The present invention relates to implantable medical devices, and more particularly, to remote control devices for communicating with an implantable medical device and a computer.
Current implantable medical devices such as pacemakers, cochlear implants, spinal cord stimulators, and deep brain stimulators, are typically programmed by a specially designed remote control device, or telemetry system, that contains a computer and a radio or magnetic device to communicate with the implantable device. Implantable sensor systems and infusion pumps also require telemetry systems. Implantable sensor systems sense the level of various substances within the body, such as medications, hormones, neurotransmitters, electrolytes, enzymes, gases, and glucose.
The remote control device's computer contains a specific program designed to control the particular type of implant. Some of the remote control devices are complete in themselves. But, some other remote control devices require a larger computer (sometimes called a special-purpose programmer, Clinician's Programmer, or Fitting Station) to configure the remote control parameters, such as speech processing strategies or the adjustability limits of the remote control by the patient.
Clinician's Programmers and their accompanying software programs are very expensive. As the variety of medical devices increases, clinicians are required to stock and track an increasing variety of special purpose devices. A clinician who does not have the appropriate special purpose device cannot offer any assistance to a patient whose treatment requires the device. As a result, patients are restricted to seeking treatment from a limited number of clinics. Patients who must travel long distances to reach one of these qualified clinics are unduly burdened with added expense and inconvenience.
Therefore, a need exists for an implantable medical device remote control system that may be controlled by a clinician without the use of a complex and expensive Clinician's Programmer or Fitting Station.
The present invention addresses the above and other needs by providing a system for fitting, or altering the parameters of, implantable medical devices using only the patient's own remote control and a general purpose computer equipped with a web browser and network connection, or other communication means, to link to the patient's remote control. Optionally, once a web page from the remote control device is delivered to the browser of the clinician's computer, the clinician can permit a remote user, such as another clinician or the technical support staff of the implant manufacturer, to view and control the parameters displayed on the web page from a remote location. Information in the clinician's browser can be uploaded to a remote site, or server, to be viewed or altered by others.
The present invention eliminates the need for clinicians to be equipped with separate computers and/or software used to manage or control the parameters of the implant. The present invention allows a patient to simply present his remote control device to the clinician, and the clinician is then able to interrogate and intervene as required.
The above and other aspects of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
Corresponding reference characters indicate corresponding components throughout the several views of the drawings.
The following description is of the best mode presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be determined with reference to the claims.
Recently, others have developed communications systems similar to the present invention in order to monitor and control the behavior of implantable medical devices. For example, U.S. Pat. No. 6,442,432 (issued Aug. 27, 2002) (the '432 patent), incorporated herein by reference, teaches a general purpose computer loaded with a software application that allows the computer to communicate with an interface medical unit connected to the general purpose computer. The interface medical unit also communicates with an implantable medical device (Col. 13, lines 58-63). The '432 patent also teaches an interface medical unit that downloads instructions from a remote expert server and sends the instructions to a remote implantable medical device. Col. 13, lines 10-12. Nevertheless, the '432 patent fails to teach an interface medical unit loaded with server software capable of delivering data to the browser of a general purpose computer.
U.S. Pat. No. 6,497,655 (issued Dec. 24, 2002) (the '655 patent), also incorporated herein by reference, provides a programmer or interface medical unit in communication with an implantable medical device. The programmer or interface medical unit is an interface between the implantable medical device and a remote web-based expert data center (Col. 11, lines 23-27; cols. 15-16, lines 59-18; col. 16, lines 62-64). The remote web-based expert data center has several complex programming software modules that permit a physician to provide clinical care and therapy to a patient (Cols. 21-24, claims 1, 16, and 18). The '655 patent does not indicate that these software modules are delivered to the web-based expert data center from the interface medical unit. Rather, the '655 patent indicates that the complex software modules are already located on the web-based expert data center.
Finally, U.S. patent application Ser. No. 10/438,374 (the '374 application), filed May 15, 2003, also incorporated herein by reference, provides an external device in communication with an implantable medical device. The external device may communicate with distantly located clinician equipment. The '374 application indicates that data is sent from the external device to a server, to another interface device, and finally to a general purpose personal computer (see paragraph 52 and FIG. 3).
Although the three references mentioned above teach systems and methods similar to the present invention, all of these systems and methods lack at least one critical component of the present invention: interface server software on the remote control device itself, which server software delivers data and software modules to a general purpose computer. By loading the remote control device with interface server software, a remote control device manufacturer can permit a clinician to use the remote control device to interface freely with a general purpose computer equipped with commonly available internet browser software. No pre-loaded, complex software modules are needed on the clinician's computer because all of the software modules needed to manipulate and monitor the implantable medical device are already stored on and delivered from the remote control device using interface server software. In essence, the present invention permits a clinician to use communication methods and systems—including the methods and systems of U.S. Pat. Nos. 6,442,432 and 6,497,655 and U.S. patent application Ser. No. 10/438,374—without having to purchase, stock, and operate costly interface equipment.
A simplified representation of the present invention is shown in
The implantable medical device 100 may be any combination or multiple of an electrical stimulator, an infusion pump, a sensor, or any other implantable medical device whose function can be altered by programmable commands. The remote control device 110 may be implemented in a variety of embodiments, including: a hand held remote control; an amulet; a necklace; a badge; a pin; a wrist-worn device, such as a watch or a bracelet; a talisman; or any other worn or carried device capable of performing the functions of a remote control device 110.
As shown in
As shown in
HTTP server software module 320 permits “server side scripts”, also called Common Gateway Interference, or CGI, scripts, to communicate to any “client” program within the reach of network 260 (
Interface server module 330 manages device control module 310 variables. Interface server module 330 is identified to HTTP server software module 320 by a special symbolic address, called a Universal Resource Locator, or URL. Interface server module 330 assembles messages containing codes for hypertext markup language, or HTML, forms which are passed to a “client” browser and can be presented as documents with optional fields that can be filled with data. A “client” browser is a program that permits a computer terminal to display files and other data sent from a server.
Referring again to
Computer 120 must be equipped with a display program compatible with the HTTP protocol, such as a web browser program. Information in the display program can be transferred to and from other computers 270, servers 280, and other devices capable of reading and writing information in a local or general network by means of a wired, wireless, optical, satellite, or other communication channel known by those of ordinary skill in the art. For example, display applets or other configuration management information from another device located on the general network 260 may be sent to the web browser program of computer 120. Such applets may increase the aesthetics and functionality of the program displayed in the web browser. At a minimum, however, the computer 120 must be equipped with a display program compatible with the HTTP protocol. Then, all other code compatible with the HTTP protocol may be transmitted from a network to the computer 120 to increase the functionality of the computer 120. A limited amount of such code may in turn be transmitted to the remote control device 110.
Referring to
The interface server module 330 examines the filled-in form and decides if permission for display or modification of implanted device control parameters should be granted at step 416. If the permission is denied, the denial is counted at step 417. If permission has been denied, e.g., three times or less, then interface server module 330 sends an error message with a new “login form” to the browser at step 418. If permission is denied, e.g., more than three times, the interface server module sends a termination message to the browser at step 420 indicating that login attempts were unsuccessful, and the session is terminated. If the permission is granted, the interface server module 330 sends a form to the computer 120 at step 422 that is displayed in the browser with control tokens at step 424 for modifying the parameters of the remote control device 110.
At this point the clinician may modify each control variable through the browser at step 426. As the clinician modifies each control variable through the browser at step 428, a request is sent to the interface server module 330 within the remote control 110 at step 430. The interface server module 330 responds to each request from the clinician by sending out a new page displaying the control tokens for future action in the browser and the current device status at step 432. The interface server module also responds to each request from the clinician by sending the new parameters to the implantable device 100 at step 434. Alternatively, a request may be sent to the interface server module 330 to deliver all new parameters in a group to the implantable device 100 after all control variables have been modified by the clinician.
Alternately, when the clinician selects a control token for terminating the interaction at step 426, the interface server module 330 stops sending forms to computer 120 and the session terminates at step 436. Optionally, the login process may start a timer (preferably located within the remote control device 110) which specifies a maximum time for the interaction, after which the interface server module 330 stops sending out pages at optional step 438.
Once a session has begun, it is possible that errors may occur during a session that could potentially jeopardize the health of the patient. In order to avoid endangering the patient, interface server module 330 requests device control module 310 to switch the implantable medical device 100 to safe operations. Safe operations are a predefined set of parameters upon which the implantable medical device 100 can properly function without endangering the patient. By entering into safe operations, the system of the present invention limits or stops the therapy session whenever there is an error in order to ensure the safety of the patient. Safe operations continue until the clinician initiates a new session or until the error is resolved.
Additionally, information coming from computer 120 and remote control device 110 may be retrieved from arbitrary server systems on a local 290 or general network 260. Local network 290 is located entirely within a single building and is any network of any devices capable of communicating with each other and with computer 120. These portions may include pages using markup language (such as html, xml, xhtml, sgml, dhtml, and any derivative thereof), graphics, or client side logic (sometimes called scripts or applets). Markup language is a coding system used to structure, index, and link files for presentation in a browser. As a first option, remote control device 110 or the browser (under the control of an applet or script) may upload patient or device data to a server on the network. As a second option, the web page and applets may exchange data with a server 280 and/or database at a remote site on general network 260. General network 260 may include local network 290 and may also include any data transfer network of devices, such as an intranet or internet established through wired (e.g., telephone lines) and/or wireless (e.g., cell phone towers or satellite transmissions) means. Information supplied from a remote server 280 to computer 120 across the general network 260 could provide a common client desktop interface, where a clinician could see the history of the patient with other clinicians.
Network communication permits both easy file sharing and file upgrading. Information transferred over a network from a remote location is more easily upgraded than cumbersome and expensive software packages running in a clinician's office. In addition, remote server 280 or the remote database can be used to backup and clone remote control device 110 as needed.
It is thus seen that remote control device 110 provides a gateway between a physician's computer and a patient's implantable device. Remote control device 110 may further include a security device to prevent unauthorized users from impermissibly altering the parameters of a patient's implantable medical device. For example, the security device may prevent impermissible alteration by acting as a physical enabler for communication to remote control 110 that only one with possession of remote control device 110 may activate. One embodiment of such a physical enabler is a recessed switch that, when activated, enables communications with remote control device 110 for a limited time, such as 15 minutes. After the time expires, the switch is automatically deactivated and must again be activated in order for communications to continue. Other embodiments of physical enablers may include key combinations, keys and locks, and other physical security tokens.
Advantageously, both patients and clinicians, spread out over a large area, may enjoy the benefits of the present invention. The present invention permits implant patients the freedom to seek care from any able clinician equipped with a general purpose computer. Clinicians are no longer required to pay for and maintain expensive special-purpose programmers and similar complex stations to support the programming and fitting of implantable medical devices. Further, clinicians may also enjoy un-cluttering their fitting areas by reducing the number of programming systems in each area.
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
This is a continuation of U.S. patent application Ser. No. 15/000,226, filed Jan. 19, 2016 (now U.S. Pat. No. 9,492,672), which is a continuation of U.S. patent application Ser. No. 14/696,872, filed Apr. 27, 2015 (now U.S. Pat. No. 9,244,898), which is a continuation of Ser. No. 14/201,900, filed Mar. 9, 2014 (now U.S. Pat. No. 9,020,603), which is a continuation of Ser. No. 13/766,654, filed Feb. 13, 2013 (now U.S. Pat. No. 8,706,254), which is a continuation of Ser. No. 12/783,432, filed May 19, 2010 (now U.S. Pat. No. 8,401,661), which is a continuation of Ser. No. 10/857,390, filed May 28, 2004 (now U.S. Pat. No. 7,742,821), which is a non-provisional of U.S. Provisional Patent Application Ser. No. 60/477,604, filed Jun. 11, 2003. Priority is claimed to these applications, and these applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3942535 | Schulman | Mar 1976 | A |
4208008 | Smith | Jun 1980 | A |
4304238 | Fischer | Dec 1981 | A |
4365633 | Loughman et al. | Dec 1982 | A |
4550732 | Batty et al. | Nov 1985 | A |
4587970 | Holley et al. | May 1986 | A |
4926865 | Oman | May 1990 | A |
5158078 | Bennett et al. | Oct 1992 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5226413 | Bennett et al. | Jul 1993 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5350407 | McClure et al. | Sep 1994 | A |
5383915 | Adams | Jan 1995 | A |
5456692 | Smith et al. | Oct 1995 | A |
5653735 | Chen et al. | Aug 1997 | A |
5683432 | Goedeke et al. | Nov 1997 | A |
5690690 | Nappholz et al. | Nov 1997 | A |
5752976 | Duffin et al. | May 1998 | A |
5752977 | Grevious et al. | May 1998 | A |
5792201 | Causey et al. | Aug 1998 | A |
5938690 | Law et al. | Aug 1999 | A |
6003068 | Sopko | Dec 1999 | A |
6083248 | Thompson | Jul 2000 | A |
6249703 | Stanton et al. | Jun 2001 | B1 |
6250309 | Krichen et al. | Jun 2001 | B1 |
6308102 | Sieracki et al. | Oct 2001 | B1 |
6366572 | Esterberg et al. | Apr 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6471645 | Warkentin et al. | Oct 2002 | B1 |
6480745 | Nelson et al. | Nov 2002 | B2 |
6490487 | Kraus et al. | Dec 2002 | B1 |
6497655 | Linberg et al. | Dec 2002 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6597951 | Kramer et al. | Jul 2003 | B2 |
6604001 | Thomas et al. | Aug 2003 | B2 |
6609032 | Woods et al. | Aug 2003 | B1 |
6622045 | Snell et al. | Sep 2003 | B2 |
6644322 | Webb | Nov 2003 | B2 |
6659968 | McClure | Dec 2003 | B1 |
6665565 | Stomberg | Dec 2003 | B1 |
6804558 | Haller et al. | Oct 2004 | B2 |
6868309 | Begelman | Mar 2005 | B1 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6895280 | Meadows et al. | May 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6978181 | Snell | Dec 2005 | B1 |
7043305 | Kenknight et al. | May 2006 | B2 |
7060030 | Von Arx et al. | Jun 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7065409 | Mazar | Jun 2006 | B2 |
7142923 | North et al. | Nov 2006 | B2 |
7146219 | Sieracki et al. | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7181286 | Sieracki et al. | Feb 2007 | B2 |
7203505 | Larikka et al. | Apr 2007 | B1 |
7209790 | Thompson et al. | Apr 2007 | B2 |
7216000 | Sieracki et al. | May 2007 | B2 |
7266412 | Stypulkowski | Sep 2007 | B2 |
7324949 | Bristol | Jan 2008 | B2 |
7373206 | Sieracki et al. | May 2008 | B2 |
7383088 | Spinelli et al. | Jun 2008 | B2 |
7489970 | Lee et al. | Feb 2009 | B2 |
7505815 | Lee et al. | Mar 2009 | B2 |
7546340 | Terasawa | Jun 2009 | B2 |
7610099 | Almendinger et al. | Oct 2009 | B2 |
8612554 | Kikuchi | Dec 2013 | B2 |
20030177031 | Malek | Sep 2003 | A1 |
20040088374 | Webb | May 2004 | A1 |
20040138518 | Rise et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
0750921 | Jan 1997 | EP |
0753327 | Jan 1997 | EP |
02057994 | Jul 2002 | WO |
03092769 | Nov 2003 | WO |
Entry |
---|
Whitehurst, et al. Inventors for AB-195U; U.S. Appl. No. 10/438,374, filed May 15, 2003; entitled “Remote Communications Link for Fully Implantable Miniature Neurostimulation and Sensor System”. |
Number | Date | Country | |
---|---|---|---|
20170056680 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
60477604 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15000226 | Jan 2016 | US |
Child | 15349854 | US | |
Parent | 14696872 | Apr 2015 | US |
Child | 15000226 | US | |
Parent | 14201900 | Mar 2014 | US |
Child | 14696872 | US | |
Parent | 13766654 | Feb 2013 | US |
Child | 14201900 | US | |
Parent | 12783432 | May 2010 | US |
Child | 13766654 | US | |
Parent | 10857390 | May 2004 | US |
Child | 12783432 | US |