, Workshop on Interactive Robots and Entertainment (WIRE 2000), vol. 25, Apr. 30-May 1, 2000, 7 pages. |
Theodosiou et al., “MuLVAT: A Video Annotation Tool Based on XML-Dictionaries and Shot Clustering”, 19th International Conference, Artificial Neural Networks-ICANN, Sep. 14-17, 2009, pp. 913-922. |
Tyrrell et al., “Teleconsultation in Psychology: The Use of Videolinks for Interviewing and Assessing Elderly Patients”, British Geriatrics Society, Age and Ageing, vol. 30, No. 3, May 2001, pp. 191-195. |
Telepresence Research, Inc., “Telepresence Mobile Robot System”, available online at <http://www. telepresence.com/telepresence-research/TELEROBOT/>, retrieved on Nov. 23, 2010, Feb. 20, 1995, 3 pages. |
Adams, Chris, “Simulation of Adaptive Behavior (SAB'02)—From Animals to Animats 7”, Mobile Robotics Research Group, The Seventh International Conference, available online at: <http://www.dai.ed.ac.uk/groups/mrg/MRG.html>, retrieved on Jan. 22, 2014, Aug. 4-11, 2002, 1 page. |
Evans et al., “HelpMate: The Trackless Robotic Courier”, PYXIS, available online at <http://www.pyxis.com/>, 3 pages. |
Gaidioz et al., “Synchronizing Network Probes to Avoid Measurement Intrusiveness with the Network Weather Service”, High-Performance Distributed Computing, Proceedings of the Ninth International Symposium, 2000, pp. 147-154. |
Screenshot Showing Google Date for Lemaire Telehealth Manual, Screenshot Retrieved on Dec. 18, 2014, 1 page. |
Nomadic Technologies, Inc., “Nomad Scout Language Reference Manual”, Software Version: 2.7, Part No. DOC00002, Jul. 12, 1999, 47 pages. |
Nomadic Technologies, Inc., “Nomad Scout User's Manual”, Software Version 2.7, Part No. DOC00004, Jul. 12, 1999, pp. 1-59. |
ACM Digital Library Record, Autonomous Robots, vol. 11, No. 1, Table of Content, available at <http://dl.acm.org/citation.cfm?id=591550&picked=prox&cfid=360891374&cftoken=35225929>, Jul. 2001, 2 pages. |
Brenner, Pablo, “A Technical Tutorial on the IEEE 802.11 Protocol”, BreezeCOM Wireless Communications, Jul. 18, 1996, pp. 1-24. |
Library of Congress, “008-Fixed-Length Data Elements (NR)”, MARC 21 Format for Classification Data, available at <http://www.loc.gov/marc/classification/cd008.html>, retrieved on Jul. 22, 2014, pp. 1-14. |
Paulos et al., “Personal Tele-Embodiment”, Chapter 9 in Goldberg et al., Ed., “Beyond Webcams”, MIT Press, Jan. 4, 2002, pp. 155-167. |
Paulos et al., “Social Tele-Embodiment: Understanding Presence”, Autonomous Robots, vol. 11, No. 1, Kluwer Academic Publishers, Jul. 2001, pp. 87-95. |
Paulos, Eric John, “Personal Tele-Embodiment”, Introductory and Cover Pages from 2001 Dissertation Including Contents table, together with E-mails Relating thereto from UC Berkeley Libraties, as Shelved at UC Berkeley Engineering Library (Northern Regional Library Facility), May 8, 2002, 25 pages (including 4 pages of e-mails). |
Paulos, Eric John, “Personal Tele-Embodiment”, OskiCat Catalog Record, UCB Library Catalog, Results page and MARC Display, retrieved on Jun. 14, 2014, 3 Pages. |
NetMeeting, available online at <http://web.archive.orgjweb/2006041 723 555 5/http://transcriptions .english>, retrieved on Apr. 17, 2006, 2 pages. |
Fulbright et al., “Swami: An Autonomous Mobile Robot for Inspection of Nuclear Waste of Storage Facilities”, Autonomous Robots, 2, 1995, pp. 225-235. |
Hameed et al., “A Review of Telemedicine”, Journal of Telemedicine and Telecare, vol. 5, Supplement 1, 1999, 1 page. |
Number | Date | Country | |
---|---|---|---|
20140156078 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12349288 | Jan 2009 | US |
Child | 13894246 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12277922 | Nov 2008 | US |
Child | 12349288 | US |